File: table.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (2626 lines) | stat: -rw-r--r-- 99,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
import operator
import os
import sys
import threading
import warnings
import weakref
import zlib
from collections.abc import Iterable, Sequence, Sized
from contextlib import contextmanager
from copy import deepcopy
from functools import reduce
from itertools import chain
from numbers import Real, Integral
from threading import Lock
from typing import List, TYPE_CHECKING, Union

import bottleneck as bn
import numpy as np

from scipy import sparse as sp
from scipy.sparse import issparse, csc_matrix

import Orange.data  # import for io.py
from Orange.data import (
    _contingency, _valuecount,
    Domain, Variable, Storage, StringVariable, Unknown, Value, Instance,
    ContinuousVariable, DiscreteVariable, MISSING_VALUES,
    DomainConversion)
from Orange.data.util import SharedComputeValue, \
    assure_array_dense, assure_array_sparse, \
    assure_column_dense, assure_column_sparse, get_unique_names_duplicates
from Orange.misc.cache import IDWeakrefCache
from Orange.misc.collections import frozendict
from Orange.statistics.util import bincount, countnans, contingency, \
    stats as fast_stats, sparse_has_implicit_zeros, sparse_count_implicit_zeros, \
    sparse_implicit_zero_weights
from Orange.util import deprecated, OrangeDeprecationWarning, dummy_callback
if TYPE_CHECKING:
    # import just for type checking - avoid circular import
    from Orange.data.aggregate import OrangeTableGroupBy

__all__ = ["dataset_dirs", "get_sample_datasets_dir", "RowInstance", "Table"]


def get_sample_datasets_dir():
    orange_data_table = os.path.dirname(__file__)
    dataset_dir = os.path.join(orange_data_table, '..', 'datasets')
    return os.path.realpath(dataset_dir)


dataset_dirs = ['', get_sample_datasets_dir()]


class _ThreadLocal(threading.local):
    def __init__(self):
        super().__init__()
        # Domain conversion cache used in Table.from_table. It is defined
        # here instead of as a class variable of a Table so that caching also works
        # with descendants of Table.
        self.conversion_cache = None
        self.domain_cache = None


_thread_local = _ThreadLocal()


def _idcache_save(cachedict, keys, value):
    cachedict[tuple(map(id, keys))] = \
        value, [weakref.ref(k) for k in keys]


def _idcache_restore(cachedict, keys):
    shared, weakrefs = cachedict.get(tuple(map(id, keys)), (None, []))
    for r in weakrefs:
        if r() is None:
            return None
    return shared


class DomainTransformationError(Exception):
    pass


class RowInstance(Instance):
    sparse_x = None
    sparse_y = None
    sparse_metas = None
    _weight = None

    def __init__(self, table, row_index):
        """
        Construct a data instance representing the given row of the table.
        """
        self.table = table
        self._domain = table.domain
        self.row_index = row_index
        self.id = table.ids[row_index]
        self._x = table.X[row_index]
        if sp.issparse(self._x):
            self.sparse_x = sp.csr_matrix(self._x)
            self._x = np.asarray(self._x.todense())[0]
        self._y = table._Y[row_index]
        if sp.issparse(self._y):
            self.sparse_y = sp.csr_matrix(self._y)
            self._y = np.asarray(self._y.todense())[0]
        self._y = np.atleast_1d(self._y)
        self._metas = table.metas[row_index]
        if sp.issparse(self._metas):
            self.sparse_metas = sp.csr_matrix(self._metas)
            self._metas = np.asarray(self._metas.todense())[0]

    @property
    def weight(self):
        if not self.table.has_weights():
            return 1
        return self.table.W[self.row_index]

    @weight.setter
    def weight(self, weight):
        if not self.table.has_weights():
            self.table.set_weights()
        self.table.W[self.row_index] = weight

    def set_class(self, value):
        # pylint: disable=protected-access
        self._check_single_class()
        if not isinstance(value, Real):
            value = self.table.domain.class_var.to_val(value)
        if self.sparse_y:
            self.table._Y[self.row_index, 0] = value
        else:
            self.table._Y[self.row_index] = value
            if self.table._Y.ndim == 1:  # if _y is not a view
                self._y[0] = value

    def __setitem__(self, key, value):
        if not isinstance(key, Integral):
            key = self._domain.index(key)
        if isinstance(value, str):
            var = self._domain[key]
            value = var.to_val(value)
        if key >= 0:
            if not isinstance(value, Real):
                raise TypeError("Expected primitive value, got '%s'" %
                                type(value).__name__)
            if key < len(self._x):
                # write to self.table.X to support table unlocking for live instances
                self.table.X[self.row_index, key] = value
                if self.sparse_x is not None:
                    self._x[key] = value
            else:
                if self.sparse_y is not None:
                    self.table._Y[self.row_index, key - len(self._x)] = value
                else:
                    self.table._Y[self.row_index] = value
                    if self.table._Y.ndim == 1:  # if _y is not a view
                        self._y[0] = value
        else:
            self.table.metas[self.row_index, -1 - key] = value
            if self.sparse_metas is not None:
                self._metas[-1 - key] = value

    def _str(self, limit):
        def sp_values(row, variables, sparsity=None):
            if sparsity is None:
                return Instance.str_values(row, variables, limit)

            # row is sparse
            row_entries, idx = [], 0
            while idx < len(variables):
                # Make sure to stop printing variables if we limit the output
                if limit and len(row_entries) >= 5:
                    break

                var = variables[idx]
                if var.is_discrete or row[idx]:
                    row_entries.append("%s=%s" % (var.name, var.str_val(row[idx])))

                idx += 1

            s = ", ".join(row_entries)

            if limit and idx < len(variables):
                s += ", ..."

            return s

        domain = self._domain
        s = "[" + sp_values(self._x, domain.attributes, self.sparse_x)
        if domain.class_vars:
            s += " | " + sp_values(self._y, domain.class_vars, self.sparse_y)
        s += "]"
        if domain.metas:
            s += " {" + sp_values(self._metas, domain.metas, self.sparse_metas) + "}"
        return s

    def __str__(self):
        return self._str(False)

    def __repr__(self):
        return self._str(True)


class Columns:
    def __init__(self, domain):
        for v in chain(domain.variables, domain.metas):
            setattr(self, v.name.replace(" ", "_"), v)


def _compute_column(func, *args, **kwargs):
    col = func(*args, **kwargs)
    if isinstance(col, np.ndarray) and col.ndim != 1:
        err = f"{type(col)} must return a column, not {col.ndim}d array"
        if col.ndim == 2:
            warnings.warn(err)
            col = col.reshape(-1)
        else:
            raise ValueError(err)
    return col


class _ArrayConversion:
    def __init__(self, target, src_cols, variables, is_sparse, source_domain):
        self.target = target
        self.src_cols = src_cols
        self.is_sparse = is_sparse
        self.results_inplace = not is_sparse
        self.subarray_from = self._can_copy_all(src_cols, source_domain)
        self.variables = variables
        dtype = np.float64
        if any(isinstance(var, StringVariable) for var in self.variables):
            dtype = object
        self.dtype = dtype
        self.row_selection_needed = any(not isinstance(x, Integral)
                                        for x in src_cols)

    def _can_copy_all(self, src_cols, source_domain):
        n_src_attrs = len(source_domain.attributes)
        if all(isinstance(x, Integral) and 0 <= x < n_src_attrs
               for x in src_cols):
            return "X"
        if all(isinstance(x, Integral) and x < 0 for x in src_cols):
            return "metas"
        if all(isinstance(x, Integral) and x >= n_src_attrs
               for x in src_cols):
            return "Y"

    def get_subarray(self, source, row_indices):
        n_rows = _selection_length(row_indices, len(source))
        if not len(self.src_cols):
            if self.is_sparse:
                return sp.csr_matrix((n_rows, 0), dtype=source.X.dtype)
            else:
                return np.zeros((n_rows, 0), dtype=source.X.dtype)

        match_density = assure_array_sparse if self.is_sparse else assure_array_dense
        n_src_attrs = len(source.domain.attributes)
        if self.subarray_from == "X":
            arr = match_density(_subarray(source.X, row_indices, self.src_cols))
        elif self.subarray_from == "metas":
            arr = match_density(_subarray(source.metas, row_indices,
                                          [-1 - x for x in self.src_cols]))
        elif self.subarray_from == "Y":
            Y = source.Y if source.Y.ndim == 2 else source.Y[:, None]
            arr = match_density(_subarray(
                Y, row_indices,
                [x - n_src_attrs for x in self.src_cols]))
        else:
            assert False
        if arr.dtype != self.dtype:
            arr = arr.astype(self.dtype)
        assert arr.ndim == 2 or self.subarray_from == "Y" and arr.ndim == 1
        return arr

    def get_columns(self, source, row_indices, out=None, target_indices=None):
        n_rows = _selection_length(row_indices, len(source))
        n_src_attrs = len(source.domain.attributes)

        data = []
        match_density = (
            assure_column_sparse if self.is_sparse else assure_column_dense
        )

        # converting to csc before instead of each column is faster
        # do not convert if not required
        if any(isinstance(x, int) for x in self.src_cols):
            X = source.X
            Y = source.Y
            if Y.ndim == 1:
                Y = Y[:, None]
            if self.is_sparse:
                X = csc_matrix(X)
                Y = csc_matrix(Y)

        if self.row_selection_needed:
            if row_indices is ...:
                sourceri = source
            else:
                sourceri = source[row_indices]

        shared_cache = _thread_local.conversion_cache
        for i, col in enumerate(self.src_cols):
            if col is None:
                col_array = match_density(
                    np.full((n_rows, 1), self.variables[i].Unknown)
                )
            elif not isinstance(col, Integral):
                if isinstance(col, SharedComputeValue):
                    try:
                        shared = shared_cache[(col.compute_shared, source)]
                    except KeyError:
                        shared = col.compute_shared(sourceri)
                        shared_cache[col.compute_shared, source] = shared
                    col_array = match_density(
                        _compute_column(col, sourceri, shared_data=shared))
                else:
                    col_array = match_density(_compute_column(col, sourceri))
            elif col < 0:
                col_array = match_density(
                    source.metas[row_indices, -1 - col]
                )
            elif col < n_src_attrs:
                col_array = match_density(X[row_indices, col])
            else:
                col_array = match_density(
                    Y[row_indices, col - n_src_attrs]
                )

            if self.results_inplace:
                out[target_indices, i] = col_array
            else:
                data.append(col_array)

        if self.results_inplace:
            return out
        else:
            return self.join_columns(data)

    def join_columns(self, data):
        if self.is_sparse:
            # creating csr directly would need plenty of manual work which
            # would probably slow down the process - conversion coo to csr
            # is fast
            coo_data = []
            coo_col = []
            coo_row = []
            for i, col_array in enumerate(data):
                coo_data.append(col_array.data)
                coo_col.append(np.full(len(col_array.data), i))
                coo_row.append(col_array.indices)  # row indices should be same
            n_rows = col_array.shape[0]  # pylint: disable=undefined-loop-variable
            out = sp.coo_matrix(
                (np.hstack(coo_data), (np.hstack(coo_row), np.hstack(coo_col))),
                shape=(n_rows, len(self.src_cols)),
                dtype=self.dtype
            )
            return out.tocsr()

    def join_partial_results(self, parts):
        if self.is_sparse:
            return sp.vstack(parts)
        else:
            return parts

    def init_partial_results(self, n_rows):
        if not self.results_inplace:
            return []  # list to store partial results
        else:  # a dense numpy array
            # F-order enables faster writing to the array while accessing and
            # matrix operations work with same speed (e.g. dot)
            return np.zeros((n_rows, len(self.src_cols)),
                            order="F", dtype=self.dtype)

    def add_partial_result(self, parts, part):
        if not self.results_inplace:
            parts.append(part)


class _FromTableConversion:

    max_rows_at_once = 5000

    def __init__(self, source, destination):
        conversion = DomainConversion(source, destination)

        self.X = _ArrayConversion("X", conversion.attributes,
                                  destination.attributes, conversion.sparse_X,
                                  source)
        self.Y = _ArrayConversion("Y", conversion.class_vars,
                                  destination.class_vars, conversion.sparse_Y,
                                  source)
        self.metas = _ArrayConversion("metas", conversion.metas,
                                      destination.metas, conversion.sparse_metas,
                                      source)

        self.subarray = []
        self.columnwise = []

        for part in [self.X, self.Y, self.metas]:
            if part.subarray_from is None:
                self.columnwise.append(part)
            else:
                self.subarray.append(part)

    def convert(self, source, row_indices, clear_cache_after_part):
        n_rows = _selection_length(row_indices, len(source))

        res = {}

        for array_conv in self.subarray:
            out = array_conv.get_subarray(source, row_indices)
            res[array_conv.target] = out

        parts = {}

        for array_conv in self.columnwise:
            parts[array_conv.target] = array_conv.init_partial_results(n_rows)

        if n_rows <= self.max_rows_at_once:
            for array_conv in self.columnwise:
                out = array_conv.get_columns(source, row_indices,
                                             parts[array_conv.target],
                                             ...)
                res[array_conv.target] = out
        else:
            i_done = 0

            while i_done < n_rows:
                target_indices = slice(i_done, min(n_rows, i_done + self.max_rows_at_once))
                source_indices = _select_from_selection(row_indices, target_indices,
                                                       len(source))

                for array_conv in self.columnwise:
                    # dense arrays are populated in-place
                    out = array_conv.get_columns(source, source_indices,
                                                 parts[array_conv.target],
                                                 target_indices)
                    array_conv.add_partial_result(parts[array_conv.target], out)

                i_done += self.max_rows_at_once

                # clear cache after a part is done
                if clear_cache_after_part:
                    _thread_local.conversion_cache.clear()

            for array_conv in self.columnwise:
                res[array_conv.target] = \
                    array_conv.join_partial_results(parts[array_conv.target])

        return res["X"], res["Y"], res["metas"]


# noinspection PyPep8Naming
class Table(Sequence, Storage):

    LOCKING = None
    """ If the class attribute LOCKING is True, tables will throw exceptions
    on in-place modifications unless unlocked explicitly. LOCKING is supposed
    to be set to True for testing to help us find bugs. If set to False
    or None, no safeguards are in place. Two different values are used for
    the same behaviour to distinguish the unchanged default (None) form
    explicit deactivation (False) that some add-ons might need. """

    __file__ = None
    name = "untitled"

    domain = Domain([])
    _X = _Y = _metas = _W = np.zeros((0, 0))  # pylint: disable=invalid-name
    ids = np.zeros(0)
    ids.setflags(write=False)
    attributes = frozendict()

    _Unlocked_X_val, _Unlocked_Y_val, _Unlocked_metas_val, _Unlocked_W_val = 1, 2, 4, 8
    _Unlocked_X_ref, _Unlocked_Y_ref, _Unlocked_metas_ref, _Unlocked_W_ref = 16, 32, 64, 128
    _unlocked = 0xff  # pylint: disable=invalid-name

    @property
    def columns(self):
        """
        A class whose attributes contain attribute descriptors for columns.
        For a table `table`, setting `c = table.columns` will allow accessing
        the table's variables with, for instance `c.gender`, `c.age` ets.
        Spaces are replaced with underscores.
        """
        return Columns(self.domain)

    _next_instance_id = 0
    _next_instance_lock = Lock()

    def _check_unlocked(self, partflag):
        if not self._unlocked & partflag:
            raise ValueError("Table is read-only unless unlocked")

    @property
    def X(self):  # pylint: disable=invalid-name
        return self._X

    @X.setter
    def X(self, value):
        self._check_unlocked(self._Unlocked_X_ref)
        self._X = _dereferenced(value)
        self._update_locks()

    @property
    def Y(self):  # pylint: disable=invalid-name
        return self._Y

    @Y.setter
    def Y(self, value):
        self._check_unlocked(self._Unlocked_Y_ref)
        if sp.issparse(value) and len(self) != value.shape[0]:
            value = value.T
        if sp.issparse(value):
            value = _dereferenced(value.toarray())
        if value.ndim == 2 and value.shape[1] == 1:
            value = value[:, 0].copy()  # no views!
        self._Y = value
        self._update_locks()

    @property
    def metas(self):
        return self._metas

    @metas.setter
    def metas(self, value):
        self._check_unlocked(self._Unlocked_metas_ref)
        self._metas = _dereferenced(value)
        self._update_locks()

    @property
    def W(self):  # pylint: disable=invalid-name
        return self._W

    @W.setter
    def W(self, value):
        self._check_unlocked(self._Unlocked_W_ref)
        self._W = value
        self._update_locks()

    def __setstate__(self, state):
        # Backward compatibility with pickles before table locking

        def no_view(x):
            # Some arrays can be unpickled as views; ensure they are not
            if isinstance(x, np.ndarray) and x.base is not None:
                return x.copy()
            return x

        self._initialize_unlocked()  # __dict__ seems to be cleared before calling __setstate__
        with self.unlocked_reference():
            for k in ("X", "W", "metas"):
                if k in state:
                    setattr(self, k, no_view(state.pop(k)))
            if "_Y" in state:
                setattr(self, "Y", no_view(state.pop("_Y")))  # state["_Y"] is a 2d array
            self.__dict__.update(state)

        self._init_ids(self)

    def __getstate__(self):
        # Compatibility with pickles before table locking:
        # return the same state as before table lock
        state = self.__dict__.copy()
        for k in ["X", "metas", "W"]:
            if "_" + k in state:  # Check existence; SQL tables do not contain them
                state[k] = state.pop("_" + k)
        # before locking, _Y was always a 2d array: save it as such
        if "_Y" in state:
            y = state.pop("_Y")
            y2d = y.reshape(-1, 1) if y.ndim == 1 else y
            state["_Y"] = y2d
        state.pop("_unlocked", None)
        return state

    def _lock_parts_val(self):
        return ((self._X, self._Unlocked_X_val, "X"),
                (self._Y, self._Unlocked_Y_val, "Y"),
                (self._metas, self._Unlocked_metas_val, "metas"),
                (self._W, self._Unlocked_W_val, "weights"))

    def _lock_parts_ref(self):
        return ((self._X, self._Unlocked_X_ref, "X"),
                (self._Y, self._Unlocked_Y_ref, "Y"),
                (self._metas, self._Unlocked_metas_ref, "metas"),
                (self._W, self._Unlocked_W_ref, "weights"))

    def _initialize_unlocked(self):
        if Table.LOCKING:
            self._unlocked = 0
        else:
            self._unlocked = sum(f for _, f, _ in (self._lock_parts_val() + self._lock_parts_ref()))

    def _update_locks(self, force=False, lock_bases=()):
        if not Table.LOCKING:
            return

        def sync(*xs):
            for x in xs:
                # no need to make empty arrays writable, as nothing can get written
                if writeable and x.size == 0:
                    continue
                try:
                    undo_on_fail.append((x, x.flags.writeable))
                    x.flags.writeable = writeable
                except ValueError:
                    if force \
                            and writeable \
                            and x.base is not None \
                            and not x.base.flags.writeable:
                        x.base.flags.writeable = writeable
                        x.flags.writeable = writeable
                        forced_bases.append(x.base)
                    else:
                        raise

        forced_bases = []
        undo_on_fail = []
        for base in lock_bases:
            base.flags.writeable = False
        try:
            for part, flag, _ in self._lock_parts_val():
                if part is None:
                    continue
                writeable = bool(self._unlocked & flag)
                if sp.isspmatrix_csr(part) or sp.isspmatrix_csc(part):
                    sync(part.data, part.indices, part.indptr)
                elif sp.isspmatrix_coo(part):
                    sync(part.data, part.row, part.col)
                elif sp.issparse(part):
                    raise ValueError("Unsupported sparse data type")
                else:
                    sync(part)
        except:
            for part, flag in undo_on_fail:
                part.flags.writeable = flag
            raise
        return tuple(forced_bases)

    def __unlocked(self, *parts, force=False, reference_only=False):
        prev_state = self._unlocked
        if reference_only:
            lock_parts = self._lock_parts_ref()
        else:
            lock_parts = self._lock_parts_val() + self._lock_parts_ref()
        for part, flag, _ in lock_parts:
            if not parts or any(ppart is part for ppart in parts):
                self._unlocked |= flag
        try:
            forced_bases = self._update_locks(force)
            yield
        finally:
            self._unlocked = prev_state
            self._update_locks(lock_bases=forced_bases)

    def force_unlocked(self, *parts):
        """
        Unlocking without any checks.

        Use with extreme caution. This is meant primarily for 3rd party
        functions in Cython that expect read-write buffer, but do not
        actually modify it. the given parts (default: all parts) of the table.

        The function will still fail to unlock and raise an exception if the
        table contains view to another table.
        """
        return contextmanager(self.__unlocked)(*parts, force=True)

    def unlocked_reference(self, *parts):
        """
        Unlock references to the given parts (default: all parts) of the table.

        The caller must ensure that the table is safe to modify.
        """
        return contextmanager(self.__unlocked)(*parts, reference_only=True)

    def unlocked(self, *parts):
        """
        Unlock the given parts (default: all parts) of the table.

        The caller must ensure that the table is safe to modify. The function
        will raise an exception if the table contains view to other table.
        """
        def can_unlock(x):
            if sp.issparse(x):
                return can_unlock(x.data)
            return x.flags.writeable or x.flags.owndata or x.size == 0

        for part, flag, name in self._lock_parts_val():
            if not flag & self._unlocked \
                    and (not parts or any(ppart is part for ppart in parts)) \
                    and part is not None and not can_unlock(part):
                raise ValueError(f"'{name}' is a view into another table "
                                 "and cannot be unlocked")
        return contextmanager(self.__unlocked)(*parts)

    def __new__(cls, *args, **kwargs):
        def warn_deprecated(method):
            warnings.warn("Direct calls to Table's constructor are deprecated "
                          "and will be removed. Replace this call with "
                          f"Table.{method}", OrangeDeprecationWarning,
                          stacklevel=3)

        if not args:
            if not kwargs:
                return super().__new__(cls)
            else:
                raise TypeError("Table() must not be called directly")

        if isinstance(args[0], str):
            if len(args) > 1:
                raise TypeError("Table(name: str) expects just one argument")
            if args[0].startswith('https://') or args[0].startswith('http://'):
                return cls.from_url(args[0], **kwargs)
            else:
                return cls.from_file(args[0], **kwargs)

        elif isinstance(args[0], Table):
            if len(args) > 1:
                raise TypeError("Table(table: Table) expects just one argument")
            return cls.from_table(args[0].domain, args[0], **kwargs)
        elif isinstance(args[0], Domain):
            domain, args = args[0], args[1:]
            if not args:
                warn_deprecated("from_domain")
                return cls.from_domain(domain, **kwargs)
            if isinstance(args[0], Table):
                warn_deprecated("from_table")
                return cls.from_table(domain, *args, **kwargs)
            elif isinstance(args[0], list):
                warn_deprecated("from_list")
                return cls.from_list(domain, *args, **kwargs)
        else:
            warnings.warn("Omitting domain in a call to Table(X, Y, metas), is "
                          "deprecated and will be removed. "
                          "Call Table.from_numpy(None, X, Y, metas) instead.",
                          OrangeDeprecationWarning, stacklevel=2)
            domain = None

        return cls.from_numpy(domain, *args, **kwargs)

    def __init__(self, *args, **kwargs):  # pylint: disable=unused-argument
        self._initialize_unlocked()
        self._update_locks()

    @classmethod
    def from_domain(cls, domain, n_rows=0, weights=False):
        """
        Construct a new `Table` with the given number of rows for the given
        domain. The optional vector of weights is initialized to 1's.

        :param domain: domain for the `Table`
        :type domain: Orange.data.Domain
        :param n_rows: number of rows in the new table
        :type n_rows: int
        :param weights: indicates whether to construct a vector of weights
        :type weights: bool
        :return: a new table
        :rtype: Orange.data.Table
        """
        self = cls()
        self.domain = domain
        self.n_rows = n_rows
        with self.unlocked():
            self.X = np.zeros((n_rows, len(domain.attributes)))
            if len(domain.class_vars) != 1:
                self.Y = np.zeros((n_rows, len(domain.class_vars)))
            else:
                self.Y = np.zeros(n_rows)
            if weights:
                self.W = np.ones(n_rows)
            else:
                self.W = np.empty((n_rows, 0))
            self.metas = np.empty((n_rows, len(self.domain.metas)), object)
            cls._init_ids(self)
            self.attributes = {}
        return self

    @classmethod
    def from_table(cls, domain, source, row_indices=...):
        """
        Create a new table from selected columns and/or rows of an existing
        one. The columns are chosen using a domain. The domain may also include
        variables that do not appear in the source table; they are computed
        from source variables if possible.

        The resulting data may be a view or a copy of the existing data.

        :param domain: the domain for the new table
        :type domain: Orange.data.Domain
        :param source: the source table
        :type source: Orange.data.Table
        :param row_indices: indices of the rows to include
        :type row_indices: a slice or a sequence
        :return: a new table
        :rtype: Orange.data.Table
        """
        if domain is source.domain:
            table = cls.from_table_rows(source, row_indices)
            # assure resulting domain is the instance passed on input
            table.domain = domain
            # since sparse flags are not considered when checking for
            # domain equality, fix manually.
            with table.unlocked_reference():
                table = assure_domain_conversion_sparsity(table, source)
            return table

        new_cache = _thread_local.conversion_cache is None
        try:
            if new_cache:
                _thread_local.conversion_cache = IDWeakrefCache({})
                _thread_local.domain_cache = IDWeakrefCache({})
            else:
                try:
                    return _thread_local.conversion_cache[(domain, source)]
                except KeyError:
                    pass

            # avoid boolean indices; also convert to slices if possible
            row_indices = _optimize_indices(row_indices, len(source))

            self = cls()
            self.domain = domain

            try:
                table_conversion = \
                    _thread_local.domain_cache[(domain, source.domain)]
            except KeyError:
                table_conversion = _FromTableConversion(source.domain, domain)
                _thread_local.domain_cache[(domain, source.domain)] = table_conversion

            # if an array can be a subarray of the input table, this needs to be done
            # on the whole table, because this avoids needless copies of contents

            with self.unlocked_reference():
                self.X, self.Y, self.metas = \
                    table_conversion.convert(source, row_indices,
                                             clear_cache_after_part=new_cache)
                self.W = source.W[row_indices]
                self.name = getattr(source, 'name', '')
                self.ids = source.ids[row_indices]
                self.attributes = getattr(source, 'attributes', {})
                if new_cache:  # only deepcopy attributes for the outermost transformation
                    self.attributes = deepcopy(self.attributes)
                _thread_local.conversion_cache[(domain, source)] = self
            return self
        finally:
            if new_cache:
                _thread_local.conversion_cache = None
                _thread_local.domain_cache = None

    def transform(self, domain):
        """
        Construct a table with a different domain.

        The new table keeps the row ids and other information. If the table
        is a subclass of :obj:`Table`, the resulting table will be of the same
        type.

        In a typical scenario, an existing table is augmented with a new
        column by ::

            domain = Domain(old_domain.attributes + [new_attribute],
                            old_domain.class_vars,
                            old_domain.metas)
            table = data.transform(domain)
            table[:, new_attribute] = new_column

        Args:
            domain (Domain): new domain

        Returns:
            A new table
        """
        return type(self).from_table(domain, self)

    @classmethod
    def from_table_rows(cls, source, row_indices):
        """
        Construct a new table by selecting rows from the source table.

        :param source: an existing table
        :type source: Orange.data.Table
        :param row_indices: indices of the rows to include
        :type row_indices: a slice or a sequence
        :return: a new table
        :rtype: Orange.data.Table
        """
        is_outermost_transformation = _thread_local.conversion_cache is None
        self = cls()
        self.domain = source.domain
        with self.unlocked_reference():
            self.X = source.X[row_indices]
            if self.X.ndim == 1:
                self.X = self.X.reshape(-1, len(self.domain.attributes))
            self.Y = source.Y[row_indices]
            self.metas = source.metas[row_indices]
            if self.metas.ndim == 1:
                self.metas = self.metas.reshape(-1, len(self.domain.metas))
            self.W = source.W[row_indices]
            self.name = getattr(source, 'name', '')
            self.ids = source.ids[row_indices]
            self.attributes = getattr(source, 'attributes', {})
            if is_outermost_transformation:
                self.attributes = deepcopy(self.attributes)
        return self

    @classmethod
    def from_numpy(cls, domain, X, Y=None, metas=None, W=None,
                   attributes=None, ids=None):
        """
        Construct a table from numpy arrays with the given domain. The number
        of variables in the domain must match the number of columns in the
        corresponding arrays. All arrays must have the same number of rows.
        Arrays may be of different numpy types, and may be dense or sparse.

        :param domain: the domain for the new table
        :type domain: Orange.data.Domain
        :param X: array with attribute values
        :type X: np.array
        :param Y: array with class values
        :type Y: np.array
        :param metas: array with meta attributes
        :type metas: np.array
        :param W: array with weights
        :type W: np.array
        :return:
        """
        X, Y, W = _check_arrays(X, Y, W, dtype='float64')
        metas, = _check_arrays(metas, dtype=object, shape_1=X.shape[0])
        ids, = _check_arrays(ids, dtype=int, shape_1=X.shape[0])

        if domain is None:
            domain = Domain.from_numpy(X, Y, metas)

        if Y is None:
            if not domain.class_vars or sp.issparse(X):
                Y = np.empty((X.shape[0], 0), dtype=np.float64)
            else:
                own_data = X.flags.owndata and X.base is None
                Y = X[:, len(domain.attributes):]
                X = X[:, :len(domain.attributes)]
                if own_data:
                    Y = Y.copy()
                    X = X.copy()
        if metas is None:
            metas = np.empty((X.shape[0], 0), object)
        if W is None or W.size == 0:
            W = np.empty((X.shape[0], 0))
        elif W.shape != (W.size, ):
            W = W.reshape(W.size).copy()

        if X.shape[1] != len(domain.attributes):
            raise ValueError(
                "Invalid number of variable columns ({} != {})".format(
                    X.shape[1], len(domain.attributes))
            )
        if Y.ndim == 1:
            if not domain.class_var:
                raise ValueError(
                    "Invalid number of class columns "
                    f"(1 != {len(domain.class_vars)})")
        elif Y.shape[1] != len(domain.class_vars):
            raise ValueError(
                "Invalid number of class columns ({} != {})".format(
                    Y.shape[1], len(domain.class_vars))
            )
        if metas.shape[1] != len(domain.metas):
            raise ValueError(
                "Invalid number of meta attribute columns ({} != {})".format(
                    metas.shape[1], len(domain.metas))
            )
        if not X.shape[0] == Y.shape[0] == metas.shape[0] == W.shape[0]:
            raise ValueError(
                "Parts of data contain different numbers of rows.")

        self = cls()
        with self.unlocked_reference():
            self.domain = domain
            self.X = X
            self.Y = Y
            self.metas = metas
            self.W = W
            self.n_rows = self.X.shape[0]
            if ids is None:
                cls._init_ids(self)
            else:
                self.ids = ids
            self.attributes = {} if attributes is None else attributes
        return self

    @classmethod
    def from_list(cls, domain, rows, weights=None):
        if weights is not None and len(rows) != len(weights):
            raise ValueError("mismatching number of instances and weights")
        self = cls.from_domain(domain, len(rows), weights is not None)
        all_vars = domain.variables + domain.metas
        nattrs = len(domain.attributes)
        nattrscls = len(domain.variables)
        with self.unlocked():
            for i, row in enumerate(rows):
                if isinstance(row, Instance):
                    row = row.list
                vals = [var.to_val(val) for var, val in zip(all_vars, row)]
                if self.X.size:
                    self.X[i] = vals[:nattrs]
                if self.Y.size:
                    if self._Y.ndim == 1:
                        self._Y[i] = vals[nattrs] if nattrs < len(vals) else np.nan
                    else:
                        self._Y[i] = vals[nattrs:nattrscls]
                # for backward compatibility: allow omittine some (or all) metas
                if self.metas.size:
                    self.metas[i, :len(vals) - nattrscls] = vals[nattrscls:]
            if weights is not None:
                self.W = np.array(weights)
            self.attributes = {}
        return self

    @classmethod
    def _init_ids(cls, obj):
        length = int(obj.X.shape[0])
        with cls._next_instance_lock:
            nid = cls._next_instance_id
            cls._next_instance_id += length
        obj.ids = np.arange(nid, nid + length, dtype=int)

    @classmethod
    def new_id(cls):
        with cls._next_instance_lock:
            id = cls._next_instance_id
            cls._next_instance_id += 1
            return id

    def to_pandas_dfs(self):
        return Orange.data.pandas_compat.table_to_frames(self)

    @staticmethod
    def from_pandas_dfs(xdf, ydf, mdf):
        return Orange.data.pandas_compat.table_from_frames(xdf, ydf, mdf)

    @property
    def X_df(self):
        return Orange.data.pandas_compat.OrangeDataFrame(
            self, orange_role=Role.Attribute
        )

    @X_df.setter
    def X_df(self, df):
        Orange.data.pandas_compat.amend_table_with_frame(
            self, df, role=Role.Attribute
        )

    @property
    def Y_df(self):
        return Orange.data.pandas_compat.OrangeDataFrame(
            self, orange_role=Role.ClassAttribute
        )

    @Y_df.setter
    def Y_df(self, df):
        Orange.data.pandas_compat.amend_table_with_frame(
            self, df, role=Role.ClassAttribute
        )

    @property
    def metas_df(self):
        return Orange.data.pandas_compat.OrangeDataFrame(
            self, orange_role=Role.Meta
        )

    @metas_df.setter
    def metas_df(self, df):
        Orange.data.pandas_compat.amend_table_with_frame(
            self, df, role=Role.Meta
        )

    def save(self, filename):
        """
        Save a data table to a file. The path can be absolute or relative.

        :param filename: File name
        :type filename: str
        """
        ext = os.path.splitext(filename)[1]
        from Orange.data.io import FileFormat
        writer = FileFormat.writers.get(ext)
        if not writer:
            desc = FileFormat.names.get(ext)
            if desc:
                raise IOError(
                    "Writing of {}s is not supported".format(desc.lower()))
            else:
                raise IOError("Unknown file name extension.")
        writer.write_file(filename, self)

    @classmethod
    def from_file(cls, filename, sheet=None):
        """
        Read a data table from a file. The path can be absolute or relative.

        :param filename: File name
        :type filename: str
        :param sheet: Sheet in a file (optional)
        :type sheet: str
        :return: a new data table
        :rtype: Orange.data.Table
        """
        from Orange.data.io import FileFormat

        absolute_filename = FileFormat.locate(filename, dataset_dirs)
        reader = FileFormat.get_reader(absolute_filename)
        reader.select_sheet(sheet)
        data = reader.read()

        # no need to call _init_ids as fuctions from .io already
        # construct a table with .ids

        data.__file__ = absolute_filename
        return data

    @classmethod
    def from_url(cls, url):
        from Orange.data.io import UrlReader
        reader = UrlReader(url)
        data = reader.read()
        return data

    # Helper function for __setitem__:
    # Set the row of table data matrices
    # noinspection PyProtectedMember
    def _set_row(self, example, row):
        # pylint: disable=protected-access
        domain = self.domain
        if isinstance(example, Instance):
            if example.domain == domain:
                self.X[row] = example._x
                if self._Y.ndim == 1:
                    self._Y[row] = float(example._y)
                else:
                    self._Y[row] = np.atleast_1d(example._y)
                self.metas[row] = example._metas
                return

            self.X[row], self._Y[row], self.metas[row] = \
                self.domain.convert(example)
            try:
                self.ids[row] = example.id
            except:
                with type(self)._next_instance_lock:
                    self.ids[row] = type(self)._next_instance_id
                    type(self)._next_instance_id += 1

        else:
            attrs = domain.attributes
            if len(example) != len(domain.variables):
                raise ValueError("invalid length")
            if self._X.size:
                self._X[row] = [var.to_val(val) for var, val in zip(attrs, example)]
            if self._Y.size:
                if self._Y.ndim == 1:
                    self._Y[row] = domain.class_var.to_val(example[len(attrs)])
                else:
                    self._Y[row] = [var.to_val(val)
                                    for var, val in zip(domain.class_vars,
                                                        example[len(attrs):])]
            if self._metas.size:
                self.metas[row] = np.array([var.Unknown for var in domain.metas],
                                       dtype=object)

    def _check_all_dense(self):
        return all(x in (Storage.DENSE, Storage.MISSING)
                   for x in (self.X_density(), self.Y_density(),
                             self.metas_density()))

    def __getitem__(self, key):
        if isinstance(key, Integral):
            return RowInstance(self, key)
        if not isinstance(key, tuple):
            return self.from_table_rows(self, key)

        if len(key) != 2:
            raise IndexError("Table indices must be one- or two-dimensional")

        row_idx, col_idx = key
        if isinstance(row_idx, Integral):
            if isinstance(col_idx, (str, Integral, Variable)):
                col_idx = self.domain.index(col_idx)
                var = self.domain[col_idx]
                if 0 <= col_idx < len(self.domain.attributes):
                    val = self.X[row_idx, col_idx]
                elif col_idx == len(self.domain.attributes) and self._Y.ndim == 1:
                    val = self._Y[row_idx]
                elif col_idx >= len(self.domain.attributes):
                    val = self._Y[row_idx,
                                  col_idx - len(self.domain.attributes)]
                else:
                    val = self.metas[row_idx, -1 - col_idx]
                if isinstance(col_idx, DiscreteVariable) and var is not col_idx:
                    val = col_idx.get_mapper_from(var)(val)
                return Value(var, val)
            else:
                row_idx = [row_idx]

        # multiple rows OR single row but multiple columns:
        # construct a new table
        attributes, col_indices = self.domain._compute_col_indices(col_idx)
        if attributes is not None:
            n_attrs = len(self.domain.attributes)
            r_attrs = [attributes[i]
                       for i, col in enumerate(col_indices)
                       if 0 <= col < n_attrs]
            r_classes = [attributes[i]
                         for i, col in enumerate(col_indices)
                         if col >= n_attrs]
            r_metas = [attributes[i]
                       for i, col in enumerate(col_indices) if col < 0]
            domain = Domain(r_attrs, r_classes, r_metas)
        else:
            domain = self.domain
        return self.from_table(domain, self, row_idx)

    def __setitem__(self, key, value):
        if not isinstance(key, tuple):
            if isinstance(value, Real):
                self.X[key, :] = value
                return
            self._set_row(value, key)
            return

        if len(key) != 2:
            raise IndexError("Table indices must be one- or two-dimensional")
        row_idx, col_idx = key

        # single row
        if isinstance(row_idx, Integral):
            if isinstance(col_idx, slice):
                col_idx = range(*slice.indices(col_idx, self.X.shape[1]))
            if not isinstance(col_idx, str) and isinstance(col_idx, Iterable):
                col_idx = list(col_idx)
            if not isinstance(col_idx, str) and isinstance(col_idx, Sized):
                if isinstance(value, (Sequence, np.ndarray)):
                    values = value
                elif isinstance(value, Iterable):
                    values = list(value)
                else:
                    raise TypeError("Setting multiple values requires a "
                                    "sequence or numpy array")
                if len(values) != len(col_idx):
                    raise ValueError("Invalid number of values")
            else:
                col_idx, values = [col_idx], [value]
            if isinstance(col_idx, DiscreteVariable) \
                    and self.domain[col_idx] != col_idx:
                values = self.domain[col_idx].get_mapper_from(col_idx)(values)
            for val, col_idx in zip(values, col_idx):
                if not isinstance(val, Integral):
                    val = self.domain[col_idx].to_val(val)
                if not isinstance(col_idx, Integral):
                    col_idx = self.domain.index(col_idx)
                if col_idx >= 0:
                    if col_idx < self.X.shape[1]:
                        self.X[row_idx, col_idx] = val
                    elif self._Y.ndim == 1 and col_idx == self.X.shape[1]:
                        self._Y[row_idx] = val
                    else:
                        self._Y[row_idx, col_idx - self.X.shape[1]] = val
                else:
                    self.metas[row_idx, -1 - col_idx] = val

        # multiple rows, multiple columns
        attributes, col_indices = self.domain._compute_col_indices(col_idx)
        if col_indices is ...:
            col_indices = range(len(self.domain.variables))
        n_attrs = self.X.shape[1]
        if isinstance(value, str):
            if not attributes:
                attributes = self.domain.attributes
            for var, col in zip(attributes, col_indices):
                val = var.to_val(value)
                if 0 <= col < n_attrs:
                    self.X[row_idx, col] = val
                elif col >= n_attrs:
                    if self._Y.ndim == 1 and col == n_attrs:
                        self._Y[row_idx] = val
                    else:
                        self._Y[row_idx, col - n_attrs] = val
                else:
                    self.metas[row_idx, -1 - col] = val
        else:
            attr_cols = np.fromiter(
                (col for col in col_indices if 0 <= col < n_attrs), int)
            class_cols = np.fromiter(
                (col - n_attrs for col in col_indices if col >= n_attrs), int)
            meta_cols = np.fromiter(
                (-1 - col for col in col_indices if col < 0), int)
            if value is None:
                value = Unknown

            if not isinstance(value, (Real, np.ndarray)) and \
                    (len(attr_cols) or len(class_cols)):
                raise TypeError(
                    "Ordinary attributes can only have primitive values")
            if len(attr_cols):
                if self.X.size:
                    self.X[row_idx, attr_cols] = value
            if len(class_cols):
                if self._Y.size:
                    if self._Y.ndim == 1 and np.all(class_cols == 0):
                        if isinstance(value, np.ndarray):
                            yshape = self._Y[row_idx].shape
                            if value.shape != yshape:
                                value = value.reshape(yshape)
                        self._Y[row_idx] = value
                    else:
                        self._Y[row_idx, class_cols] = value
            if len(meta_cols):
                if self._metas.size:
                    self.metas[row_idx, meta_cols] = value

    def __len__(self):
        return self.X.shape[0]

    def __bool__(self):
        return bool(self.X.size or self._Y.size or self.metas.size)

    def __str__(self):
        return "[" + ",\n ".join(str(ex) for ex in self) + "]"

    def __repr__(self):
        head = 5
        if self.is_sparse():
            head = min(self.X.shape[0], head)
        s = "[" + ",\n ".join(repr(ex) for ex in self[:head])
        if len(self) > head:
            s += ",\n ..."
        s += "\n]"
        return s

    @classmethod
    def concatenate(cls, tables, axis=0, *, ignore_domains=None):
        """
        Concatenate tables into a new table, either vertically or horizontally.

        If axis=0 (vertical concatenate), all tables must have the same domain.

        If axis=1 (horizontal),
        - all variable names must be unique.
        - ids are copied from the first table.
        - weights are copied from the first table in which they are defined.
        - the dictionary of table's attributes are merged. If the same attribute
          appears in multiple dictionaries, the earlier are used.

        Args:
            tables (list of Table): tables to be joined

        Returns:
            table (Table)
        """
        if axis not in (0, 1):
            raise ValueError("invalid axis")
        if ignore_domains is not None and axis != 0:
            raise ValueError("'ignore_domains' is incompatible with 'axis=1'")
        if not tables:
            raise ValueError('need at least one table to concatenate')

        if len(tables) == 1:
            return tables[0].copy()
        if axis == 0:
            conc = cls._concatenate_vertical(tables, bool(ignore_domains))
        else:
            conc = cls._concatenate_horizontal(tables)

        # TODO: Add attributes = {} to __init__
        conc.attributes = getattr(conc, "attributes", {})
        for table in reversed(tables):
            conc.attributes.update(table.attributes)

        names = [table.name for table in tables if table.name != "untitled"]
        if names:
            conc.name = names[0]
        return conc

    @classmethod
    def _concatenate_vertical(cls, tables, ignore_domains=False):
        def vstack(arrs):
            return [np, sp][any(sp.issparse(arr) for arr in arrs)].vstack(arrs)

        def merge1d(arrs):
            arrs = list(arrs)
            ydims = {arr.ndim for arr in arrs}
            if ydims == {1}:
                return np.hstack(arrs)
            else:
                return vstack([
                    arr if arr.ndim == 2 else np.atleast_2d(arr).T
                    for arr in arrs
                ])

        def collect(attr):
            return [getattr(arr, attr) for arr in tables]

        domain = tables[0].domain
        if not ignore_domains \
                and any(table.domain != domain for table in tables):
            raise ValueError('concatenated tables must have the same domain')

        conc = cls.from_numpy(
            domain,
            vstack(collect("X")),
            merge1d(collect("Y")),
            vstack(collect("metas")),
            merge1d(collect("W"))
        )
        conc.ids = np.hstack([t.ids for t in tables])
        return conc

    @classmethod
    def _concatenate_horizontal(cls, tables):
        """
        """
        def all_of(objs, names):
            return (tuple(getattr(obj, name) for obj in objs)
                    for name in names)

        def stack(arrs):
            non_empty = tuple(arr if arr.ndim == 2 else arr[:, np.newaxis]
                              for arr in arrs
                              if arr is not None and arr.size > 0)
            return np.hstack(non_empty) if non_empty else None

        doms, Ws = all_of(tables, ("domain", "W"))
        Xs, Ys, Ms = map(stack, all_of(tables, ("X", "Y", "metas")))
        # pylint: disable=undefined-loop-variable
        for W in Ws:
            if W.size:
                break

        parts = all_of(doms, ("attributes", "class_vars", "metas"))
        domain = Domain(*(tuple(chain(*lst)) for lst in parts))
        return cls.from_numpy(domain, Xs, Ys, Ms, W, ids=tables[0].ids)

    def add_column(self, variable, data, to_metas=None):
        """
        Create a new table with an additional column

        Column's name must be unique

        Args:
            variable (Variable): variable for the new column
            data (np.ndarray): data for the new column
            to_metas (bool, optional): if `True` the column is added as meta
                column. Otherwise, primitive variables are added to attributes
                and non-primitive to metas.

        Returns:
            table (Table): a new table with the additional column
        """
        dom = self.domain
        attrs, classes, metavars = dom.attributes, dom.class_vars, dom.metas
        to_metas = to_metas or not variable.is_primitive()
        if to_metas:
            metavars += (variable, )
        else:
            attrs += (variable, )
        domain = Domain(attrs, classes, metavars)
        new_table = self.transform(domain)
        with new_table.unlocked(new_table.metas if to_metas else new_table.X):
            new_table.set_column(variable, data)
        return new_table

    def is_sparse(self):
        """
        Return `True` if the table stores data in sparse format
        """
        return any(sp.issparse(i) for i in [self._X, self._Y, self._metas])

    def ensure_copy(self):
        """
        Ensure that the table owns its data; copy arrays when necessary.
        """

        def is_view(x):
            if not sp.issparse(x):
                return x.base is not None
            else:
                return x.data.base is not None

        if is_view(self._X):
            self._X = self._X.copy()
        if is_view(self._Y):
            self._Y = self._Y.copy()
        if is_view(self._metas):
            self._metas = self._metas.copy()
        if is_view(self._W):
            self._W = self._W.copy()
        if is_view(self.ids):
            self.ids = self.ids.copy()

    def copy(self):
        """
        Return a copy of the table
        """
        t = self.__class__(self)
        t.ensure_copy()
        return t

    @staticmethod
    def __determine_density(data):
        if data is None:
            return Storage.Missing
        if data is not None and sp.issparse(data):
            return Storage.SPARSE_BOOL if (data.data == 1).all() else Storage.SPARSE
        else:
            return Storage.DENSE

    def X_density(self):
        if not hasattr(self, "_X_density"):
            self._X_density = self.__determine_density(self.X)
        return self._X_density

    def Y_density(self):
        if not hasattr(self, "_Y_density"):
            self._Y_density = self.__determine_density(self._Y)
        return self._Y_density

    def metas_density(self):
        if not hasattr(self, "_metas_density"):
            self._metas_density = self.__determine_density(self.metas)
        return self._metas_density

    def set_weights(self, weight=1):
        """
        Set weights of data instances; create a vector of weights if necessary.
        """
        if not self.W.shape[-1]:
            self.W = np.empty(len(self))
        self.W[:] = weight

    def has_weights(self):
        """Return `True` if the data instances are weighed. """
        return self.W.shape[-1] != 0

    def total_weight(self):
        """
        Return the total weight of instances in the table, or their number if
        they are unweighted.
        """
        if self.W.shape[-1]:
            return sum(self.W)
        return len(self)

    def has_missing(self):
        """Return `True` if there are any missing attribute or class values."""
        missing_x = not sp.issparse(self.X) and bn.anynan(self.X)  # do not check for sparse X
        return missing_x or bn.anynan(self._Y)

    def has_missing_attribute(self):
        """Return `True` if there are any missing attribute values."""
        return not sp.issparse(self.X) and bn.anynan(self.X)  # do not check for sparse X

    def has_missing_class(self):
        """Return `True` if there are any missing class values."""
        return bn.anynan(self._Y)

    @staticmethod
    def __get_nan_count(data):
        if data.size == 0:
            return 0
        dense = data if not sp.issparse(data) else data.data
        return np.isnan(dense).sum()

    @classmethod
    def __get_nan_frequency(cls, data):
        return cls.__get_nan_count(data) / (np.prod(data.shape) or 1)

    def get_nan_count_attribute(self):
        return self.__get_nan_count(self.X)

    def get_nan_count_class(self):
        return self.__get_nan_count(self.Y)

    def get_nan_count_metas(self):
        if self.metas.dtype != object:
            return self.__get_nan_count(self.metas)

        data = self.metas
        if sp.issparse(data):
            data = data.tocsc()

        count = 0
        for i, attr in enumerate(self.domain.metas):
            col = data[:, i]
            missing = np.isnan(col.astype(float)) \
                if not isinstance(attr, StringVariable) else data == ""
            count += np.sum(missing)
        return count

    def get_nan_frequency_attribute(self):
        return self.__get_nan_frequency(self.X)

    def get_nan_frequency_class(self):
        return self.__get_nan_frequency(self.Y)

    def get_nan_frequency_metas(self):
        return self.get_nan_count_metas() / (np.prod(self.metas.shape) or 1)

    def checksum(self, include_metas=True):
        # TODO: zlib.adler32 does not work for numpy arrays with dtype object
        # (after pickling and unpickling such arrays, checksum changes)
        # Why, and should we fix it or remove it?
        """Return a checksum over X, Y, metas and W."""
        cs = zlib.adler32(np.ascontiguousarray(self._X))
        cs = zlib.adler32(np.ascontiguousarray(self._Y), cs)
        if include_metas:
            cs = zlib.adler32(np.ascontiguousarray(self._metas), cs)
        cs = zlib.adler32(np.ascontiguousarray(self._W), cs)
        return cs

    def shuffle(self):
        """Randomly shuffle the rows of the table."""
        if not self._check_all_dense():
            raise ValueError("Rows of sparse data cannot be shuffled")
        ind = np.arange(self.X.shape[0])
        np.random.shuffle(ind)
        self.X = self.X[ind]
        self._Y = self._Y[ind]
        self.metas = self.metas[ind]
        self.W = self.W[ind]
        self.ids = self.ids[ind]

    @deprecated("Table.get_column (or Table.set_column if you must)")
    def get_column_view(self, index: Union[Integral, Variable]) -> np.ndarray:
        """
        An obsolete function that was supposed to return a view with a column
        of the table, and a bool flag telling whether this column is sparse.

        The function *sometimes* returns a copy. This happens if the variable
        is computed or if values of discrete attribute need to be remapped due
        to different encoding.

        Note that vertical slicing of sparse matrices is inefficient.

        :param index: the index of the column
        :type index: int, str or Orange.data.Variable
        :return: (one-dimensional numpy array, sparse)
        """
        if isinstance(index, Integral):
            col_index = index
        else:
            col_index = self.domain.index(index)
        col = self._get_column_view(col_index)

        sparse = sp.issparse(col)
        if sparse:
            # `index` below can be integer or a Variable
            warnings.warn("get_column_view is returning a dense copy column "
                          f"{index}")
            col = np.asarray(col.todense())[:, 0]

        if isinstance(index, DiscreteVariable) \
                and index.values != self.domain[col_index].values:
            col = index.get_mapper_from(self.domain[col_index])(col)
            col.flags.writeable = False
            warnings.warn("get_column_view is returning a mapped copy of "
                          f"column {index.name}")
        return col, sparse

    def _get_column_view(self, index: Integral) -> np.ndarray:
        if index >= 0:
            if index < self.X.shape[1]:
                return self.X[:, index]
            elif self._Y.ndim == 1 and index == self._X.shape[1]:
                return self._Y
            else:
                return self._Y[:, index - self.X.shape[1]]
        else:
            return self.metas[:, -1 - index]

    def get_column(self, index, copy=False):
        """
        Return a column with values of `index`.

        If `index` is an instance of variable that does not exist in the domain
        but has `compute_value`, `get_column` calls `compute_value`. Otherwise,
        it returns a view into the table unless `copy` is set to `True`.

        Args:
            index (int or str or Variable): attribute
            copy (bool): if set to True, ensure the result is a copy, not a view

        Returns:
            column (np.array): data column
        """
        if isinstance(index, Variable) and index not in self.domain:
            if index.compute_value is None:
                raise ValueError(f"variable {index.name} is not in domain")
            return _compute_column(index.compute_value, self)

        mapper = None
        if not isinstance(index, Integral):
            if isinstance(index, DiscreteVariable) \
                    and index.values != self.domain[index].values:
                mapper = index.get_mapper_from(self.domain[index])
            index = self.domain.index(index)

        col = self._get_column_view(index)
        if sp.issparse(col):
            col = col.toarray().reshape(-1)
        if col.dtype == object and self.domain[index].is_primitive():
            col = col.astype(np.float64)
        if mapper is not None:
            col = mapper(col)
        if copy and col.base is not None:
            col = col.copy()
        return col

    def set_column(self, index: Union[int, str, Variable], data):
        """
        Set the values in the given column do `data`.

        This function may be useful, but try avoiding it.

        Table (or the corresponding
        part must be unlocked). If variable is discrete, its encoding must
        match the variable in the domain.

        Args:
            index (int, str, Variable): index of a column
            data (object): a single value or 1d array of length len(self)
        """
        if not isinstance(index, Integral):
            if isinstance(index, DiscreteVariable) \
                    and self.domain[index].values != index.values:
                raise ValueError(f"cannot set data for variable {index.name} "
                                 "with different encoding")
            index = self.domain.index(index)
        # Zero-sized arrays cannot be made writeable, yet the below
        # assignment would fail despite doing nothing.
        if len(self) > 0:
            self._get_column_view(index)[:] = data
        else:
            assert len(self) == len(data)

    def _filter_is_defined(self, columns=None, negate=False):
        # structure of function is obvious; pylint: disable=too-many-branches
        def _sp_anynan(a):
            return a.indptr[1:] != a[-1:] + a.shape[1]

        if columns is None:
            if sp.issparse(self.X):
                remove = _sp_anynan(self.X)
            else:
                remove = bn.anynan(self.X, axis=1)
            if sp.issparse(self._Y):
                remove += _sp_anynan(self._Y)
            else:
                if self._Y.ndim == 1:
                    remove += np.isnan(self._Y)
                else:
                    remove += bn.anynan(self._Y, axis=1)
            if sp.issparse(self.metas):
                remove += _sp_anynan(self._metas)
            else:
                for i, var in enumerate(self.domain.metas):
                    col = self.metas[:, i].flatten()
                    if var.is_primitive():
                        remove += np.isnan(col.astype(float))
                    else:
                        remove += ~col.astype(bool)
        else:
            remove = np.zeros(len(self), dtype=bool)
            for column in columns:
                col = self.get_column(column)
                if self.domain[column].is_primitive():
                    remove += bn.anynan([col.astype(float)], axis=0)
                else:
                    remove += col.astype(bool)
        retain = remove if negate else np.logical_not(remove)
        return self.from_table_rows(self, retain)

    def _filter_has_class(self, negate=False):
        if sp.issparse(self._Y):
            if negate:
                retain = (self._Y.indptr[1:] !=
                          self._Y.indptr[-1:] + self._Y.shape[1])
            else:
                retain = (self._Y.indptr[1:] ==
                          self._Y.indptr[-1:] + self._Y.shape[1])
        else:
            if self._Y.ndim == 1:
                retain = np.isnan(self._Y)
            else:
                retain = bn.anynan(self._Y, axis=1)
            if not negate:
                retain = np.logical_not(retain)
        return self.from_table_rows(self, retain)

    def _filter_same_value(self, column, value, negate=False):
        if not isinstance(value, Real):
            value = self.domain[column].to_val(value)
        sel = self.get_column(column) == value
        if negate:
            sel = np.logical_not(sel)
        return self.from_table_rows(self, sel)

    def _filter_values(self, filter):
        selection = self._values_filter_to_indicator(filter)
        return self.from_table(self.domain, self, selection)

    def _values_filter_to_indicator(self, filter):
        """Return selection of rows matching the filter conditions

        Handles conjunction/disjunction and negate modifiers

        Parameters
        ----------
        filter: Values object containing the conditions

        Returns
        -------
        A 1d bool array. len(result) == len(self)
        """
        from Orange.data.filter import Values

        if isinstance(filter, Values):
            conditions = filter.conditions
            conjunction = filter.conjunction
        else:
            conditions = [filter]
            conjunction = True
        if conjunction:
            sel = np.ones(len(self), dtype=bool)
        else:
            sel = np.zeros(len(self), dtype=bool)

        for f in conditions:
            selection = self._filter_to_indicator(f)

            if conjunction:
                sel *= selection
            else:
                sel += selection

        if filter.negate:
            sel = ~sel
        return sel

    def _filter_to_indicator(self, filter):
        """Return selection of rows that match the condition.

        Parameters
        ----------
        filter: ValueFilter describing the condition

        Returns
        -------
        A 1d bool array. len(result) == len(self)
        """
        from Orange.data.filter import (
            FilterContinuous, FilterDiscrete, FilterRegex, FilterString,
            FilterStringList, IsDefined, Values
        )
        if isinstance(filter, Values):
            return self._values_filter_to_indicator(filter)

        def get_col_indices():
            cols = chain(self.domain.variables, self.domain.metas)
            if isinstance(filter, IsDefined):
                if filter.columns is not None:
                    return list(filter.columns)
                else:
                    return list(cols)

            if filter.column is not None:
                return [filter.column]

            if isinstance(filter, FilterDiscrete):
                raise ValueError("Discrete filter can't be applied across rows")
            if isinstance(filter, FilterContinuous):
                return [col for col in cols if col.is_continuous]
            if isinstance(filter,
                          (FilterString, FilterStringList, FilterRegex)):
                return [col for col in cols if col.is_string]
            raise TypeError("Invalid filter")

        def col_filter(col_idx):
            col = self.get_column(col_idx)
            if isinstance(filter, IsDefined):
                if self.domain[col_idx].is_primitive():
                    return ~np.isnan(col.astype(float))
                else:
                    return col.astype(bool)
            if isinstance(filter, FilterDiscrete):
                return self._discrete_filter_to_indicator(filter, col)
            if isinstance(filter, FilterContinuous):
                return self._continuous_filter_to_indicator(filter, col)
            if isinstance(filter, FilterString):
                return self._string_filter_to_indicator(filter, col)
            if isinstance(filter, FilterStringList):
                if not filter.case_sensitive:
                    col = np.char.lower(np.array(col, dtype=str))
                    vals = [val.lower() for val in filter.values]
                else:
                    vals = filter.values
                return reduce(operator.add, (col == val for val in vals))
            if isinstance(filter, FilterRegex):
                return np.vectorize(filter)(col)
            raise TypeError("Invalid filter")

        col_indices = get_col_indices()
        if len(col_indices) == 1:
            sel = col_filter(col_indices[0])
        else:
            sel = np.ones(len(self), dtype=bool)
            for col_idx in col_indices:
                sel *= col_filter(col_idx)

        if isinstance(filter, IsDefined) and filter.negate:
            sel = ~sel
        return sel

    def _discrete_filter_to_indicator(self, filter, col):
        """Return selection of rows matched by the given discrete filter.

        Parameters
        ----------
        filter: FilterDiscrete
        col: np.ndarray

        Returns
        -------
        A 1d bool array. len(result) == len(self)
        """
        if filter.values is None:  # <- is defined filter
            col = col.astype(float)
            return ~np.isnan(col)

        sel = np.zeros(len(self), dtype=bool)
        for val in filter.values:
            if not isinstance(val, Real):
                val = self.domain[filter.column].to_val(val)
            sel += (col == val)
        return sel

    def _continuous_filter_to_indicator(self, filter, col):
        """Return selection of rows matched by the given continuous filter.

        Parameters
        ----------
        filter: FilterContinuous
        col: np.ndarray

        Returns
        -------
        A 1d bool array. len(result) == len(self)
        """
        if filter.oper == filter.IsDefined:
            col = col.astype(float)
            return ~np.isnan(col)

        return self._range_filter_to_indicator(filter, col, filter.min, filter.max)

    def _string_filter_to_indicator(self, filter, col):
        """Return selection of rows matched by the given string filter.

        Parameters
        ----------
        filter: FilterString
        col: np.ndarray

        Returns
        -------
        A 1d bool array. len(result) == len(self)
        """
        if filter.oper == filter.IsDefined:
            return col.astype(bool)
        if filter.oper == filter.NotIsDefined:
            return ~col.astype(bool)

        col = col.astype(str)
        fmin = filter.min or ""
        fmax = filter.max or ""

        if not filter.case_sensitive:
            # convert all to lower case
            col = np.char.lower(col)
            fmin = fmin.lower()
            fmax = fmax.lower()

        if filter.oper == filter.Contains:
            return np.fromiter((fmin in e for e in col),
                               dtype=bool)
        if filter.oper == filter.NotContain:
            return np.fromiter((fmin not in e for e in col),
                               dtype=bool)
        if filter.oper == filter.StartsWith:
            return np.fromiter((e.startswith(fmin) for e in col),
                               dtype=bool)
        if filter.oper == filter.NotStartsWith:
            return np.fromiter((not e.startswith(fmin) for e in col),
                               dtype=bool)        
        if filter.oper == filter.EndsWith:
            return np.fromiter((e.endswith(fmin) for e in col),
                               dtype=bool)
        if filter.oper == filter.NotEndsWith:
            return np.fromiter((not e.endswith(fmin) for e in col),
                               dtype=bool)        

        return self._range_filter_to_indicator(filter, col, fmin, fmax)

    @staticmethod
    def _range_filter_to_indicator(filter, col, fmin, fmax):
        with np.errstate(invalid="ignore"):  # nan's are properly discarded
            if filter.oper == filter.Equal:
                return col == fmin
            if filter.oper == filter.NotEqual:
                return col != fmin
            if filter.oper == filter.Less:
                return col < fmin
            if filter.oper == filter.LessEqual:
                return col <= fmin
            if filter.oper == filter.Greater:
                return col > fmin
            if filter.oper == filter.GreaterEqual:
                return col >= fmin
            if filter.oper == filter.Between:
                return (col >= fmin) * (col <= fmax)
            if filter.oper == filter.Outside:
                return (col < fmin) + (col > fmax)

            raise TypeError("Invalid operator")

    def _compute_basic_stats(self, columns=None,
                             include_metas=False, compute_variance=False):
        W = self._W if self.has_weights() else None
        rr = []
        stats = []
        if not columns:
            if self.domain.attributes:
                rr.append(fast_stats(self._X, W,
                                     compute_variance=compute_variance))
            if self.domain.class_vars:
                rr.append(fast_stats(self._Y, W,
                                     compute_variance=compute_variance))
            if include_metas and self.domain.metas:
                rr.append(fast_stats(self.metas, W,
                                     compute_variance=compute_variance))
            if len(rr):
                stats = np.vstack(tuple(rr))
        else:
            nattrs = len(self.domain.attributes)
            for column in columns:
                c = self.domain.index(column)
                if 0 <= c < nattrs:
                    S = fast_stats(self._X[:, [c]], W and W[:, [c]],
                                   compute_variance=compute_variance)
                elif c >= nattrs:
                    if self._Y.ndim == 1 and c == nattrs:
                        S = fast_stats(self._Y[:, None], W and W[:, None],
                                       compute_variance=compute_variance)
                    else:
                        S = fast_stats(self._Y[:, [c - nattrs]], W and W[:, [c - nattrs]],
                                       compute_variance=compute_variance)
                else:
                    S = fast_stats(self._metas[:, [-1 - c]], W and W[:, [-1 - c]],
                                   compute_variance=compute_variance)
                stats.append(S[0])
        return stats

    def _compute_distributions(self, columns=None):
        if columns is None:
            columns = range(len(self.domain.variables))
        else:
            columns = [self.domain.index(var) for var in columns]

        distributions = []
        X = self.X
        if sp.issparse(X):
            X = X.tocsc()


        W = self.W.ravel() if self.has_weights() else None

        for col in columns:
            variable = self.domain[col]

            # Select the correct data column from X, Y or metas
            if 0 <= col < X.shape[1]:
                x = X[:, col]
            elif col < 0:
                x = self.metas[:, col * (-1) - 1]
                if np.issubdtype(x.dtype, np.dtype(object)):
                    x = x.astype(float)
            elif self._Y.ndim == 1 and col == X.shape[1]:
                x = self._Y
            else:
                x = self._Y[:, col - X.shape[1]]

            if variable.is_discrete:
                dist, unknowns = bincount(x, weights=W, max_val=len(variable.values) - 1)
            elif not x.shape[0]:
                dist, unknowns = np.zeros((2, 0)), 0
            else:
                if W is not None:
                    if sp.issparse(x):
                        arg_sort = np.argsort(x.data)
                        ranks = x.indices[arg_sort]
                        vals = np.vstack((x.data[arg_sort], W[ranks]))
                    else:
                        ranks = np.argsort(x)
                        vals = np.vstack((x[ranks], W[ranks]))
                else:
                    x_values = x.data if sp.issparse(x) else x
                    vals = np.ones((2, x_values.shape[0]))
                    vals[0, :] = x_values
                    vals[0, :].sort()

                dist = np.array(_valuecount.valuecount(vals))
                # If sparse, then 0s will not be counted with `valuecount`, so
                # we have to add them to the result manually.
                if sp.issparse(x) and sparse_has_implicit_zeros(x):
                    if W is not None:
                        zero_weights = sparse_implicit_zero_weights(x, W).sum()
                    else:
                        zero_weights = sparse_count_implicit_zeros(x)
                    zero_vec = [0, zero_weights]
                    dist = np.insert(dist, np.searchsorted(dist[0], 0), zero_vec, axis=1)
                # Since `countnans` assumes vector shape to be (1, n) and `x`
                # shape is (n, 1), we pass the transpose
                unknowns = countnans(x.T, W)
            distributions.append((dist, unknowns))

        return distributions

    def _compute_contingency(self, col_vars=None, row_var=None):
        n_atts = self.X.shape[1]

        if col_vars is None:
            col_vars = range(len(self.domain.variables))
        else:
            col_vars = [self.domain.index(var) for var in col_vars]
        if row_var is None:
            row_var = self.domain.class_var
            if row_var is None:
                raise ValueError("No row variable")

        row_desc = self.domain[row_var]
        if not row_desc.is_discrete:
            raise TypeError("Row variable must be discrete")
        row_indi = self.domain.index(row_var)
        n_rows = len(row_desc.values)
        if 0 <= row_indi < n_atts:
            row_data = self.X[:, row_indi]
        elif row_indi < 0:
            row_data = self.metas[:, -1 - row_indi]
        elif self._Y.ndim == 1 and row_indi == n_atts:
            row_data = self._Y
        else:
            row_data = self._Y[:, row_indi - n_atts]

        W = self.W if self.has_weights() else None

        col_desc = [self.domain[var] for var in col_vars]
        col_indi = [self.domain.index(var) for var in col_vars]

        if any(not (var.is_discrete or var.is_continuous)
               for var in col_desc):
            raise ValueError("Contingency can be computed only for categorical "
                             "and numeric values.")

        # when we select a column in sparse matrix it is still two dimensional
        # and sparse - since it is just a column we can afford to transform
        # it to dense and make it 1D
        if issparse(row_data):
            row_data = row_data.toarray().ravel()
        if row_data.dtype.kind != "f":  # meta attributes can be stored as type object
            row_data = row_data.astype(float)

        contingencies = [None] * len(col_desc)
        for arr, f_cond, f_ind in (
                (self.X, lambda i: 0 <= i < n_atts, lambda i: i),
                (self._Y, lambda i: i >= n_atts, lambda i: i - n_atts),
                (self.metas, lambda i: i < 0, lambda i: -1 - i)):

            arr_indi = [e for e, ind in enumerate(col_indi) if f_cond(ind)]

            vars = [(e, f_ind(col_indi[e]), col_desc[e]) for e in arr_indi]
            disc_vars = [v for v in vars if v[2].is_discrete]
            if disc_vars:
                if sp.issparse(arr):
                    max_vals = max(len(v[2].values) for v in disc_vars)
                    disc_indi = {i for _, i, _ in disc_vars}
                    mask = [i in disc_indi for i in range(arr.shape[1])]
                    conts, nans_cols, nans_rows, nans = contingency(
                        arr, row_data, max_vals - 1, n_rows - 1, W, mask)
                    for col_i, arr_i, var in disc_vars:
                        n_vals = len(var.values)
                        contingencies[col_i] = (
                            conts[arr_i][:, :n_vals], nans_cols[arr_i],
                            nans_rows[arr_i], nans[arr_i])
                else:
                    for col_i, arr_i, var in disc_vars:
                        col = arr if arr.ndim == 1 else arr[:, arr_i]
                        contingencies[col_i] = contingency(
                            col.astype(float),
                            row_data, len(var.values) - 1, n_rows - 1, W)

            cont_vars = [v for v in vars if v[2].is_continuous]
            if cont_vars:
                W_ = None
                if W is not None:
                    W_ = W.astype(dtype=np.float64)
                if sp.issparse(arr):
                    arr = sp.csc_matrix(arr)

                for col_i, arr_i, _ in cont_vars:
                    if sp.issparse(arr):
                        col_data = arr.data[arr.indptr[arr_i]:arr.indptr[arr_i + 1]]
                        rows = arr.indices[arr.indptr[arr_i]:arr.indptr[arr_i + 1]]
                        W_ = None if W_ is None else W_[rows]
                        classes_ = row_data[rows]
                    else:
                        col_data, W_, classes_ = arr[:, arr_i], W_, row_data

                    col_data = col_data.astype(dtype=np.float64)
                    contingencies[col_i] = _contingency.contingency_floatarray(
                        col_data, classes_, n_rows, W_)

        return contingencies

    @classmethod
    def transpose(cls, table, feature_names_column="",
                  meta_attr_name="Feature name", feature_name="Feature",
                  remove_redundant_inst=False, progress_callback=None):
        """
        Transpose the table.

        :param table: Table - table to transpose
        :param feature_names_column: str - name of (String) meta attribute to
            use for feature names
        :param meta_attr_name: str - name of new meta attribute into which
            feature names are mapped
        :param feature_name: str - default feature name prefix
        :param remove_redundant_inst: bool - remove instance that
            represents feature_names_column
        :param progress_callback: callable - to report the progress
        :return: Table - transposed table
        """
        if progress_callback is None:
            progress_callback = dummy_callback
        progress_callback(0, "Transposing...")

        if isinstance(feature_names_column, Variable):
            feature_names_column = feature_names_column.name

        self = cls()
        n_cols, self.n_rows = table.X.shape
        old_domain = table.attributes.get("old_domain")
        table_domain_attributes = list(table.domain.attributes)
        attr_index = None
        if remove_redundant_inst:
            attr_names = [a.name for a in table_domain_attributes]
            if feature_names_column and feature_names_column in attr_names:
                attr_index = attr_names.index(feature_names_column)
                self.n_rows = self.n_rows - 1
                table_domain_attributes.remove(
                    table_domain_attributes[attr_index])

        # attributes
        # - classes and metas to attributes of attributes
        # - arbitrary meta column to feature names
        with self.unlocked_reference():
            self.X = table.X.T
            if attr_index is not None:
                self.X = np.delete(self.X, attr_index, 0)
            if feature_names_column:
                names = [str(row[feature_names_column]) for row in table]
                progress_callback(0.1)
                names = get_unique_names_duplicates(names)
                progress_callback(0.3)
                attributes = [ContinuousVariable(name) for name in names]
            else:
                places = int(np.ceil(np.log10(n_cols))) if n_cols else 1
                attributes = [ContinuousVariable(f"{feature_name} {i:0{places}}")
                              for i in range(1, n_cols + 1)]
            progress_callback(0.4)

            if old_domain is not None and feature_names_column:
                for i, _ in enumerate(attributes):
                    if attributes[i].name in old_domain:
                        var = old_domain[attributes[i].name]
                        attr = ContinuousVariable(var.name) if var.is_continuous \
                            else DiscreteVariable(var.name, var.values)
                        attr.attributes = var.attributes.copy()
                        attributes[i] = attr

            def set_attributes_of_attributes(_vars, _table):
                for i, variable in enumerate(_vars):
                    if variable.name == feature_names_column:
                        continue
                    for j, row in enumerate(_table):
                        value = variable.repr_val(row) if np.isscalar(row) \
                            else row[i] if isinstance(row[i], str) \
                            else variable.repr_val(row[i])

                        if value not in MISSING_VALUES:
                            attributes[j].attributes[variable.name] = value

            set_attributes_of_attributes(table.domain.class_vars, table.Y)
            progress_callback(0.5)
            set_attributes_of_attributes(table.domain.metas, table.metas)

            # weights
            self.W = np.empty((self.n_rows, 0))

            def get_table_from_attributes_of_attributes(_vars, _dtype=float):
                T = np.empty((self.n_rows, len(_vars)), dtype=_dtype)
                for i, _attr in enumerate(table_domain_attributes):
                    for j, _var in enumerate(_vars):
                        val = str(_attr.attributes.get(_var.name, ""))
                        if not _var.is_string:
                            val = np.nan if val in MISSING_VALUES else \
                                _var.values.index(val) if \
                                    _var.is_discrete else float(val)
                        T[i, j] = val
                return T

            # class_vars - attributes of attributes to class - from old domain
            class_vars = []
            if old_domain is not None:
                class_vars = old_domain.class_vars
            self.Y = get_table_from_attributes_of_attributes(class_vars)

            # metas
            # - feature names and attributes of attributes to metas
            self.metas, metas = np.empty((self.n_rows, 0), dtype=object), []
            if meta_attr_name not in [m.name for m in table.domain.metas] and \
                    table_domain_attributes:
                self.metas = np.array([[a.name] for a in table_domain_attributes],
                                      dtype=object)
                metas.append(StringVariable(meta_attr_name))

            names = chain.from_iterable(list(attr.attributes)
                                        for attr in table_domain_attributes)
            names = sorted(set(names) - {var.name for var in class_vars})
            progress_callback(0.6)

            def guessed_var(i, var_name):
                orig_vals = M[:, i]
                val_map, vals, var_type = Orange.data.io.guess_data_type(orig_vals)
                values, variable = Orange.data.io.sanitize_variable(
                    val_map, vals, orig_vals, var_type, {}, name=var_name)
                M[:, i] = values
                return variable

            _metas = [StringVariable(n) for n in names]
            if old_domain is not None:
                _metas = [m for m in old_domain.metas if m.name != meta_attr_name]
            M = get_table_from_attributes_of_attributes(_metas, _dtype=object)
            progress_callback(0.7)
            if old_domain is None:
                _metas = [guessed_var(i, m.name) for i, m in enumerate(_metas)]
            if _metas:
                self.metas = np.hstack((self.metas, M))
                metas.extend(_metas)

            self.domain = Domain(attributes, class_vars, metas)
            progress_callback(0.9)
            cls._init_ids(self)
            self.attributes = deepcopy(table.attributes)
            self.attributes["old_domain"] = table.domain
            self.name = table.name
            progress_callback(1)
            return self

    def to_sparse(self, sparse_attributes=True, sparse_class=False,
                  sparse_metas=False):
        def sparsify(features):
            for f in features:
                f.sparse = True

        new_domain = self.domain.copy()

        if sparse_attributes:
            sparsify(new_domain.attributes)
        if sparse_class:
            sparsify(new_domain.class_vars)
        if sparse_metas:
            sparsify(new_domain.metas)
        return self.transform(new_domain)

    def to_dense(self, dense_attributes=True, dense_class=True,
                 dense_metas=True):
        def densify(features):
            for f in features:
                f.sparse = False

        new_domain = self.domain.copy()

        if dense_attributes:
            densify(new_domain.attributes)
        if dense_class:
            densify(new_domain.class_vars)
        if dense_metas:
            densify(new_domain.metas)
        t = self.transform(new_domain)
        t.ids = self.ids  # preserve indices
        return t

    def groupby(self, columns: List[Variable]) -> "OrangeTableGroupBy":
        """
        Group Table by variables defined in the columns list. Behaviour is
        similar to Pandas groupby.

        Parameters
        ----------
        columns
            List of variables used to determine the groups

        Returns
        -------
        GroupBy object of type OrangeTableGroupBy which holds information about
        groups.
        """
        return Orange.data.aggregate.OrangeTableGroupBy(self, columns)


def _dereferenced(array):
    # CSR and CSC matrices are constructed so that array.data is a
    # view to a base, which prevents unlocking them. Therefore, if
    # sparse matrix doesn't own its data, but its base array is
    # referenced only by this matrix, we copy it. This doesn't
    # increase memory use, but allows unlocking.
    if sp.issparse(array) \
            and array.data.base is not None \
            and sys.getrefcount(array.data.base) == 2:  # 2 = 1 real + 1 for arg
        array.data = array.data.copy()
    return array


def _check_arrays(*arrays, dtype=None, shape_1=None):
    checked = []
    if not len(arrays):
        return checked

    def ninstances(array):
        if hasattr(array, "shape"):
            return array.shape[0]
        else:
            return len(array) if array is not None else 0

    if shape_1 is None:
        shape_1 = ninstances(arrays[0])

    for array in arrays:
        if array is None:
            checked.append(array)
            continue

        if ninstances(array) != shape_1:
            raise ValueError("Leading dimension mismatch (%d != %d)"
                             % (ninstances(array), shape_1))

        if sp.issparse(array):
            if not (sp.isspmatrix_csr(array) or sp.isspmatrix_csc(array)):
                array = array.tocsr()
            array.data = np.asarray(array.data)
            array = _dereferenced(array)
            has_inf = _check_inf(array.data)
        else:
            if dtype is not None:
                array = np.asarray(array, dtype=dtype)
            else:
                array = np.asarray(array)
            has_inf = _check_inf(array)

        if has_inf:
            array[np.isinf(array)] = np.nan
            warnings.warn("Array contains infinity.", RuntimeWarning)
        checked.append(array)

    return checked


def _check_inf(array):
    return array.dtype.char in np.typecodes['AllFloat'] and \
           np.isinf(array.data).any()


def _subarray(arr, rows, cols):
    rows = _optimize_indices(rows, arr.shape[0])
    if arr.ndim == 1:
        return arr[rows]
    cols = _optimize_indices(cols, arr.shape[1])
    if isinstance(rows, slice) or isinstance(cols, slice):
        return arr[rows, cols]
    else:
        # rows and columns are independent selectors,
        # so they need to be reshaped to produce an open mesh
        return arr[np.ix_(rows, cols)]


def _optimize_indices(indices, size):
    """
    Convert boolean indices to integer indices and convert these to a slice
    if possible.

    A slice is created from only from indices with positive steps and
    valid starts and ends (so that invalid ranges will still raise an
    exception. An IndexError is raised if boolean indices do not conform
    to input size.

    Allows numpy to reuse the data array, because it defaults to copying
    if given indices.

    Parameters
    ----------
    indices : 1D sequence, slice or Ellipsis
    size : int
    """
    if isinstance(indices, slice):
        return indices

    if indices is ...:
        return slice(None, None, 1)

    # a very common case for column selection
    if len(indices) == 1 and not isinstance(indices[0], bool):
        if indices[0] >= 0:
            return slice(indices[0], indices[0] + 1, 1)
        else:
            return slice(indices[0], indices[0] - 1, -1)

    if len(indices) >= 1:
        indices = np.asarray(indices)
        if indices.dtype == bool:
            if len(indices) == size:
                indices = np.nonzero(indices)[0]
            else:
                # raise an exception that numpy would if boolean indices were used
                raise IndexError("boolean indices did not match dimension")

    if len(indices) >= 1:  # conversion from boolean indices could result in an empty array
        begin = indices[0]
        end = indices[-1]
        steps = np.diff(indices) if len(indices) > 1 else np.array([1])
        step = steps[0]

        # continuous ranges with constant step and valid start and stop index can be slices
        if np.all(steps == step) and step > 0 and begin >= 0 and end < size:
            return slice(begin, end + step, step)

    return indices


def _selection_length(indices, maxlen):
    """ Return the selection length.
    Args:
        indices: 1D sequence, slice or Ellipsis
        maxlen: maximum length of the sequence
    """
    if indices is ...:
        return maxlen
    elif isinstance(indices, slice):
        return len(range(*indices.indices(maxlen)))
    else:
        return len(indices)


def _select_from_selection(source_indices, selection_indices, maxlen):
    """
    Create efficient selection indices from a previous selection.
    Try to keep slices as slices.
    Args:
        source_indices: 1D sequence, slice or Ellipsis
        selection_indices: slice
        maxlen: maximum length of the sequence
    """
    if source_indices is ...:
        return selection_indices
    elif isinstance(source_indices, slice):
        assert isinstance(selection_indices, slice)
        r = range(*source_indices.indices(maxlen))[selection_indices]
        assert min(list(r)) >= 0
        # .indices always returns valid non-negative integers
        # when the reversed order is used r.stop can be negative, for example,
        # range(1, -1, -1)), which is [1, 0], but this negative indexing
        # is problematic with slices
        stop = r.stop
        if stop < 0:
            stop = None
        return slice(r.start, stop, r.step)
    else:
        return source_indices[selection_indices]


def assure_domain_conversion_sparsity(target, source):
    """
    Assure that the table obeys the domain conversion's suggestions about sparsity.

    Args:
        target (Table): the target table.
        source (Table): the source table.

    Returns:
        Table: with fixed sparsity. The sparsity is set as it is recommended by domain conversion
            for transformation from source to the target domain.
    """
    conversion = DomainConversion(source.domain, target.domain)
    match_density = [assure_array_dense, assure_array_sparse]
    target.X = match_density[conversion.sparse_X](target.X)
    target.Y = match_density[conversion.sparse_Y](target.Y)
    target.metas = match_density[conversion.sparse_metas](target.metas)
    return target


class Role:
    Attribute = 0
    ClassAttribute = 1
    Meta = 2

    @staticmethod
    def get_arr(role, table):
        return table.X if role == Role.Attribute else \
               table.Y if role == Role.ClassAttribute else \
               table.metas