File: util.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (344 lines) | stat: -rw-r--r-- 11,973 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Data-manipulation utilities.
"""
import re
import types
import warnings
from collections import Counter
from itertools import chain, count
from typing import Callable, Union, List, Type

import numpy as np
import bottleneck as bn
from scipy import sparse as sp

RE_FIND_INDEX = r"(^{})( \((\d{{1,}})\))?$"


def one_hot(
        values: Union[np.ndarray, List], dtype: Type = float, dim: int = None
) -> np.ndarray:
    """Return a one-hot transform of values

    Parameters
    ----------
    values : 1d array
        Integer values (hopefully 0-max).
    dtype
        dtype of result array
    dim
        Number of columns (attributes) in the one hot encoding. This parameter
        is used when we need fixed number of columns and values does not
        reflect that number correctly, e.g. not all values from the discrete
        variable are present in values parameter.

    Returns
    -------
    result
        2d array with ones in respective indicator columns.
    """
    dim_values = int(np.max(values) + 1 if len(values) > 0 else 0)
    if dim is None:
        dim = dim_values
    elif dim < dim_values:
        raise ValueError("dim must be greater than max(values)")
    return np.eye(dim, dtype=dtype)[np.asanyarray(values, dtype=int)]


# pylint: disable=redefined-builtin
def scale(values, min=0, max=1):
    """Return values scaled to [min, max]"""
    if len(values) == 0:
        return np.array([])
    minval = np.float64(bn.nanmin(values))
    ptp = bn.nanmax(values) - minval
    if ptp == 0:
        return np.clip(values, min, max)
    return (-minval + values) / ptp * (max - min) + min


class SharedComputeValue:
    """A base class that separates compute_value computation
    for different variables into shared and specific parts.

    Parameters
    ----------
    compute_shared: Callable[[Orange.data.Table], object]
        A callable that performs computation that is shared between
        multiple variables. Variables sharing computation need to set
        the same instance.
    variable: Orange.data.Variable
        The original variable on which this compute value is set. Optional.
    """

    def __init__(self, compute_shared, variable=None):
        self.compute_shared = compute_shared
        self.variable = variable
        if compute_shared is not None \
                and not isinstance(compute_shared, (types.BuiltinFunctionType,
                                                   types.FunctionType)) \
                and not redefines_eq_and_hash(compute_shared) \
                and not type(compute_shared).__dict__.get("InheritEq", False):
            warnings.warn(f"{type(compute_shared).__name__} should define "
                          f"__eq__ and __hash__ to be used for compute_shared",
                          stacklevel=2)

    def __call__(self, data, shared_data=None):
        """Fallback if common parts are not passed."""
        if shared_data is None:
            shared_data = self.compute_shared(data)
        return self.compute(data, shared_data)

    def compute(self, data, shared_data):
        """Given precomputed shared data, perform variable-specific
        part of computation and return new variable values.
        Subclasses need to implement this function."""
        raise NotImplementedError

    def __eq__(self, other):
        return type(self) is type(other) \
               and self.compute_shared == other.compute_shared \
               and self.variable == other.variable

    def __hash__(self):
        return hash((type(self), self.compute_shared, self.variable))


def vstack(arrays):
    """vstack that supports sparse and dense arrays

    If all arrays are dense, result is dense. Otherwise,
    result is a sparse (csr) array.
    """
    if any(sp.issparse(arr) for arr in arrays):
        arrays = [sp.csr_matrix(arr) for arr in arrays]
        return sp.vstack(arrays)
    else:
        return np.vstack(arrays)


def hstack(arrays):
    """hstack that supports sparse and dense arrays

    If all arrays are dense, result is dense. Otherwise,
    result is a sparse (csc) array.
    """
    if any(sp.issparse(arr) for arr in arrays):
        arrays = [sp.csc_matrix(arr) for arr in arrays]
        return sp.hstack(arrays)
    else:
        return np.hstack(arrays)


def array_equal(a1, a2):
    """array_equal that supports sparse and dense arrays with missing values"""
    if a1.shape != a2.shape:
        return False

    if not (sp.issparse(a1) or sp.issparse(a2)):  # Both dense: just compare
        return np.allclose(a1, a2, equal_nan=True)

    v1 = np.vstack(sp.find(a1)).T
    v2 = np.vstack(sp.find(a2)).T
    if not (sp.issparse(a1) and sp.issparse(a2)):  # Any dense: order indices
        v1.sort(axis=0)
        v2.sort(axis=0)
    return np.allclose(v1, v2, equal_nan=True)


def assure_array_dense(a):
    if sp.issparse(a):
        a = a.toarray()
    return np.asarray(a)


def assure_array_sparse(a, sparse_class: Callable = sp.csc_matrix):
    if not sp.issparse(a):
        # since x can be a list, cast to np.array
        # since x can come from metas with string, cast to float
        a = np.asarray(a).astype(float)
    return sparse_class(a)


def assure_column_sparse(a):
    # if x of shape (n, ) is passed to csc_matrix constructor or
    # sparse matrix with shape (1, n) is passed,
    # the resulting matrix is of shape (1, n) and hence we
    # need to transpose it to make it a column
    if a.ndim == 1 or a.shape[0] == 1:
        # csr matrix becomes csc when transposed
        return assure_array_sparse(a, sparse_class=sp.csr_matrix).T
    else:
        return assure_array_sparse(a, sparse_class=sp.csc_matrix)


def assure_column_dense(a):
    # quick check and exit for the most common case
    if isinstance(a, np.ndarray) and len(a.shape) == 1:
        return a
    a = assure_array_dense(a)
    # column assignments must be (n, )
    return a.reshape(-1)


def get_indices(names, name):
    """
    Return list of indices which occur in a names list for a given name.
    :param names: list of strings
    :param name: str
    :return: list of indices
    """
    return [int(a.group(3) or 0) for x in filter(None, names)
            for a in re.finditer(RE_FIND_INDEX.format(re.escape(name)), x)]


def get_unique_names(names, proposed, equal_numbers=True):
    """
    Returns unique names for variables

    Proposed is a list of names (or a string with a single name). If any name
    already appears in `names`, the function appends an index in parentheses,
    which is one higher than the highest index at these variables. Also, if
    `names` contains any of the names with index in parentheses, this counts
    as an occurence of the name. For instance, if `names` does not contain
    `x` but it contains `x (3)`, `get_unique_names` will replace `x` with
    `x (4)`.

    If argument `names` is domain, the method observes all variables and metas.

    Function returns a string if `proposed` is a string, and a list if it's a
    list.

    The method is used in widgets like MDS, which adds two variables (`x` and
    `y`). It is desired that they have the same index. In case when
    equal_numbers=True, if `x`, `x (1)` and `x (2)` and `y` (but no other
    `y`'s already exist in the domain, MDS should append `x (3)` and `y (3)`,
    not `x (3)` and y (1)`.

    Args:
        names (Domain or list of str): used names
        proposed (str or list of str): proposed name
        equal_numbers (bool): Add same number to all proposed names

    Return:
        str or list of str
    """
    # prevent cyclic import: pylint: disable=import-outside-toplevel
    from Orange.data import Domain
    if isinstance(names, Domain):
        names = [var.name for var in chain(names.variables, names.metas)]
    if isinstance(proposed, str):
        return get_unique_names(names, [proposed])[0]
    indices = {name: get_indices(names, name) for name in proposed}
    indices = {name: max(ind) + 1 for name, ind in indices.items() if ind}

    duplicated_proposed = {name for name, count in Counter(proposed).items()
                           if count > 1}
    if duplicated_proposed:
        # This could be merged with the code below, but it would make it slower
        # because it can't be done within list comprehension
        if equal_numbers:
            max_index = max(indices.values(), default=1)
            indices = {name: max_index
                       for name in chain(indices, duplicated_proposed)}
        else:
            indices.update({name: 1
                            for name in duplicated_proposed - set(indices)})
        names = []
        for name in proposed:
            if name in indices:
                names.append(f"{name} ({indices[name]})")
                indices[name] += 1
            else:
                names.append(name)
        return names

    if not (set(proposed) & set(names) or indices):
        return proposed

    if equal_numbers:
        max_index = max(indices.values())
        return [f"{name} ({max_index})" for name in proposed]
    else:
        return [f"{name} ({indices[name]})" if name in indices else name
                for name in proposed]


def get_unique_names_duplicates(proposed: list, return_duplicated=False) -> list:
    """
    Returns list of unique names. If a name is duplicated, the
    function appends the next available index in parentheses.

    For example, a proposed list of names `x`, `x` and `x (2)`
    results in `x (3)`, `x (4)`, `x (2)`.
    """
    indices = {name: count(max(get_indices(proposed, name), default=0) + 1)
               for name, cnt in Counter(proposed).items()
               if name and cnt > 1}
    new_names = [f"{name} ({next(indices[name])})" if name in indices else name
                 for name in proposed]
    if return_duplicated:
        return new_names, list(indices)
    return new_names


def get_unique_names_domain(attributes, class_vars=(), metas=()):
    """
    Return de-duplicated names for variables for attributes, class_vars
    and metas. If a name appears more than once, the function appends
    indices in parentheses.

    Args:
        attributes (list of str): proposed names for attributes
        class_vars (list of str): proposed names for class_vars
        metas (list of str): proposed names for metas

    Returns:
        (attributes, class_vars, metas): new names
        renamed: list of names renamed variables; names appear in order of
            appearance in original lists; every name appears only once
    """
    all_names = list(chain(attributes, class_vars, metas))
    unique_names = get_unique_names_duplicates(all_names)
    # don't be smart with negative indices: they won't work for empty lists
    attributes = unique_names[:len(attributes)]
    class_vars = unique_names[len(attributes):len(attributes) + len(class_vars)]
    metas = unique_names[len(attributes) + len(class_vars):]
    # use dict, not set, to keep the order
    renamed = list(dict.fromkeys(old
                                 for old, new in zip(all_names, unique_names)
                                 if new != old))
    return (attributes, class_vars, metas), renamed


def sanitized_name(name: str) -> str:
    """
    Replace non-alphanumeric characters and leading zero with `_`.

    Args:
        name (str): proposed name

    Returns:
        name (str): new name
    """
    sanitized = re.sub(r"\W", "_", name)
    if sanitized[0].isdigit():
        sanitized = "_" + sanitized
    return sanitized


def redefines_eq_and_hash(this):
    """
    Check if the passed object (or class) redefines __eq__ and __hash__.

    Args:
        this: class or object
    """
    if not isinstance(this, type):
        this = type(this)

    # if only __eq__ is defined, __hash__ is set to None
    if this.__hash__ is None:
        return False

    return "__hash__" in this.__dict__ and "__eq__" in this.__dict__