1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring
import inspect
import pickle
import pkgutil
import unittest
import warnings
import numpy as np
from scipy import sparse as sp
from sklearn.exceptions import ConvergenceWarning
from Orange.base import SklLearner
import Orange.classification
from Orange.classification import (
Learner, Model,
NaiveBayesLearner, LogisticRegressionLearner, NuSVMLearner,
MajorityLearner,
RandomForestLearner, SimpleTreeLearner, SoftmaxRegressionLearner,
SVMLearner, LinearSVMLearner, OneClassSVMLearner, TreeLearner, KNNLearner,
SimpleRandomForestLearner, EllipticEnvelopeLearner, ThresholdLearner,
CalibratedLearner)
from Orange.modelling import ColumnLearner
from Orange.classification.rules import _RuleLearner
from Orange.data import (ContinuousVariable, DiscreteVariable,
Domain, Table)
from Orange.data.table import DomainTransformationError
from Orange.evaluation import CrossValidation
from Orange.tests.dummy_learners import DummyLearner, DummyMulticlassLearner
from Orange.tests import test_filename
# While this could be determined automatically from __init__ signatures,
# it is better to do it explicitly
LEARNERS_WITH_ARGUMENTS = (ThresholdLearner, CalibratedLearner, ColumnLearner)
def all_learners():
classification_modules = pkgutil.walk_packages(
path=Orange.classification.__path__,
prefix="Orange.classification.",
onerror=lambda x: None)
for _, modname, _ in classification_modules:
try:
module = pkgutil.importlib.import_module(modname)
except ImportError:
continue
for name, class_ in inspect.getmembers(module, inspect.isclass):
if (issubclass(class_, Learner) and
not name.startswith('_') and
'base' not in class_.__module__):
yield class_
class MultiClassTest(unittest.TestCase):
def test_unsupported(self):
nrows = 20
ncols = 10
x = np.random.randint(1, 4, (nrows, ncols))
# multiple class variables
y = np.random.randint(0, 2, (nrows, 2))
t = Table.from_numpy(None, x, y)
learn = DummyLearner()
# TODO: Errors raised from various data checks should be made consistent
with self.assertRaises((ValueError, TypeError)):
clf = learn(t)
# single class variable
y = np.random.randint(0, 2, (nrows, 1))
t = Table.from_numpy(None, x, y)
learn = DummyLearner()
clf = learn(t)
z = clf(x)
self.assertEqual(z.ndim, 1)
def test_supported(self):
nrows = 20
ncols = 10
x = np.random.randint(1, 4, (nrows, ncols))
y = np.random.randint(0, 2, (nrows, 2))
t = Table.from_numpy(None, x, y)
learn = DummyMulticlassLearner()
clf = learn(t)
z = clf(x)
self.assertEqual(z.shape, y.shape)
class ModelTest(unittest.TestCase):
def test_predict_single_instance(self):
table = Table("titanic")
learn = NaiveBayesLearner()
clf = learn(table)
pred = []
for row in table:
pred.append(clf(row))
def test_prediction_dimensions(self):
class MockModel(Model):
def predict(self, data):
return np.zeros((data.shape[0], len(domain.class_var.values)))
x = np.zeros((42, 5))
y = np.zeros(42)
domain = Domain([ContinuousVariable(n) for n in "abcde"],
DiscreteVariable("y", values=("a", "b")))
data = Table.from_numpy(domain, x, y)
a_list = [[0] * 5] * 42
a_tuple = ((0, ) * 5,) * 42
m = MockModel(domain)
for inp in (data, x, sp.csr_matrix(x), a_list, a_tuple):
msg = f"in test for type '{type(inp)}'"
# two-dimensional
self.assertEqual(m(inp, ret=m.Value).shape, (42, ), msg)
self.assertEqual(m(inp, ret=m.Probs).shape, (42, 2), msg)
values, probs = m(inp, ret=m.ValueProbs)
self.assertEqual(values.shape, (42, ), msg)
self.assertEqual(probs.shape, (42, 2), msg)
# one-dimensional
if not isinstance(inp, sp.csr_matrix):
self.assertEqual(m(inp[0], ret=m.Value).shape, (), msg)
self.assertEqual(m(inp[0], ret=m.Probs).shape, (2, ), msg)
values, probs = m(inp[0], ret=m.ValueProbs)
self.assertEqual(values.shape, (), msg)
self.assertEqual(probs.shape, (2, ), msg)
def test_learner_adequacy(self):
table = Table("housing")
learner = NaiveBayesLearner()
self.assertRaises(ValueError, learner, table)
def test_value_from_probs(self):
nrows = 100
ncols = 5
x = np.random.randint(0, 2, (nrows, ncols))
# single class variable
y = np.random.randint(1, 4, (nrows, 1)) // 2 # majority = 1
t = Table.from_numpy(None, x, y)
learn = DummyLearner()
clf = learn(t)
clf.ret = Model.Probs
y2 = clf(x, ret=Model.Value)
self.assertEqual(y2.shape, (nrows,))
y2, probs = clf(x, ret=Model.ValueProbs)
self.assertEqual(y2.shape, (nrows,))
self.assertEqual(probs.shape, (nrows, 2))
# multitarget
y = np.random.randint(1, 6, (nrows, 2))
y[:, 0] = y[:, 0] // 3 # majority = 1
y[:, 1] = (y[:, 1] + 4) // 3 # majority = 2
domain = Domain([ContinuousVariable('i' + str(i)) for i in range(ncols)],
[DiscreteVariable('c' + str(i), values="0123")
for i in range(y.shape[1])])
t = Table(domain, x, y)
learn = DummyMulticlassLearner()
clf = learn(t)
clf.ret = Model.Probs
y2 = clf(x, ret=Model.Value)
self.assertEqual(y2.shape, y.shape)
y2, probs = clf(x, ret=Model.ValueProbs)
self.assertEqual(y2.shape, y.shape)
self.assertEqual(probs.shape, (nrows, 2, 4))
def test_probs_from_value(self):
nrows = 100
ncols = 5
x = np.random.randint(0, 2, (nrows, ncols))
# single class variable
y = np.random.randint(0, 2, (nrows, 1))
d = Domain([DiscreteVariable('v' + str(i),
values=[str(v)
for v in np.unique(x[:, i])])
for i in range(ncols)],
DiscreteVariable('c', values="12"))
t = Table(d, x, y)
learn = DummyLearner()
clf = learn(t)
clf.ret = Model.Value
y2 = clf(x, ret=Model.Probs)
self.assertEqual(y2.shape, (nrows, 2))
y2, probs = clf(x, ret=Model.ValueProbs)
self.assertEqual(y2.shape, (nrows, ))
self.assertEqual(probs.shape, (nrows, 2))
# multitarget
y = np.random.randint(1, 6, (nrows, 2))
y[:, 0] = y[:, 0] // 3 # majority = 1
y[:, 1] = (y[:, 1] + 4) // 3 - 1 # majority = 1
domain = Domain([ContinuousVariable('i' + str(i)) for i in range(ncols)],
[DiscreteVariable('c' + str(i), values="0123")
for i in range(y.shape[1])])
t = Table(domain, x, y)
learn = DummyMulticlassLearner()
clf = learn(t)
clf.ret = Model.Value
probs = clf(x, ret=Model.Probs)
self.assertEqual(probs.shape, (nrows, 2, 4))
y2, probs = clf(x, ret=Model.ValueProbs)
self.assertEqual(y2.shape, y.shape)
self.assertEqual(probs.shape, (nrows, 2, 4))
def test_incompatible_domain(self):
iris = Table("iris")
titanic = Table("titanic")
clf = DummyLearner()(iris)
with self.assertRaises(DomainTransformationError):
clf(titanic)
def test_result_shape(self):
"""
Test if the results shapes are correct
"""
iris = Table('iris')
for learner in all_learners():
if learner in LEARNERS_WITH_ARGUMENTS:
continue
# Skip learners that are incompatible with the dataset
if learner.incompatibility_reason(self, iris.domain):
continue
with self.subTest(learner.__name__):
# model trained on only one value (but three in the domain)
model = learner()(iris[0:100])
res = model(iris[0:50])
self.assertTupleEqual((50,), res.shape)
# probabilities must still be for three classes
res = model(iris[0:50], model.Probs)
self.assertTupleEqual((50, 3), res.shape)
# model trained on all classes and predicting with one class
try:
model = learner()(iris[0:100])
except TypeError:
# calibration, threshold learners are skipped
# they have some specifics regarding data
continue
res = model(iris[0:50], model.Probs)
self.assertTupleEqual((50, 3), res.shape)
def test_result_shape_numpy(self):
"""
Test whether results shapes are correct when testing on numpy data
"""
iris = Table('iris')
iris_bin = Table(
Domain(
iris.domain.attributes,
DiscreteVariable("iris", values=["a", "b"])
),
iris.X[:100], iris.Y[:100]
)
for learner in all_learners():
with self.subTest(learner.__name__):
args = []
if learner in (ThresholdLearner, CalibratedLearner):
args = [LogisticRegressionLearner()]
elif learner in LEARNERS_WITH_ARGUMENTS:
continue
data = iris_bin if learner is ThresholdLearner else iris
# Skip learners that are incompatible with the dataset
if learner.incompatibility_reason(self, data.domain):
continue
model = learner(*args)(data)
transformed_iris = model.data_to_model_domain(data)
res = model(transformed_iris.X[0:5])
self.assertTupleEqual((5,), res.shape)
res = model(transformed_iris.X[0:1], model.Probs)
self.assertTupleEqual(
(1, len(data.domain.class_var.values)), res.shape
)
def test_predict_proba(self):
data = Table("heart_disease")
for learner in all_learners():
with self.subTest(learner.__name__):
# Skip slow tests
if issubclass(learner, _RuleLearner):
continue
if learner in (ThresholdLearner, CalibratedLearner):
model = learner(LogisticRegressionLearner())(data)
elif learner in LEARNERS_WITH_ARGUMENTS:
# note that above two also require arguments, but we
# provide them
continue
else:
model = learner()(data)
probs = model.predict_proba(data)
shape = (len(data), len(data.domain.class_var.values))
self.assertEqual(probs.shape, shape)
self.assertTrue(np.all(np.sum(probs, axis=1) - 1 < 0.0001))
class ExpandProbabilitiesTest(unittest.TestCase):
def prepareTable(self, rows, attr, vars, class_var_domain):
attributes = ["Feature %i" % i for i in range(attr)]
classes = ["Class %i" % i for i in range(vars)]
attr_vars = [DiscreteVariable(name=a, values="01") for a in attributes]
class_vars = [
DiscreteVariable(name=c,
values=[str(v) for v in range(class_var_domain)])
for c in classes]
meta_vars = []
self.domain = Domain(attr_vars, class_vars, meta_vars)
self.x = np.random.randint(0, 2, (rows, attr))
def test_single_class(self):
rows = 10
attr = 3
vars = 1
class_var_domain = 20
self.prepareTable(rows, attr, vars, class_var_domain)
y = np.random.randint(2, 6, (rows, vars)) * 2
t = Table(self.domain, self.x, y)
learn = DummyLearner()
clf = learn(t)
z, p = clf(self.x, ret=Model.ValueProbs)
self.assertEqual(p.shape, (rows, class_var_domain))
self.assertTrue(np.all(z == np.argmax(p, axis=-1)))
def test_multi_class(self):
rows = 10
attr = 3
vars = 5
class_var_domain = 20
self.prepareTable(rows, attr, vars, class_var_domain)
y = np.random.randint(2, 6, (rows, vars)) * 2
t = Table(self.domain, self.x, y)
learn = DummyMulticlassLearner()
clf = learn(t)
z, p = clf(self.x, ret=Model.ValueProbs)
self.assertEqual(p.shape, (rows, vars, class_var_domain))
self.assertTrue(np.all(z == np.argmax(p, axis=-1)))
class SklTest(unittest.TestCase):
def test_multinomial(self):
table = Table("titanic")
lr = LogisticRegressionLearner()
assert isinstance(lr, Orange.classification.SklLearner)
cv = CrossValidation(k=2)
res = cv(table, [lr])
self.assertGreater(Orange.evaluation.AUC(res)[0], 0.7)
self.assertLess(Orange.evaluation.AUC(res)[0], 0.9)
def test_nan_columns(self):
data = Orange.data.Table("iris")
with data.unlocked():
data.X[:, (1, 3)] = np.nan
lr = LogisticRegressionLearner()
cv = CrossValidation(k=2, store_models=True)
res = cv(data, [lr])
self.assertEqual(len(res.models[0][0].domain.attributes), 2)
self.assertGreater(Orange.evaluation.CA(res)[0], 0.8)
def test_params(self):
learner = SklLearner()
self.assertIsInstance(learner.params, dict)
class ClassfierListInputTest(unittest.TestCase):
def test_discrete(self):
table = Table("titanic")
tree = Orange.classification.SklTreeLearner()(table)
strlist = [["crew", "adult", "male"],
["crew", "adult", None]]
for se in strlist: #individual examples
assert(all(tree(se) ==
tree(Orange.data.Table.from_list(table.domain, [se]))))
assert(all(tree(strlist) ==
tree(Orange.data.Table.from_list(table.domain, strlist))))
def test_continuous(self):
table = Table("iris")
tree = Orange.classification.SklTreeLearner()(table)
strlist = [[2, 3, 4, 5],
[1, 2, 3, 5]]
for se in strlist: #individual examples
assert(all(tree(se) ==
tree(Orange.data.Table.from_list(table.domain, [se]))))
assert(all(tree(strlist) ==
tree(Orange.data.Table.from_list(table.domain, strlist))))
class UnknownValuesInPrediction(unittest.TestCase):
def test_unknown(self):
table = Table("iris")
tree = LogisticRegressionLearner()(table)
tree([1, 2, None, 4])
def test_missing_class(self):
table = Table(test_filename("datasets/adult_sample_missing"))
for learner in all_learners():
if learner in LEARNERS_WITH_ARGUMENTS:
continue
# Skip slow tests
if isinstance(learner, _RuleLearner):
continue
with self.subTest(learner.__name__):
learner = learner()
if isinstance(learner, NuSVMLearner):
learner.params["nu"] = 0.01
model = learner(table)
model(table)
class LearnerAccessibility(unittest.TestCase):
def setUp(self):
# Convergence warnings are irrelevant for these tests
warnings.filterwarnings("ignore", ".*", ConvergenceWarning)
def test_all_learners_accessible_in_Orange_classification_namespace(self):
for learner in all_learners():
if not hasattr(Orange.classification, learner.__name__):
self.fail("%s is not visible in Orange.classification"
" namespace" % learner.__name__)
def test_all_models_work_after_unpickling(self):
datasets = [Table('iris'), Table('titanic')]
for learner in list(all_learners()):
if learner in LEARNERS_WITH_ARGUMENTS:
continue
# Skip slow tests
if issubclass(learner, _RuleLearner):
continue
with self.subTest(learner.__name__):
learner = learner()
for ds in datasets:
# Skip learners that are incompatible with the dataset
if learner.incompatibility_reason(ds.domain):
continue
model = learner(ds)
s = pickle.dumps(model, 0)
model2 = pickle.loads(s)
np.testing.assert_almost_equal(
Table.from_table(model.domain, ds).X,
Table.from_table(model2.domain, ds).X)
np.testing.assert_almost_equal(
model(ds), model2(ds),
err_msg='%s does not return same values when unpickled %s'
% (learner.__class__.__name__, ds.name))
def test_all_models_work_after_unpickling_pca(self):
datasets = [Table('iris'), Table('titanic')]
for learner in list(all_learners()):
if learner in LEARNERS_WITH_ARGUMENTS:
continue
# Skip slow tests
if issubclass(learner, _RuleLearner):
continue
# temporary exclusion of the ScoringSheet learner
if learner.__name__ == "ScoringSheetLearner":
continue
with self.subTest(learner.__name__):
learner = learner()
for ds in datasets:
pca_ds = Orange.projection.PCA()(ds)(ds)
# Skip learners that are incompatible with the dataset
if learner.incompatibility_reason(pca_ds.domain):
continue
model = learner(pca_ds)
s = pickle.dumps(model, 0)
model2 = pickle.loads(s)
np.testing.assert_almost_equal(
Table.from_table(model.domain, ds).X,
Table.from_table(model2.domain, ds).X)
np.testing.assert_almost_equal(
model(ds), model2(ds),
err_msg='%s does not return same values when unpickled %s'
% (learner.__class__.__name__, ds.name))
def test_adequacy_all_learners(self):
for learner in all_learners():
if learner in LEARNERS_WITH_ARGUMENTS:
continue
with self.subTest(learner.__name__):
learner = learner()
table = Table("housing")
self.assertRaises(ValueError, learner, table)
def test_adequacy_all_learners_multiclass(self):
for learner in all_learners():
if learner in LEARNERS_WITH_ARGUMENTS:
continue
with self.subTest(learner.__name__):
learner = learner()
table = Table(test_filename("datasets/test8.tab"))
self.assertRaises(ValueError, learner, table)
class LearnerReprs(unittest.TestCase):
def test_reprs(self):
lr = LogisticRegressionLearner(tol=0.0002)
m = MajorityLearner()
nb = NaiveBayesLearner()
rf = RandomForestLearner(bootstrap=False, n_jobs=3)
st = SimpleTreeLearner(seed=1, bootstrap=True)
sm = SoftmaxRegressionLearner()
svm = SVMLearner(shrinking=False)
lsvm = LinearSVMLearner(tol=0.022, dual=False)
nsvm = NuSVMLearner(tol=0.003, cache_size=190)
osvm = OneClassSVMLearner(degree=2)
tl = TreeLearner(max_depth=3, min_samples_split=1)
knn = KNNLearner(n_neighbors=4)
el = EllipticEnvelopeLearner(store_precision=False)
srf = SimpleRandomForestLearner(n_estimators=20)
learners = [lr, m, nb, rf, st, sm, svm,
lsvm, nsvm, osvm, tl, knn, el, srf]
for l in learners:
repr_str = repr(l)
new_l = eval(repr_str)
self.assertEqual(repr(new_l), repr_str)
if __name__ == "__main__":
unittest.main()
|