File: test_evaluation_scoring.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (469 lines) | stat: -rw-r--r-- 18,377 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring

import unittest

import numpy as np

from Orange.data import DiscreteVariable, ContinuousVariable, Domain
from Orange.data import Table
from Orange.classification import LogisticRegressionLearner, SklTreeLearner, \
    NaiveBayesLearner, MajorityLearner, RandomForestLearner
from Orange.evaluation import AUC, CA, Results, Recall, \
    Precision, TestOnTrainingData, scoring, LogLoss, F1, CrossValidation, \
    MatthewsCorrCoefficient, TestOnTestData
from Orange.evaluation.scoring import Specificity
from Orange.preprocess import discretize, Discretize
from Orange.regression import MeanLearner
from Orange.tests import test_filename


class TestScoreMetaType(unittest.TestCase):
    class BaseScore(metaclass=scoring.ScoreMetaType):
        pass

    class Score1(BaseScore, abstract=True):
        class_types = (DiscreteVariable,)

    class Score2(Score1):
        pass

    class Score3(Score2):
        name = "foo"

    class Score4(Score2):
        pass

    class Score5(BaseScore):
        class_types = (DiscreteVariable, ContinuousVariable)

    def test_registry(self):
        """All non-abstract classes appear in the registry"""
        self.assertEqual(
            self.BaseScore.registry,
            {"Score2": self.Score2, "Score3": self.Score3,
             "Score4": self.Score4, "Score5": self.Score5})

    def test_names(self):
        """Attribute `name` defaults to class and is not inherited"""
        self.assertEqual(self.Score2.name, "Score2")
        self.assertEqual(self.Score3.name, "foo")
        self.assertEqual(self.Score4.name, "Score4")
        self.assertEqual(self.Score5.name, "Score5")


class TestPrecision(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.iris = Table('iris')
        cls.score = Precision()

    def test_precision_iris(self):
        learner = LogisticRegressionLearner(preprocessors=[])
        res = TestOnTrainingData()(self.iris, [learner])
        self.assertGreater(self.score(res, average='weighted')[0], 0.95)
        self.assertGreater(self.score(res, target=1)[0], 0.95)
        self.assertGreater(self.score(res, target=1, average=None)[0], 0.95)
        self.assertGreater(self.score(res, target=1, average='weighted')[0], 0.95)
        self.assertGreater(self.score(res, target=0, average=None)[0], 0.99)
        self.assertGreater(self.score(res, target=2, average=None)[0], 0.94)

    def test_precision_multiclass(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01234")),
            actual=[0, 4, 4, 1, 2, 0, 1, 2, 3, 2])
        results.predicted = np.array([[0, 4, 4, 1, 2, 0, 1, 2, 3, 2],
                                      [0, 1, 4, 1, 1, 0, 0, 2, 3, 1]])
        res = self.score(results, average='weighted')
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 0.78333, 5)

        for target, prob in ((0, 2 / 3),
                             (1, 1 / 4),
                             (2, 1 / 1),
                             (3, 1 / 1),
                             (4, 1 / 1)):
            res = self.score(results, target=target, average=None)
            self.assertEqual(res[0], 1.)
            self.assertEqual(res[1], prob)

    def test_precision_binary(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01")),
            actual=[0, 1, 1, 1, 0, 0, 1, 0, 0, 1])
        results.predicted = np.array([[0, 1, 1, 1, 0, 0, 1, 0, 0, 1],
                                      [0, 1, 1, 1, 0, 0, 1, 1, 1, 0]])
        res = self.score(results)
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 4 / 6)
        res_target = self.score(results, target=1)
        self.assertEqual(res[0], res_target[0])
        self.assertEqual(res[1], res_target[1])
        res_target = self.score(results, target=0)
        self.assertEqual(res_target[0], 1.)
        self.assertAlmostEqual(res_target[1], 3 / 4)
        res_target = self.score(results, average='macro')
        self.assertEqual(res_target[0], 1.)
        self.assertAlmostEqual(res_target[1], (4 / 6 + 3 / 4) / 2)


class TestRecall(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.iris = Table('iris')
        cls.score = Recall()

    def test_recall_iris(self):
        learner = LogisticRegressionLearner(preprocessors=[])
        res = TestOnTrainingData()(self.iris, [learner])
        self.assertGreater(self.score(res, average='weighted')[0], 0.96)
        self.assertGreater(self.score(res, target=1)[0], 0.9)
        self.assertGreater(self.score(res, target=1, average=None)[0], 0.9)
        self.assertGreater(self.score(res, target=1, average='weighted')[0], 0.9)
        self.assertGreater(self.score(res, target=0, average=None)[0], 0.99)
        self.assertGreater(self.score(res, target=2, average=None)[0], 0.97)

    def test_recall_multiclass(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01234")),
            actual=[0, 4, 4, 1, 2, 0, 1, 2, 3, 2])
        results.predicted = np.array([[0, 4, 4, 1, 2, 0, 1, 2, 3, 2],
                                      [0, 1, 4, 1, 1, 0, 0, 2, 3, 1]])
        res = self.score(results, average='weighted')
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 0.6)

        for target, prob in ((0, 2 / 2),
                             (1, 1 / 2),
                             (2, 1 / 3),
                             (3, 1 / 1),
                             (4, 1 / 2)):
            res = self.score(results, target=target)
            self.assertEqual(res[0], 1.)
            self.assertEqual(res[1], prob)

    def test_recall_binary(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01")),
            actual=[0, 1, 1, 1, 0, 0, 1, 0, 0, 1])
        results.predicted = np.array([[0, 1, 1, 1, 0, 0, 1, 0, 0, 1],
                                      [0, 1, 1, 1, 0, 0, 1, 1, 1, 0]])
        res = self.score(results)
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 4 / 5)
        res_target = self.score(results, target=1)
        self.assertEqual(res[0], res_target[0])
        self.assertEqual(res[1], res_target[1])
        res_target = self.score(results, target=0)
        self.assertEqual(res_target[0], 1.)
        self.assertAlmostEqual(res_target[1], 3 / 5)
        res_target = self.score(results, average='macro')
        self.assertEqual(res_target[0], 1.)
        self.assertAlmostEqual(res_target[1], (4 / 5 + 3 / 5) / 2)


class TestF1(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.iris = Table('iris')
        cls.score = F1()

    def test_recall_iris(self):
        learner = LogisticRegressionLearner(preprocessors=[])
        res = TestOnTrainingData()(self.iris, [learner])
        self.assertGreater(self.score(res, average='weighted')[0], 0.95)
        self.assertGreater(self.score(res, target=1)[0], 0.95)
        self.assertGreater(self.score(res, target=1, average=None)[0], 0.95)
        self.assertGreater(self.score(res, target=1, average='weighted')[0], 0.95)
        self.assertGreater(self.score(res, target=0, average=None)[0], 0.99)
        self.assertGreater(self.score(res, target=2, average=None)[0], 0.95)

    def test_F1_multiclass(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01234")),
            actual=[0, 4, 4, 1, 2, 0, 1, 2, 3, 2])
        results.predicted = np.array([[0, 4, 4, 1, 2, 0, 1, 2, 3, 2],
                                      [0, 1, 4, 1, 1, 0, 0, 2, 3, 1]])
        res = self.score(results, average='weighted')
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 0.61)

        for target, prob in ((0, 4 / 5),
                             (1, 1 / 3),
                             (2, 1 / 2),
                             (3, 1.),
                             (4, 2 / 3)):
            res = self.score(results, target=target)
            self.assertEqual(res[0], 1.)
            self.assertEqual(res[1], prob)

    def test_F1_binary(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01")),
            actual=[0, 1, 1, 1, 0, 0, 1, 0, 0, 1])
        results.predicted = np.array([[0, 1, 1, 1, 0, 0, 1, 0, 0, 1],
                                      [0, 1, 1, 1, 0, 0, 1, 1, 1, 1]])
        res = self.score(results)
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 5 / 6)
        res_target = self.score(results, target=1)
        self.assertEqual(res[0], res_target[0])
        self.assertEqual(res[1], res_target[1])
        res_target = self.score(results, target=0)
        self.assertEqual(res_target[0], 1.)
        self.assertAlmostEqual(res_target[1], 3 / 4)


class TestCA(unittest.TestCase):
    def test_init(self):
        res = Results(nmethods=2, nrows=100)
        res.actual[:50] = 0
        res.actual[50:] = 1
        res.predicted = np.vstack((res.actual, res.actual))
        np.testing.assert_almost_equal(CA(res), [1, 1])

        res.predicted[0][0] = 1
        np.testing.assert_almost_equal(CA(res), [0.99, 1])

        res.predicted[1] = 1 - res.predicted[1]
        np.testing.assert_almost_equal(CA(res), [0.99, 0])

    def test_call(self):
        res = Results(nmethods=2, nrows=100)
        res.actual[:50] = 0
        res.actual[50:] = 1
        res.predicted = np.vstack((res.actual, res.actual))
        ca = CA()
        np.testing.assert_almost_equal(ca(res), [1, 1])

        res.predicted[0][0] = 1
        np.testing.assert_almost_equal(ca(res), [0.99, 1])

        res.predicted[1] = 1 - res.predicted[1]
        np.testing.assert_almost_equal(ca(res), [0.99, 0])

    def test_bayes(self):
        x = np.random.randint(2, size=(100, 5))
        col = np.random.randint(5)
        y = x[:, col].reshape(100, 1).copy()
        t = Table.from_numpy(None, x, y)
        t = Discretize(
            method=discretize.EqualWidth(n=3))(t)
        nb = NaiveBayesLearner()
        res = TestOnTrainingData()(t, [nb])
        np.testing.assert_almost_equal(CA(res), [1])

        t = Table.from_numpy(None, t.X, t.Y.copy())
        with t.unlocked():
            t.Y[-20:] = 1 - t.Y[-20:]
        res = TestOnTrainingData()(t, [nb])
        self.assertGreaterEqual(CA(res)[0], 0.75)
        self.assertLess(CA(res)[0], 1)


class TestAUC(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.iris = Table('iris')

    def test_tree(self):
        tree = SklTreeLearner()
        res = CrossValidation(k=2)(self.iris, [tree])
        self.assertGreater(AUC(res)[0], 0.8)
        self.assertLess(AUC(res)[0], 1.)

    def test_constant_prob(self):
        maj = MajorityLearner()
        res = TestOnTrainingData()(self.iris, [maj])
        self.assertEqual(AUC(res)[0], 0.5)

    def test_multiclass_auc_multi_learners(self):
        learners = [LogisticRegressionLearner(),
                    MajorityLearner()]
        res = CrossValidation(k=10)(self.iris, learners)
        self.assertGreater(AUC(res)[0], 0.6)
        self.assertLess(AUC(res)[1], 0.6)
        self.assertGreater(AUC(res)[1], 0.4)

    def test_auc_on_multiclass_data_returns_1d_array(self):
        titanic = Table('titanic')[:100]
        lenses = Table(test_filename('datasets/lenses.tab'))[:100]
        majority = MajorityLearner()

        results = TestOnTrainingData()(lenses, [majority])
        auc = AUC(results)
        self.assertEqual(auc.ndim, 1)

        results = TestOnTrainingData()(titanic, [majority])
        auc = AUC(results)
        self.assertEqual(auc.ndim, 1)

    def test_auc_scores(self):
        actual = np.array([0., 0., 0., 1., 1., 1.])
        for predicted, auc in (([1., 1., 1., 0., 0., 0.], 0.),      # All wrong
                               ([0., 0., 0., 0., 0., 0.], 0.5),     # All with same probability
                               ([0., 0., 0., 1., 1., 1.], 1.),      # All correct
                               ([0., 0., 0., 1., 1., 0.], 5 / 6),   # One wrong
                               ([1., 1., 0., 1., 1., 1.], 4 / 6),   # Two wrong
                               ([1., 1., 0., 1., 1., 0.], 3 / 6)):  # Three wrong
            self.assertAlmostEqual(self.compute_auc(actual, predicted), auc)

    def compute_auc(self, actual, predicted):
        predicted = np.array(predicted).reshape(1, -1)
        probabilities = np.zeros((1, predicted.shape[1], 2))
        probabilities[0, :, 1] = predicted[0]
        probabilities[0, :, 0] = 1 - predicted[0]
        results = Results(
            nmethods=1, domain=Domain([], [DiscreteVariable("x", values='01')]),
            actual=actual, predicted=predicted)
        results.probabilities = probabilities
        return AUC(results)[0]


class TestLogLoss(unittest.TestCase):
    def test_log_loss(self):
        data = Table('iris')
        majority = MajorityLearner()
        results = TestOnTrainingData()(data, [majority])
        ll = LogLoss(results)
        self.assertAlmostEqual(ll[0], - np.log(1 / 3))

    def _log_loss(self, act, prob):
        ll = np.dot(np.log(prob[:, 0]), act[:, 0]) + \
             np.dot(np.log(prob[:, 1]), act[:, 1])
        return - ll / len(act)

    def test_log_loss_calc(self):
        data = Table('titanic')
        learner = LogisticRegressionLearner()
        results = TestOnTrainingData()(data, [learner])

        actual = np.copy(results.actual)
        actual = actual.reshape(actual.shape[0], 1)
        actual = np.hstack((1 - actual, actual))
        probab = results.probabilities[0]

        ll_calc = self._log_loss(actual, probab)
        ll_orange = LogLoss(results)
        self.assertAlmostEqual(ll_calc, ll_orange[0])


class TestMatthewsCorrCoefficient(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.heart = Table("heart_disease")
        cls.iris = Table("iris")
        cls.housing = Table("housing")
        cls.scorer = MatthewsCorrCoefficient()

    def test_mcc_binary(self):
        rf = RandomForestLearner(random_state=0)
        results = TestOnTrainingData()(self.heart, [rf])
        mcc = self.scorer(results)
        self.assertGreater(mcc, 0.95)

    def test_mcc_multiclass(self):
        rf = RandomForestLearner(random_state=0)
        results = TestOnTrainingData()(self.iris, [rf])
        mcc = self.scorer(results)
        self.assertGreater(mcc, 0.95)

    def test_mcc_random(self):
        majority = MajorityLearner()
        results = TestOnTrainingData()(self.iris, [majority])
        mcc = self.scorer(results)
        self.assertEqual(mcc, 0)

    def test_mcc_neg(self):
        rf = RandomForestLearner(random_state=0)
        test_data = self.heart.copy()
        mask = test_data.Y == 0
        test_data.Y[mask] = 1
        test_data.Y[~mask] = 0
        results = TestOnTestData()(self.heart, test_data, [rf])
        mcc = self.scorer(results)
        self.assertLess(mcc, -0.95)

    def test_mcc_continuous(self):
        majority = MeanLearner()
        results = TestOnTrainingData()(self.housing, [majority])
        self.assertRaises(ValueError, self.scorer, results)


class TestSpecificity(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.iris = Table('iris')
        cls.score = Specificity()

    def test_specificity_iris(self):
        learner = LogisticRegressionLearner(preprocessors=[])
        res = TestOnTrainingData()(self.iris, [learner])
        self.assertGreaterEqual(
            self.score(res, average='weighted')[0], (1 + 0.99 + 0.95) / 3
        )
        self.assertGreaterEqual(
            self.score(res, target=1)[0], 99 / (99 + 1)
        )
        self.assertGreaterEqual(
            self.score(res, target=1, average=None)[0],  99 / (99 + 1)
        )
        self.assertGreaterEqual(
            self.score(res, target=1, average='weighted')[0], 99 / (99 + 1)
        )
        self.assertGreaterEqual(
            self.score(res, target=0, average=None)[0], 1
        )
        self.assertGreaterEqual(
            self.score(res, target=2, average=None)[0], 95 / (95 + 5)
        )

    def test_precision_multiclass(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01234")),
            actual=[0, 4, 4, 1, 2, 0, 1, 2, 3, 2])
        results.predicted = np.array([[0, 4, 4, 1, 2, 0, 1, 2, 3, 2],
                                      [0, 1, 4, 1, 1, 0, 0, 2, 3, 1]])
        res = self.score(results, average='weighted')
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 0.9, 5)

        for target, prob in ((0, 7 / 8),
                             (1, 5 / 8),
                             (2, 1),
                             (3, 1),
                             (4, 1)):
            res = self.score(results, target=target, average=None)
            self.assertEqual(res[0], 1.)
            self.assertEqual(res[1], prob)

    def test_precision_binary(self):
        results = Results(
            domain=Domain([], DiscreteVariable(name="y", values="01")),
            actual=[0, 1, 1, 1, 0, 0, 1, 0, 0, 1])
        results.predicted = np.array([[0, 1, 1, 1, 0, 0, 1, 0, 0, 1],
                                      [0, 1, 1, 1, 0, 0, 1, 1, 1, 0]])
        res = self.score(results)
        self.assertEqual(res[0], 1.)
        self.assertAlmostEqual(res[1], 3 / 5)
        res_target = self.score(results, target=1)
        self.assertEqual(res[0], res_target[0])
        self.assertEqual(res[1], res_target[1])
        res_target = self.score(results, target=0)
        self.assertEqual(res_target[0], 1.)
        self.assertAlmostEqual(res_target[1], 4 / 5)

    def test_errors(self):
        learner = LogisticRegressionLearner(preprocessors=[])
        res = TestOnTrainingData()(self.iris, [learner])

        # binary average does not work for number of classes different than 2
        self.assertRaises(ValueError, self.score, res, average="binary")

        # implemented only weighted and binary averaging
        self.assertRaises(ValueError, self.score, res, average="abc")


if __name__ == '__main__':
    unittest.main()
    del TestScoreMetaType