1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import unittest
from unittest.mock import Mock
import numpy as np
import pandas as pd
from Orange.data import (
DiscreteVariable,
ContinuousVariable,
Domain,
StringVariable,
Table,
table_to_frame,
)
def create_sample_data():
domain = Domain(
[
ContinuousVariable("a"),
ContinuousVariable("b"),
ContinuousVariable("cvar"),
DiscreteVariable("dvar", values=["val1", "val2"]),
],
metas=[StringVariable("svar")],
)
return Table.from_numpy(
domain,
np.array(
[
[1, 1, 0.1, 0],
[1, 1, 0.2, 1],
[1, 2, np.nan, np.nan],
[1, 2, 0.3, 1],
[1, 3, 0.3, 0],
[1, 3, 0.4, 1],
[1, 3, 0.6, 0],
[2, 1, 1.0, 1],
[2, 1, 2.0, 0],
[2, 2, 3.0, 1],
[2, 2, -4.0, 0],
[2, 3, 5.0, 1],
[2, 3, 5.0, 0],
]
),
metas=np.array(
[
["sval1"],
["sval2"],
[""],
["sval2"],
["sval1"],
["sval2"],
["sval1"],
["sval2"],
["sval1"],
["sval2"],
["sval1"],
["sval2"],
["sval1"],
]
),
)
# pylint: disable=abstract-method
class AlternativeTable(Table):
pass
class DomainTest(unittest.TestCase):
def setUp(self) -> None:
self.data = create_sample_data()
def test_simple_aggregation(self):
"""Test aggregation results"""
d = self.data.domain
gb = self.data.groupby([d["a"]])
output = gb.aggregate({d["a"]: ["mean"], d["b"]: ["mean"]})
np.testing.assert_array_almost_equal(output.X, [[1, 2.143], [2, 2]], decimal=3)
np.testing.assert_array_almost_equal(output.metas, [[1], [2]], decimal=3)
self.assertListEqual(
["a - mean", "b - mean"], [d.name for d in output.domain.attributes]
)
self.assertListEqual(["a"], [d.name for d in output.domain.metas])
def test_aggregation(self):
d = self.data.domain
gb = self.data.groupby([self.data.domain["a"], self.data.domain["b"]])
output = gb.aggregate(
{
d["cvar"]: [("Mean", "mean"), ("Median", "median"), ("Mean1", np.mean)],
d["dvar"]: [("Count defined", "count"), ("Count", "size")],
d["svar"]: [("Concatenate", "".join)],
}
)
expected_columns = [
"cvar - Mean",
"cvar - Median",
"cvar - Mean1",
"dvar - Count defined",
"dvar - Count",
"svar - Concatenate",
"a", # groupby variables are last two in metas
"b",
]
exp_df = pd.DataFrame(
[
[0.15, 0.15, 0.15, 2, 2, "sval1sval2", 1, 1],
[0.3, 0.3, 0.3, 1, 2, "sval2", 1, 2],
[0.433, 0.4, 0.433, 3, 3, "sval1sval2sval1", 1, 3],
[1.5, 1.5, 1.5, 2, 2, "sval2sval1", 2, 1],
[-0.5, -0.5, -0.5, 2, 2, "sval2sval1", 2, 2],
[5, 5, 5, 2, 2, "sval2sval1", 2, 3],
],
columns=expected_columns,
)
out_df = table_to_frame(output, include_metas=True)
pd.testing.assert_frame_equal(
out_df,
exp_df,
check_dtype=False,
check_column_type=False,
check_categorical=False,
atol=1e-3,
)
def test_preserve_table_class(self):
"""
Test whether result table has the same type than the imnput table,
e.g. if input table corpus the resulting table must be corpus too.
"""
data = AlternativeTable.from_table(self.data.domain, self.data)
gb = data.groupby([data.domain["a"]])
output = gb.aggregate({data.domain["a"]: ["mean"]})
self.assertIsInstance(output, AlternativeTable)
def test_preserve_variables(self):
a, _, _, dvar = self.data.domain.attributes
gb = self.data.groupby([a])
a.attributes = {"foo": "bar"}
dvar.attributes = {"foo": "baz"}
a.copy = Mock(side_effect=a.copy)
a.make = Mock(side_effect=a.make)
def f(*_):
return 0
output = gb.aggregate(
{a: [("copy", f, True),
("make", f, False),
("auto", f, None),
("string", f, StringVariable),
("number", f, ContinuousVariable)],
dvar: [("copy", f, True),
("make", f, False),
("auto", f, None),
("string", f, StringVariable),
("discrete", f, DiscreteVariable)]}
)
self.assertIsInstance(output.domain["a - copy"], ContinuousVariable)
a.copy.assert_called_once()
self.assertEqual(output.domain["a - copy"].attributes, {"foo": "bar"})
self.assertIsInstance(output.domain["a - make"], ContinuousVariable)
a.make.assert_called_once()
self.assertNotEqual(output.domain["a - make"].attributes, {"foo": "bar"})
self.assertIsInstance(output.domain["a - auto"], ContinuousVariable)
self.assertNotEqual(output.domain["a - auto"].attributes, {"foo": "bar"})
self.assertIsInstance(output.domain["a - string"], StringVariable)
self.assertIsInstance(output.domain["a - number"], ContinuousVariable)
self.assertNotEqual(output.domain["a - number"].attributes, {"foo": "bar"})
self.assertIsInstance(output.domain["dvar - copy"], DiscreteVariable)
self.assertEqual(output.domain["dvar - copy"].attributes, {"foo": "baz"})
self.assertIsInstance(output.domain["dvar - make"], DiscreteVariable)
self.assertNotEqual(output.domain["dvar - make"].attributes, {"foo": "baz"})
# f returns 0, so the column looks numeric! Let's test that it is
# converted to numeric.
self.assertIsInstance(output.domain["dvar - auto"], ContinuousVariable)
self.assertIsInstance(output.domain["dvar - string"], StringVariable)
self.assertIsInstance(output.domain["dvar - discrete"], DiscreteVariable)
self.assertNotEqual(output.domain["dvar - discrete"].attributes, {"foo": "baz"})
if __name__ == "__main__":
unittest.main()
|