File: test_aggregate.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (201 lines) | stat: -rw-r--r-- 6,565 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import unittest
from unittest.mock import Mock

import numpy as np
import pandas as pd

from Orange.data import (
    DiscreteVariable,
    ContinuousVariable,
    Domain,
    StringVariable,
    Table,
    table_to_frame,
)


def create_sample_data():
    domain = Domain(
        [
            ContinuousVariable("a"),
            ContinuousVariable("b"),
            ContinuousVariable("cvar"),
            DiscreteVariable("dvar", values=["val1", "val2"]),
        ],
        metas=[StringVariable("svar")],
    )
    return Table.from_numpy(
        domain,
        np.array(
            [
                [1, 1, 0.1, 0],
                [1, 1, 0.2, 1],
                [1, 2, np.nan, np.nan],
                [1, 2, 0.3, 1],
                [1, 3, 0.3, 0],
                [1, 3, 0.4, 1],
                [1, 3, 0.6, 0],
                [2, 1, 1.0, 1],
                [2, 1, 2.0, 0],
                [2, 2, 3.0, 1],
                [2, 2, -4.0, 0],
                [2, 3, 5.0, 1],
                [2, 3, 5.0, 0],
            ]
        ),
        metas=np.array(
            [
                ["sval1"],
                ["sval2"],
                [""],
                ["sval2"],
                ["sval1"],
                ["sval2"],
                ["sval1"],
                ["sval2"],
                ["sval1"],
                ["sval2"],
                ["sval1"],
                ["sval2"],
                ["sval1"],
            ]
        ),
    )


# pylint: disable=abstract-method
class AlternativeTable(Table):
    pass


class DomainTest(unittest.TestCase):
    def setUp(self) -> None:
        self.data = create_sample_data()

    def test_simple_aggregation(self):
        """Test aggregation results"""
        d = self.data.domain
        gb = self.data.groupby([d["a"]])
        output = gb.aggregate({d["a"]: ["mean"], d["b"]: ["mean"]})

        np.testing.assert_array_almost_equal(output.X, [[1, 2.143], [2, 2]], decimal=3)
        np.testing.assert_array_almost_equal(output.metas, [[1], [2]], decimal=3)
        self.assertListEqual(
            ["a - mean", "b - mean"], [d.name for d in output.domain.attributes]
        )
        self.assertListEqual(["a"], [d.name for d in output.domain.metas])

    def test_aggregation(self):
        d = self.data.domain
        gb = self.data.groupby([self.data.domain["a"], self.data.domain["b"]])
        output = gb.aggregate(
            {
                d["cvar"]: [("Mean", "mean"), ("Median", "median"), ("Mean1", np.mean)],
                d["dvar"]: [("Count defined", "count"), ("Count", "size")],
                d["svar"]: [("Concatenate", "".join)],
            }
        )

        expected_columns = [
            "cvar - Mean",
            "cvar - Median",
            "cvar - Mean1",
            "dvar - Count defined",
            "dvar - Count",
            "svar - Concatenate",
            "a",  # groupby variables are last two in metas
            "b",
        ]

        exp_df = pd.DataFrame(
            [
                [0.15, 0.15, 0.15, 2, 2, "sval1sval2", 1, 1],
                [0.3, 0.3, 0.3, 1, 2, "sval2", 1, 2],
                [0.433, 0.4, 0.433, 3, 3, "sval1sval2sval1", 1, 3],
                [1.5, 1.5, 1.5, 2, 2, "sval2sval1", 2, 1],
                [-0.5, -0.5, -0.5, 2, 2, "sval2sval1", 2, 2],
                [5, 5, 5, 2, 2, "sval2sval1", 2, 3],
            ],
            columns=expected_columns,
        )

        out_df = table_to_frame(output, include_metas=True)

        pd.testing.assert_frame_equal(
            out_df,
            exp_df,
            check_dtype=False,
            check_column_type=False,
            check_categorical=False,
            atol=1e-3,
        )

    def test_preserve_table_class(self):
        """
        Test whether result table has the same type than the imnput table,
        e.g. if input table corpus the resulting table must be corpus too.
        """
        data = AlternativeTable.from_table(self.data.domain, self.data)
        gb = data.groupby([data.domain["a"]])
        output = gb.aggregate({data.domain["a"]: ["mean"]})
        self.assertIsInstance(output, AlternativeTable)

    def test_preserve_variables(self):
        a, _, _, dvar = self.data.domain.attributes
        gb = self.data.groupby([a])

        a.attributes = {"foo": "bar"}
        dvar.attributes = {"foo": "baz"}

        a.copy = Mock(side_effect=a.copy)
        a.make = Mock(side_effect=a.make)

        def f(*_):
            return 0

        output = gb.aggregate(
            {a: [("copy", f, True),
                 ("make", f, False),
                 ("auto", f, None),
                 ("string", f, StringVariable),
                 ("number", f, ContinuousVariable)],
             dvar: [("copy", f, True),
                    ("make", f, False),
                    ("auto", f, None),
                    ("string", f, StringVariable),
                    ("discrete", f, DiscreteVariable)]}
        )
        self.assertIsInstance(output.domain["a - copy"], ContinuousVariable)
        a.copy.assert_called_once()
        self.assertEqual(output.domain["a - copy"].attributes, {"foo": "bar"})

        self.assertIsInstance(output.domain["a - make"], ContinuousVariable)
        a.make.assert_called_once()
        self.assertNotEqual(output.domain["a - make"].attributes, {"foo": "bar"})

        self.assertIsInstance(output.domain["a - auto"], ContinuousVariable)
        self.assertNotEqual(output.domain["a - auto"].attributes, {"foo": "bar"})

        self.assertIsInstance(output.domain["a - string"], StringVariable)

        self.assertIsInstance(output.domain["a - number"], ContinuousVariable)
        self.assertNotEqual(output.domain["a - number"].attributes, {"foo": "bar"})

        self.assertIsInstance(output.domain["dvar - copy"], DiscreteVariable)
        self.assertEqual(output.domain["dvar - copy"].attributes, {"foo": "baz"})

        self.assertIsInstance(output.domain["dvar - make"], DiscreteVariable)
        self.assertNotEqual(output.domain["dvar - make"].attributes, {"foo": "baz"})

        # f returns 0, so the column looks numeric! Let's test that it is
        # converted to numeric.
        self.assertIsInstance(output.domain["dvar - auto"], ContinuousVariable)

        self.assertIsInstance(output.domain["dvar - string"], StringVariable)

        self.assertIsInstance(output.domain["dvar - discrete"], DiscreteVariable)
        self.assertNotEqual(output.domain["dvar - discrete"].attributes, {"foo": "baz"})


if __name__ == "__main__":
    unittest.main()