1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
from itertools import chain
from math import isnan
from numbers import Real, Integral
import numpy as np
from Orange.data import Value, Unknown, DiscreteVariable
__all__ = ["Instance"]
class Instance:
def __init__(self, domain, data=None, id=None):
"""
Construct a new data instance.
:param domain: domain that describes the instance's variables
:type domain: Orange.data.Domain
:param data: instance's values
:type data: Orange.data.Instance or a sequence of values
:param id: instance id
:type id: hashable value
"""
if data is None and isinstance(domain, Instance):
data = domain
domain = data.domain
self._domain = domain
if data is None:
self._x = np.repeat(Unknown, len(domain.attributes))
self._y = np.repeat(Unknown, len(domain.class_vars))
self._metas = np.array([var.Unknown for var in domain.metas],
dtype=object)
self._weight = 1
elif isinstance(data, Instance) and data.domain == domain:
self._x = np.array(data._x)
self._y = np.atleast_1d(np.array(data._y))
self._metas = np.array(data._metas)
self._weight = data._weight
else:
self._x, self._y, self._metas = domain.convert(data)
self._y = np.atleast_1d(self._y)
self._weight = 1
if id is not None:
self.id = id
else:
from Orange.data import Table
self.id = Table.new_id()
@property
def domain(self):
"""The domain describing the instance's values."""
return self._domain
@property
def x(self):
"""
Instance's attributes as a 1-dimensional numpy array whose length
equals `len(self.domain.attributes)`.
"""
return self._x
@property
def y(self):
"""
Instance's classes as a 1-dimensional numpy array whose length
equals `len(self.domain.attributes)`.
"""
return self._y
@property
def metas(self):
"""
Instance's meta attributes as a 1-dimensional numpy array whose length
equals `len(self.domain.attributes)`.
"""
return self._metas
@property
def list(self):
"""
All instance's values, including attributes, classes and meta
attributes, as a list whose length equals `len(self.domain.attributes)
+ len(self.domain.class_vars) + len(self.domain.metas)`.
"""
n_self, n_metas = len(self), len(self._metas)
return [self[i].value if i < n_self else self[n_self - i - 1].value
for i in range(n_self + n_metas)]
@property
def weight(self):
"""The weight of the data instance. Default is 1."""
return self._weight
@weight.setter
def weight(self, weight):
self._weight = weight
def __setitem__(self, key, value):
if not isinstance(key, Integral):
key = self._domain.index(key)
value = self._domain[key].to_val(value)
if key >= 0 and not isinstance(value, (int, float)):
raise TypeError("Expected primitive value, got '%s'" %
type(value).__name__)
if 0 <= key < len(self._domain.attributes):
self._x[key] = value
elif len(self._domain.attributes) <= key:
self._y[key - len(self.domain.attributes)] = value
else:
self._metas[-1 - key] = value
def __getitem__(self, key):
idx = key if isinstance(key, Integral) else self._domain.index(key)
if 0 <= idx < len(self._domain.attributes):
value = self._x[idx]
elif idx >= len(self._domain.attributes):
if self._y.ndim == 0:
value = self._y
else:
value = self._y[idx - len(self.domain.attributes)]
else:
value = self._metas[-1 - idx]
var = self._domain[idx]
if isinstance(key, DiscreteVariable) and var is not key:
value = key.get_mapper_from(var)(value)
var = key
return Value(var, value)
#TODO Should we return an instance of `object` if we have a meta attribute
# that is not Discrete or Continuous? E.g. when we have strings, we'd
# like to be able to use startswith, lower etc...
# Or should we even return Continuous as floats and use Value only
# for discrete attributes?!
# Same in Table.__getitem__
@staticmethod
def str_values(data, variables, limit=True):
if limit:
s = ", ".join(var.str_val(val)
for var, val in zip(variables, data[:5]))
if len(data) > 5:
s += ", ..."
return s
else:
return ", ".join(var.str_val(val)
for var, val in zip(variables, data))
def _str(self, limit):
s = "[" + self.str_values(self._x, self._domain.attributes, limit)
if self._domain.class_vars:
s += " | " + \
self.str_values(self._y, self._domain.class_vars, limit)
s += "]"
if self._domain.metas:
s += " {" + \
self.str_values(self._metas, self._domain.metas, limit) + \
"}"
return s
def __str__(self):
return self._str(False)
def __repr__(self):
return self._str(True)
def __eq__(self, other):
if not isinstance(other, Instance):
other = Instance(self._domain, other)
def same(x1, x2):
nan1 = np.isnan(x1)
nan2 = np.isnan(x2)
return np.array_equal(nan1, nan2) and \
np.array_equal(x1[~nan1], x2[~nan2])
return same(self._x, other._x) and same(self._y, other._y) \
and all(m1 == m2 or
type(m1) == type(m2) == float and isnan(m1) and isnan(m2)
for m1, m2 in zip(self._metas, other._metas))
@classmethod
def __hash__(cls):
raise TypeError(f"unhashable type: '{type(cls.__name__)}'")
def __iter__(self):
return chain(iter(self._x), iter(self._y))
def values(self):
return (Value(var, val)
for var, val in zip(self.domain.variables, self))
def __len__(self):
return len(self._x) + len(self._y)
def attributes(self):
"""Return iterator over the instance's attributes"""
return iter(self._x)
def classes(self):
"""Return iterator over the instance's class attributes"""
return iter(self._y)
# A helper function for get_class and set_class
def _check_single_class(self):
if not self._domain.class_vars:
raise TypeError("Domain has no class variable")
elif len(self._domain.class_vars) > 1:
raise TypeError("Domain has multiple class variables")
def get_class(self):
"""
Return the class value as an instance of :obj:`Orange.data.Value`.
Throws an exception if there are multiple classes.
"""
self._check_single_class()
return Value(self._domain.class_var, self._y[0])
def get_classes(self):
"""
Return the class value as a list of instances of
:obj:`Orange.data.Value`.
"""
return (Value(var, value)
for var, value in zip(self._domain.class_vars, self._y))
def set_class(self, value):
"""
Set the instance's class. Throws an exception if there are multiple
classes.
"""
self._check_single_class()
if not isinstance(value, Real):
self._y[0] = self._domain.class_var.to_val(value)
else:
self._y[0] = value
|