File: io_base.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (830 lines) | stat: -rw-r--r-- 29,409 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
import pickle
import re
import sys
import warnings
from typing import Iterable, Optional, Tuple, List, Generator, Callable, Any

from ast import literal_eval
from collections import OrderedDict
from functools import lru_cache
from itertools import chain, repeat
from math import isnan

from os import path, remove
from fnmatch import fnmatch
from glob import glob

import numpy as np
import pandas

from Orange.data import Table, Domain, Variable, DiscreteVariable, \
    StringVariable, ContinuousVariable, TimeVariable
from Orange.data.io_util import Compression, open_compressed, \
    isnastr, guess_data_type, sanitize_variable
from Orange.data.util import get_unique_names_duplicates
from Orange.data.variable import VariableMeta
from Orange.misc.collections import natural_sorted
from Orange.util import Registry, flatten, namegen

__all__ = ["FileFormatBase", "Flags", "DataTableMixin", "PICKLE_PROTOCOL"]


PICKLE_PROTOCOL = 4


class MissingReaderException(IOError):
    # subclasses IOError for backward compatibility
    pass


class Flags:
    """Parser for column flags (i.e. third header row)"""
    DELIMITER = ' '
    _RE_SPLIT = re.compile(r'(?<!\\)' + DELIMITER).split
    _RE_ATTR_UNQUOTED_STR = re.compile(r'^[a-zA-Z_]').match
    ALL = OrderedDict((
        ('class', 'c'),
        ('ignore', 'i'),
        ('meta', 'm'),
        ('weight', 'w'),
        ('.+?=.*?', ''),  # general key=value attributes
    ))
    RE_ALL = re.compile(r'^({})$'.format('|'.join(
        filter(None, flatten(ALL.items())))))

    def __init__(self, flags):
        for v in filter(None, self.ALL.values()):
            setattr(self, v, False)
        self.attributes = {}
        for flag in flags or []:
            flag = flag.strip()
            if self.RE_ALL.match(flag):
                if '=' in flag:
                    k, v = flag.split('=', 1)
                    if not Flags._RE_ATTR_UNQUOTED_STR(v):
                        try:
                            v = literal_eval(v)
                        except SyntaxError:
                            # If parsing failed, treat value as string
                            pass
                    # map True and False to booleans
                    if v in ("True", "False"):
                        v = {"True": True, "False": False}[v]
                    self.attributes[k] = v
                else:
                    setattr(self, flag, True)
                    setattr(self, self.ALL.get(flag, ''), True)
            elif flag:
                warnings.warn('Invalid attribute flag \'{}\''.format(flag))

    @staticmethod
    def join(iterable, *args):
        return Flags.DELIMITER.join(i.strip().replace(Flags.DELIMITER,
                                                      '\\' + Flags.DELIMITER)
                                    for i in chain(iterable, args)).lstrip()

    @staticmethod
    def split(s):
        return [i.replace('\\' + Flags.DELIMITER, Flags.DELIMITER)
                for i in Flags._RE_SPLIT(s)]


# Matches discrete specification where all the values are listed, space-separated
_RE_DISCRETE_LIST = re.compile(r'^\s*[^\s]+(\s[^\s]+)+\s*$')
_RE_TYPES = re.compile(r'^\s*({}|{}|)\s*$'.format(
    _RE_DISCRETE_LIST.pattern,
    '|'.join(flatten(getattr(vartype, 'TYPE_HEADERS')
                     for vartype in Variable.registry.values()))
))
_RE_FLAGS = re.compile(r'^\s*( |{}|)*\s*$'.format(
    '|'.join(flatten(filter(None, i) for i in Flags.ALL.items()))
))


class _ColumnProperties:
    def __init__(self, valuemap=None, values=None, orig_values=None,
                 coltype=None, coltype_kwargs=None):
        self.valuemap = valuemap
        self.values = values
        self.orig_values = orig_values
        self.coltype = coltype
        if coltype_kwargs is None:
            self.coltype_kwargs = {}
        else:
            self.coltype_kwargs = dict(coltype_kwargs)


class _TableHeader:
    """
    Contains functions for table header construction (and its data).
    """
    HEADER1_FLAG_SEP = '#'

    def __init__(self, headers: List):
        """
        Parameters
        ----------
        headers: List
            Header rows, to be used for constructing domain.
        """
        names, types, flags = self.create_header_data(headers)
        self.names = get_unique_names_duplicates(names)
        self.types = types
        self.flags = flags

    @classmethod
    def create_header_data(cls, headers: List) -> Tuple[List, List, List]:
        """
        Consider various header types (single-row, two-row, three-row, none).

        Parameters
        ----------
        headers: List
            Header rows, to be used for constructing domain.

        Returns
        -------
        names: List
            List of variable names.
        types: List
            List of variable types.
        flags: List
            List of meta info (i.e. class, meta, ignore, weights).
        """
        return {3: lambda x: x,
                2: cls._header2,
                1: cls._header1}.get(len(headers), cls._header0)(headers)

    @classmethod
    def _header2(cls, headers: List[List[str]]) -> Tuple[List, List, List]:
        names, flags = headers
        return names, cls._type_from_flag(flags), cls._flag_from_flag(flags)

    @classmethod
    def _header1(cls, headers: List[List[str]]) -> Tuple[List, List, List]:
        """
        First row format either:
          1) delimited column names
          2) -||- with type and flags prepended, separated by #,
             e.g. d#sex,c#age,cC#IQ
        """

        roles = "".join([f for f in Flags.ALL.values() if len(f) == 1])  # cimw
        types = "".join([t for t in flatten(getattr(vartype, 'TYPE_HEADERS')
                                            for vartype in Variable.registry.values())
                         if len(t) == 1]).upper()  # CNDST

        res = ('^((?P<flags>'
               f'[{roles}{types}]|'
               f'([{roles}][{types}])|'
               f'([{types}][{roles}])'
               ')#)?(?P<name>.*)')

        header1_re = re.compile(res)

        flags = []
        names = []
        for i in headers[0]:
            m = header1_re.match(i)
            f, n = m.group("flags", "name")
            flags.append('' if f is None else f)
            names.append(n)

        return names, cls._type_from_flag(flags), cls._flag_from_flag(flags)

    @classmethod
    def _header0(cls, _) -> Tuple[List, List, List]:
        # Use heuristics for everything
        return [], [], []

    @staticmethod
    def _type_from_flag(flags: List[str]) -> List[str]:
        return [''.join(filter(str.isupper, flag)).lower() for flag in flags]

    @staticmethod
    def _flag_from_flag(flags: List[str]) -> List[str]:
        return [Flags.join(filter(str.islower, flag)) for flag in flags]


class _TableBuilder:
    X_ARR, Y_ARR, M_ARR, W_ARR = range(4)
    DATA_IND, DOMAIN_IND, TYPE_IND = range(3)

    def __init__(self, data: np.ndarray, ncols: int,
                 header: _TableHeader, offset: int):
        self.data = data
        self.ncols = ncols
        self.header = header
        self.offset = offset
        self.namegen: Generator[str] = namegen('Feature ', 1)

        self.cols_X: List[np.ndarray] = []
        self.cols_Y: List[np.ndarray] = []
        self.cols_M: List[np.ndarray] = []
        self.cols_W: List[np.ndarray] = []
        self.attrs: List[Variable] = []
        self.clses: List[Variable] = []
        self.metas: List[Variable] = []

    def create_table(self) -> Table:
        self.create_columns()
        if not self.data.size:
            return Table.from_domain(self.get_domain(), 0)
        else:
            return Table.from_numpy(self.get_domain(), *self.get_arrays())

    def create_columns(self):
        names = self.header.names
        types = self.header.types

        for col in range(self.ncols):
            flag = Flags(Flags.split(self.header.flags[col]))
            if flag.i:
                continue

            type_ = types and types[col].strip()
            creator = self._get_column_creator(type_)
            column = creator(self.data, col, values=type_, offset=self.offset)
            self._take_column(names and names[col], column, flag)
            self._reclaim_memory(self.data, col)

    @classmethod
    def _get_column_creator(cls, type_: str) -> Callable:
        if type_ in StringVariable.TYPE_HEADERS:
            return cls._string_column
        elif type_ in ContinuousVariable.TYPE_HEADERS:
            return cls._cont_column
        elif type_ in TimeVariable.TYPE_HEADERS:
            return cls._time_column
        elif _RE_DISCRETE_LIST.match(type_):
            return cls._disc_with_vals_column
        elif type_ in DiscreteVariable.TYPE_HEADERS:
            return cls._disc_no_vals_column
        else:
            return cls._unknown_column

    @staticmethod
    def _string_column(data: np.ndarray, col: int, **_) -> _ColumnProperties:
        vals, _ = _TableBuilder._values_mask(data, col)
        return _ColumnProperties(values=vals, coltype=StringVariable,
                                 orig_values=vals)

    @staticmethod
    def _cont_column(data: np.ndarray, col: int,
                     offset=0, **_) -> _ColumnProperties:
        orig_vals, namask = _TableBuilder._values_mask(data, col)
        values = np.empty(data.shape[0], dtype=float)
        try:
            np.copyto(values, orig_vals, casting="unsafe", where=~namask)
            values[namask] = np.nan
        except ValueError:
            row = 0
            for row, num in enumerate(orig_vals):
                if not isnastr(num):
                    try:
                        float(num)
                    except ValueError:
                        break
            raise ValueError(f'Non-continuous value in (1-based) '
                             f'line {row + offset + 1}, column {col + 1}')
        return _ColumnProperties(values=values, coltype=ContinuousVariable,
                                 orig_values=orig_vals)

    @staticmethod
    def _time_column(data: np.ndarray, col: int, **_) -> _ColumnProperties:
        vals, namask = _TableBuilder._values_mask(data, col)
        return _ColumnProperties(values=np.where(namask, "", vals),
                                 coltype=TimeVariable, orig_values=vals)

    @staticmethod
    def _disc_column(data: np.ndarray, col: int) -> \
            Tuple[np.ndarray, VariableMeta]:
        vals, namask = _TableBuilder._values_mask(data, col)
        return np.where(namask, "", vals), DiscreteVariable

    @staticmethod
    def _disc_no_vals_column(data: np.ndarray, col: int, **_) -> \
            _ColumnProperties:
        vals, coltype = _TableBuilder._disc_column(data, col)
        return _ColumnProperties(valuemap=natural_sorted(set(vals) - {""}),
                                 values=vals, coltype=coltype,
                                 orig_values=vals)

    @staticmethod
    def _disc_with_vals_column(data: np.ndarray, col: int,
                               values="", **_) -> _ColumnProperties:
        vals, coltype = _TableBuilder._disc_column(data, col)
        return _ColumnProperties(valuemap=Flags.split(values), values=vals,
                                 coltype=coltype, orig_values=vals)

    @staticmethod
    def _unknown_column(data: np.ndarray, col: int, **_) -> _ColumnProperties:
        orig_vals, namask = _TableBuilder._values_mask(data, col)
        valuemap, values, coltype = guess_data_type(orig_vals, namask)
        return _ColumnProperties(valuemap=valuemap, values=values,
                                 coltype=coltype, orig_values=orig_vals)

    @staticmethod
    def _values_mask(data: np.ndarray, col: int) -> \
            Tuple[np.ndarray, np.ndarray]:
        try:
            values = data[:, col]
        except IndexError:
            values = np.array([], dtype=object)
        return values, isnastr(values)

    def _take_column(self, name: Optional[str], column: _ColumnProperties,
                     flag: Flags):
        cols, dom_vars = self._lists_from_flag(flag, column.coltype)
        values = column.values
        if dom_vars is not None:
            if not name:
                name = next(self.namegen)

            values, var = sanitize_variable(
                column.valuemap, values, column.orig_values,
                column.coltype, column.coltype_kwargs, name=name)
            var.attributes.update(flag.attributes)
            dom_vars.append(var)

        if isinstance(values, np.ndarray) and not values.flags.owndata:
            values = values.copy()  # might view `data` (string columns)
        cols.append(values)

    def _lists_from_flag(self, flag: Flags, coltype: VariableMeta) -> \
            Tuple[List, Optional[List]]:
        if flag.m or coltype is StringVariable:
            return self.cols_M, self.metas
        elif flag.w:
            return self.cols_W, None
        elif flag.c:
            return self.cols_Y, self.clses
        else:
            return self.cols_X, self.attrs

    @staticmethod
    def _reclaim_memory(data: np.ndarray, col: int):
        # allow gc to reclaim memory used by string values
        try:
            data[:, col] = None
        except IndexError:
            pass

    def get_domain(self) -> Domain:
        return Domain(self.attrs, self.clses, self.metas)

    def get_arrays(self) -> Tuple[np.ndarray, np.ndarray,
                                  np.ndarray, np.ndarray]:
        lists = ((self.cols_X, None),
                 (self.cols_Y, None),
                 (self.cols_M, object),
                 (self.cols_W, float))
        X, Y, M, W = [self._list_into_ndarray(lst, dt) for lst, dt in lists]
        if X is None:
            X = np.empty((self.data.shape[0], 0), dtype=np.float64)
        return X, Y, M, W

    @staticmethod
    def _list_into_ndarray(lst: List, dtype=None) -> Optional[np.ndarray]:
        if not lst:
            return None

        array = np.c_[tuple(lst)]
        if dtype is not None:
            array.astype(dtype)
        else:
            assert array.dtype == np.float64
        return array


class DataTableMixin:
    @classmethod
    def data_table(cls, data: Iterable[List[str]],
                   headers: Optional[List] = None) -> Table:
        """
        Return Orange.data.Table given rows of `headers` (iterable of iterable)
        and rows of `data` (iterable of iterable).

        Basically, the idea of subclasses is to produce those two iterables,
        however they might.

        If `headers` is not provided, the header rows are extracted from `data`,
        assuming they precede it.

        Parameters
        ----------
        data: Iterable
            File content.
        headers: List (Optional)
            Header rows, to be used for constructing domain.

        Returns
        -------
        table: Table
            Data as Orange.data.Table.
        """
        if not headers:
            headers, data = cls.parse_headers(data)

        header = _TableHeader(headers)
        # adjusting data may change header properties
        array, n_columns = cls.adjust_data_width(data, header)
        builder = _TableBuilder(array, n_columns, header, len(headers))
        return builder.create_table()

    @classmethod
    def parse_headers(cls, data: Iterable[List[str]]) -> Tuple[List, Iterable]:
        """
        Return (header rows, rest of data) as discerned from `data`.

        Parameters
        ----------
        data: Iterable
            File content.

        Returns
        -------
        header_rows: List
            Header rows, to be used for constructing domain.
        data: Iterable
            File content without header rows.
        """
        data = iter(data)
        header_rows = []

        # Try to parse a three-line header
        lines = []
        try:
            lines.append(list(next(data)))
            lines.append(list(next(data)))
            lines.append(list(next(data)))
        except StopIteration:
            lines, data = [], chain(lines, data)
        if lines:
            l1, l2, l3 = lines
            # Three-line header if line 2 & 3 match (1st line can be anything)
            if cls.__header_test2(l2) and cls.__header_test3(l3):
                header_rows = [l1, l2, l3]
            else:
                lines, data = [], chain((l1, l2, l3), data)

        # Try to parse a single-line header
        if not header_rows:
            try:
                lines.append(list(next(data)))
            except StopIteration:
                pass
            if lines:
                # Header if none of the values in line 1 parses as a number
                if not all(cls.__is_number(i) for i in lines[0]):
                    header_rows = [lines[0]]
                else:
                    data = chain(lines, data)

        return header_rows, data

    @staticmethod
    def __is_number(item: str) -> bool:
        try:
            float(item)
        except ValueError:
            return False
        return True

    @staticmethod
    def __header_test2(items: List) -> bool:
        # Second row items are type identifiers
        return all(map(_RE_TYPES.match, items))

    @staticmethod
    def __header_test3(items: List) -> bool:
        # Third row items are flags and column attributes (attr=value)
        return all(map(_RE_FLAGS.match, items))

    @classmethod
    def adjust_data_width(cls, data: Iterable, header: _TableHeader) -> \
            Tuple[np.ndarray, int]:
        """
        Determine maximum row length.
        Return data as an array, with width dependent on header size.
        Append `names`, `types` and `flags` if shorter than row length.

        Parameters
        ----------
        data: Iterable
            File content without header rows.
        header: _TableHeader
            Header lists converted into _TableHeader.

        Returns
        -------
        data: np.ndarray
            File content without header rows.
        rowlen: int
            Number of columns in data.
        """

        def equal_len(lst):
            nonlocal strip
            if len(lst) > rowlen > 0:
                lst = lst[:rowlen]
                strip = True
            elif len(lst) < rowlen:
                lst.extend([''] * (rowlen - len(lst)))
            return lst

        rowlen = max(map(len, (header.names, header.types, header.flags)))
        strip = False

        # Ensure all data is of equal width in a column-contiguous array
        data = [equal_len([s.strip() for s in row])
                for row in data if any(row)]
        array = np.array(data, dtype=object, order='F')

        if strip:
            warnings.warn("Columns with no headers were removed.")

        # Data may actually be longer than headers were
        try:
            rowlen = array.shape[1]
        except IndexError:
            pass
        else:
            for lst in (header.names, header.types, header.flags):
                equal_len(lst)
        return array, rowlen


class _FileReader:
    @classmethod
    def get_reader(cls, filename):
        """Return reader instance that can be used to read the file

        Parameters
        ----------
        filename : str

        Returns
        -------
        FileFormat
        """
        for ext, reader in cls.readers.items():
            # Skip ambiguous, invalid compression-only extensions added on OSX
            if ext in Compression.all:
                continue
            if fnmatch(path.basename(filename), '*' + ext):
                return reader(filename)

        raise MissingReaderException('No readers for file "{}"'.format(filename))

    @classmethod
    def set_table_metadata(cls, filename, table):
        # pylint: disable=bare-except
        if isinstance(filename, str) and path.exists(filename + '.metadata'):
            try:
                with open(filename + '.metadata', 'rb') as f:
                    table.attributes = pickle.load(f)
            # Unpickling throws different exceptions, not just UnpickleError
            except:
                with open(filename + '.metadata', encoding='utf-8') as f:
                    table.attributes = OrderedDict(
                        (k.strip(), v.strip())
                        for k, v in (line.split(":", 1)
                                     for line in f.readlines()))


class _FileWriter:
    @classmethod
    def write(cls, filename, data, with_annotations=True):
        if cls.OPTIONAL_TYPE_ANNOTATIONS:
            return cls.write_file(filename, data, with_annotations)
        else:
            return cls.write_file(filename, data)

    @classmethod
    def write_table_metadata(cls, filename, data):
        def write_file(fn):
            if all(isinstance(key, str) and isinstance(value, str)
                   for key, value in data.attributes.items()):
                with open(fn, 'w', encoding='utf-8') as f:
                    f.write("\n".join("{}: {}".format(*kv)
                                      for kv in data.attributes.items()))
            else:
                with open(fn, 'wb') as f:
                    pickle.dump(data.attributes, f, protocol=PICKLE_PROTOCOL)

        if isinstance(filename, str):
            metafile = filename + '.metadata'
            if getattr(data, 'attributes', None):
                write_file(metafile)
            elif path.exists(metafile):
                remove(metafile)

    @staticmethod
    def header_names(data):
        return ['weights'] * data.has_weights() + \
               [v.name for v in chain(data.domain.class_vars,
                                      data.domain.metas,
                                      data.domain.attributes)]

    @staticmethod
    def header_types(data):
        def _vartype(var):
            if var.is_continuous or var.is_string:
                return var.TYPE_HEADERS[0]
            elif var.is_discrete:
                # if number of values is 1 order is not important if more
                # values write order in file
                return (
                    Flags.join(var.values) if len(var.values) >= 2
                    else var.TYPE_HEADERS[0]
                )
            raise NotImplementedError

        return ['continuous'] * data.has_weights() + \
               [_vartype(v) for v in chain(data.domain.class_vars,
                                           data.domain.metas,
                                           data.domain.attributes)]

    @staticmethod
    def header_flags(data):
        return list(chain(
            ['weight'] * data.has_weights(),
            (Flags.join([flag], *('{}={}'.format(*a) for a in
                                  sorted(var.attributes.items())))
             for flag, var in chain(zip(repeat('class'),
                                        data.domain.class_vars),
                                    zip(repeat('meta'), data.domain.metas),
                                    zip(repeat(''), data.domain.attributes)))))

    @classmethod
    def write_headers(cls, write, data, with_annotations=True):
        """`write` is a callback that accepts an iterable"""
        write(cls.header_names(data))
        if with_annotations:
            write(cls.header_types(data))
            write(cls.header_flags(data))

    @classmethod
    def formatter(cls, var):
        # type: (Variable) -> Callable[[Variable], Any]
        # Return a column 'formatter' function. The function must return
        # something that `write` knows how to write
        if var.is_time:
            return var.repr_val
        elif var.is_continuous:
            return lambda value: "" if isnan(value) else var.repr_val(value)
        elif var.is_discrete:
            return lambda value: "" if isnan(value) else var.values[int(value)]
        elif var.is_string:
            return lambda value: "" if pandas.isnull(value) else value
        else:
            return var.repr_val

    @classmethod
    def write_data(cls, write, data):
        """`write` is a callback that accepts an iterable"""
        vars_ = list(
            chain((ContinuousVariable('_w'),) if data.has_weights() else (),
                  data.domain.class_vars,
                  data.domain.metas,
                  data.domain.attributes))

        formatters = [cls.formatter(v) for v in vars_]
        for row in zip(data.W if data.W.ndim > 1 else data.W[:, np.newaxis],
                       data.Y if data.Y.ndim > 1 else data.Y[:, np.newaxis],
                       data.metas,
                       data.X):
            write([fmt(v) for fmt, v in zip(formatters, flatten(row))])


class _FileFormatMeta(Registry):
    def __new__(mcs, name, bases, attrs):
        newcls = super().__new__(mcs, name, bases, attrs)

        # Optionally add compressed versions of extensions as supported
        if getattr(newcls, 'SUPPORT_COMPRESSED', False):
            new_extensions = list(getattr(newcls, 'EXTENSIONS', ()))
            for compression in Compression.all:
                for ext in newcls.EXTENSIONS:
                    new_extensions.append(ext + compression)
                if sys.platform in ('darwin', 'win32'):
                    # OSX file dialog doesn't support filtering on double
                    # extensions (e.g. .csv.gz)
                    # https://bugreports.qt.io/browse/QTBUG-38303
                    # This is just here for OWFile that gets QFileDialog
                    # filters from FileFormat.readers.keys()
                    # EDIT: Windows exhibit similar problems:
                    # while .tab.gz works, .tab.xz and .tab.bz2 do not!
                    new_extensions.append(compression)
            newcls.EXTENSIONS = tuple(new_extensions)

        return newcls

    @property
    def formats(cls):
        return cls.registry.values()

    @lru_cache(5)
    def _ext_to_attr_if_attr2(cls, attr, attr2):
        """
        Return ``{ext: `attr`, ...}`` dict if ``cls`` has `attr2`.
        If `attr` is '', return ``{ext: cls, ...}`` instead.

        If there are multiple formats for an extension, return a format
        with the lowest priority.
        """
        formats = OrderedDict()
        for format_ in sorted(cls.registry.values(), key=lambda x: x.PRIORITY):
            if not hasattr(format_, attr2):
                continue
            for ext in getattr(format_, 'EXTENSIONS', []):
                # Only adds if not yet registered
                formats.setdefault(ext, getattr(format_, attr, format_))
        return formats

    @property
    def names(cls):
        return cls._ext_to_attr_if_attr2('DESCRIPTION', '__class__')

    @property
    def writers(cls):
        return cls._ext_to_attr_if_attr2('', 'write_file')

    @property
    def readers(cls):
        return cls._ext_to_attr_if_attr2('', 'read')

    @property
    def img_writers(cls):
        warnings.warn(
            f"'{__name__}.FileFormat.img_writers' is no longer used and "
            "will be removed. Please use "
            "'Orange.widgets.io.FileFormat.img_writers' instead.",
            DeprecationWarning, stacklevel=2
        )
        return cls._ext_to_attr_if_attr2('', 'write_image')

    @property
    def graph_writers(cls):
        return cls._ext_to_attr_if_attr2('', 'write_graph')


class FileFormatBase(_FileReader, _FileWriter, metaclass=_FileFormatMeta):
    # Priority when multiple formats support the same extension. Also
    # the sort order in file open/save combo boxes. Lower is better.
    PRIORITY = 10000
    OPTIONAL_TYPE_ANNOTATIONS = False

    @classmethod
    def locate(cls, filename, search_dirs=('.',)):
        """Locate a file with given filename that can be opened by one
        of the available readers.

        Parameters
        ----------
        filename : str
        search_dirs : Iterable[str]

        Returns
        -------
        str
            Absolute path to the file
        """
        if path.exists(filename):
            return filename

        for directory in search_dirs:
            absolute_filename = path.join(directory, filename)
            if path.exists(absolute_filename):
                break
            for ext in cls.readers:
                if fnmatch(path.basename(filename), '*' + ext):
                    break
                # glob uses fnmatch internally
                matching_files = glob(absolute_filename + ext)
                if matching_files:
                    absolute_filename = matching_files[0]
                    break
            if path.exists(absolute_filename):
                break
        else:
            absolute_filename = ""

        if not path.exists(absolute_filename):
            raise IOError('File "{}" was not found.'.format(filename))

        return absolute_filename

    @staticmethod
    def open(filename, *args, **kwargs):
        """
        Format handlers can use this method instead of the builtin ``open()``
        to transparently (de)compress files if requested (according to
        `filename` extension). Set ``SUPPORT_COMPRESSED=True`` if you use this.
        """
        return open_compressed(filename, *args, **kwargs)

    @classmethod
    def qualified_name(cls):
        return cls.__module__ + '.' + cls.__name__