1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
from collections import namedtuple
import numpy as np
from Orange.data import Domain, DiscreteVariable
from Orange.preprocess.transformation import Lookup
from Orange.statistics.util import nanunique
from .preprocess import Preprocess
__all__ = ["Remove"]
class Remove(Preprocess):
"""
Construct a preprocessor for removing constant features/classes
and unused values.
Given a data table, preprocessor returns a new table and a list of
results. In the new table, the constant features/classes and unused
values are removed. The list of results consists of two dictionaries.
The first one contains numbers of 'removed', 'reduced' and 'sorted'
features. The second one contains numbers of 'removed', 'reduced'
and 'sorted' features.
Parameters
----------
attr_flags : int (default: 0)
If SortValues, values of discrete attributes are sorted.
If RemoveConstant, unused attributes are removed.
If RemoveUnusedValues, unused values are removed from discrete
attributes.
It is possible to merge operations in one by summing several types.
class_flags: int (default: 0)
If SortValues, values of discrete class attributes are sorted.
If RemoveConstant, unused class attributes are removed.
If RemoveUnusedValues, unused values are removed from discrete
class attributes.
It is possible to merge operations in one by summing several types.
Examples
--------
>>> from Orange.data import Table
>>> from Orange.preprocess import Remove
>>> data = Table("zoo")[:10]
>>> flags = sum([Remove.SortValues, Remove.RemoveConstant, Remove.RemoveUnusedValues])
>>> remover = Remove(attr_flags=flags, class_flags=flags)
>>> new_data = remover(data)
>>> attr_results, class_results = remover.attr_results, remover.class_results
"""
SortValues, RemoveConstant, RemoveUnusedValues = 1, 2, 4
def __init__(self, attr_flags=0, class_flags=0, meta_flags=0):
self.attr_flags = attr_flags
self.class_flags = class_flags
self.meta_flags = meta_flags
self.attr_results = None
self.class_results = None
self.meta_results = None
def __call__(self, data):
"""
Removes unused features or classes from the given data. Returns a new
data table.
Parameters
----------
data : Orange.data.Table
A data table to remove features or classes from.
Returns
-------
data : Orange.data.Table
New data table.
"""
if data is None:
return None
domain = data.domain
attrs_state = [purge_var_M(var, data, self.attr_flags)
for var in domain.attributes]
class_state = [purge_var_M(var, data, self.class_flags)
for var in domain.class_vars]
metas_state = [purge_var_M(var, data, self.meta_flags)
for var in domain.metas]
att_vars, self.attr_results = self.get_vars_and_results(attrs_state)
cls_vars, self.class_results = self.get_vars_and_results(class_state)
meta_vars, self.meta_results = self.get_vars_and_results(metas_state)
domain = Domain(att_vars, cls_vars, meta_vars)
return data.transform(domain)
def get_vars_and_results(self, state):
removed, reduced, sorted = 0, 0, 0
vars = []
for st in state:
removed += is_removed(st)
reduced += not is_removed(st) and is_reduced(st)
sorted += not is_removed(st) and is_sorted(st)
if not is_removed(st):
vars.append(merge_transforms(st).var)
res = {'removed': removed, 'reduced': reduced, 'sorted': sorted}
return vars, res
# Define a simple Purge expression 'language'.
#: A input variable (leaf expression).
Var = namedtuple("Var", ["var"])
#: Removed variable (can only ever be present as a root node).
Removed = namedtuple("Removed", ["sub", "var"])
#: A reduced variable
Reduced = namedtuple("Reduced", ["sub", "var"])
#: A sorted variable
Sorted = namedtuple("Sorted", ["sub", "var"])
#: A general (lookup) transformed variable.
#: (this node is returned as a result of `merge` which joins consecutive
#: Removed/Reduced nodes into a single Transformed node)
Transformed = namedtuple("Transformed", ["sub", "var"])
def is_var(exp):
"""Is `exp` a `Var` node."""
return isinstance(exp, Var)
def is_removed(exp):
"""Is `exp` a `Removed` node."""
return isinstance(exp, Removed)
def _contains(exp, cls):
"""Does `node` contain a sub node of type `cls`"""
if isinstance(exp, cls):
return True
elif isinstance(exp, Var):
return False
else:
return _contains(exp.sub, cls)
def is_reduced(exp):
"""Does `exp` contain a `Reduced` node."""
return _contains(exp, Reduced)
def is_sorted(exp):
"""Does `exp` contain a `Reduced` node."""
return _contains(exp, Sorted)
def merge_transforms(exp):
"""
Merge consecutive Removed, Reduced or Transformed nodes.
.. note:: Removed nodes are returned unchanged.
"""
if isinstance(exp, (Var, Removed)):
return exp
elif isinstance(exp, (Reduced, Sorted, Transformed)):
prev = merge_transforms(exp.sub)
if isinstance(prev, (Reduced, Sorted, Transformed)):
B = exp.var.compute_value
assert isinstance(B, Lookup)
A = B.variable.compute_value
assert isinstance(A, Lookup)
new_var = DiscreteVariable(
exp.var.name,
values=exp.var.values,
compute_value=merge_lookup(A, B),
sparse=exp.var.sparse,
)
assert isinstance(prev.sub, Var)
return Transformed(prev.sub, new_var)
else:
assert prev is exp.sub
return exp
else:
raise TypeError
def purge_var_M(var, data, flags):
state = Var(var)
if flags & Remove.RemoveConstant:
var = remove_constant(state.var, data)
if var is None:
return Removed(state, state.var)
if state.var.is_discrete:
if flags & Remove.RemoveUnusedValues:
newattr = remove_unused_values(state.var, data)
if newattr is not state.var:
state = Reduced(state, newattr)
if flags & Remove.RemoveConstant and len(state.var.values) < 2:
return Removed(state, state.var)
if flags & Remove.SortValues:
newattr = sort_var_values(state.var)
if newattr is not state.var:
state = Sorted(state, newattr)
return state
def has_at_least_two_values(data, var):
((dist, unknowns),) = data._compute_distributions([var])
if var.is_continuous:
dist = dist[1, :]
return np.sum(dist > 0.0) > 1
def remove_constant(var, data):
if var.is_continuous:
if not has_at_least_two_values(data, var):
return None
else:
return var
elif var.is_discrete:
if len(var.values) < 2:
return None
else:
return var
else:
return var
def remove_unused_values(var, data):
unique = nanunique(data.get_column(var)).astype(int)
if len(unique) == len(var.values):
return var
used_values = [var.values[i] for i in unique]
translation_table = np.array([np.nan] * len(var.values))
translation_table[unique] = range(len(used_values))
return DiscreteVariable(var.name, values=used_values, sparse=var.sparse,
compute_value=Lookup(var, translation_table))
def sort_var_values(var):
newvalues = list(sorted(var.values))
if newvalues == list(var.values):
return var
translation_table = np.array(
[float(newvalues.index(value)) for value in var.values]
)
return DiscreteVariable(var.name, values=newvalues,
compute_value=Lookup(var, translation_table),
sparse=var.sparse)
def merge_lookup(A, B):
"""
Merge two consecutive Lookup transforms into one.
"""
lookup_table = np.array(A.lookup_table)
mask = np.isfinite(lookup_table)
indices = np.array(lookup_table[mask], dtype=int)
lookup_table[mask] = B.lookup_table[indices]
return Lookup(A.variable, lookup_table)
|