File: test_normalize.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (173 lines) | stat: -rw-r--r-- 7,511 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring

import unittest

import numpy as np
import scipy.sparse as sp

from Orange.data import Table, Domain, ContinuousVariable
from Orange.preprocess import Normalize
from Orange.tests import test_filename


class TestNormalizer(unittest.TestCase):
    def compare_tables(self, dataNorm, solution):
        for i in range(len(dataNorm)):
            for j in range(len(dataNorm[i])):
                if type(solution[i][j]) == float:
                    self.assertAlmostEqual(dataNorm[i, j], solution[i][j], places=3)
                else:
                    self.assertEqual(dataNorm[i, j], solution[i][j])
        self.assertEqual([attr.name for attr in dataNorm.domain.attributes],
                         ["c1", "c2", "d1", "d2", "n1", "n2", "c3", "d3", "c4"])
        self.assertEqual([attr.name for attr in dataNorm.domain.class_vars],
                         ["cl1", "cl2"])
    @classmethod
    def setUpClass(cls):
        cls.data = Table(test_filename("datasets/test5.tab"))

    def test_normalize_default(self):
        normalizer = Normalize()
        data_norm = normalizer(self.data)
        solution = [[0., 1.225, 'a', 'a', '?', 'a', 1.225, 'a', '?', 'a', 2],
                    [0., -1.225, 'a', 'b', -1., '?', 0., 'b', '?', 'b', 0],
                    [0., 0., 'a', 'b', 1., 'b', -1.225, 'c', '?', 'c', 1]]
        self.compare_tables(data_norm, solution)

    def test_normalize_transform_by_sd(self):
        normalizer = Normalize(zero_based=False,
                               norm_type=Normalize.NormalizeBySD,
                               transform_class=False)
        data_norm = normalizer(self.data)
        solution = [[0., 1.225, 'a', 'a', '?', 'a', 1.225, 'a', '?', 'a', 2],
                    [0., -1.225, 'a', 'b', -1., '?', 0., 'b', '?', 'b', 0],
                    [0., 0., 'a', 'b', 1., 'b', -1.225, 'c', '?', 'c', 1]]
        self.compare_tables(data_norm, solution)

    def test_normalize_transform_class(self):
        normalizer = Normalize(zero_based=True,
                               norm_type=Normalize.NormalizeBySD,
                               transform_class=True)
        data_norm = normalizer(self.data)
        solution = [[0., 1.225, 'a', 'a', '?', 'a', 1.225, 'a', '?', 'a', 1.225],
                    [0., -1.225, 'a', 'b', -1., '?', 0., 'b', '?', 'b', -1.225],
                    [0., 0., 'a', 'b', 1., 'b', -1.225, 'c', '?', 'c', 0.]]
        self.compare_tables(data_norm, solution)

    def test_normalize_transform_by_span(self):
        normalizer = Normalize(zero_based=False,
                               norm_type=Normalize.NormalizeBySpan,
                               transform_class=False)
        data_norm = normalizer(self.data)
        solution = [[0., 1., 'a', 'a', '?', 'a', 1., 'a', '?', 'a', 2.],
                    [0., -1., 'a', 'b', -1., '?', 0., 'b', '?', 'b', 0.],
                    [0., 0., 'a', 'b', 1., 'b', -1., 'c', '?', 'c', 1.]]
        self.compare_tables(data_norm, solution)

    def test_normalize_transform_by_span_zero(self):
        normalizer = Normalize(zero_based=True,
                               norm_type=Normalize.NormalizeBySpan,
                               transform_class=False)
        data_norm = normalizer(self.data)
        solution = [[0., 1., 'a', 'a', '?', 'a', 1., 'a', '?', 'a', 2.],
                    [0., 0., 'a', 'b', 0., '?', 0.5, 'b', '?', 'b', 0.],
                    [0., 0.5, 'a', 'b', 1., 'b', 0., 'c', '?', 'c', 1.]]
        self.compare_tables(data_norm, solution)

    def test_normalize_transform_by_span_class(self):
        normalizer = Normalize(zero_based=False,
                               norm_type=Normalize.NormalizeBySpan,
                               transform_class=True)
        data_norm = normalizer(self.data)
        solution = [[0., 1., 'a', 'a', '?', 'a', 1., 'a', '?', 'a', 1.],
                    [0., -1., 'a', 'b', -1., '?', 0., 'b', '?', 'b', -1.],
                    [0., 0., 'a', 'b', 1., 'b', -1., 'c', '?', 'c', 0.]]
        self.compare_tables(data_norm, solution)

    def test_normalize_transform_by_span_zero_class(self):
        normalizer = Normalize(zero_based=True,
                               norm_type=Normalize.NormalizeBySpan,
                               transform_class=True)
        data_norm = normalizer(self.data)
        solution = [[0., 1., 'a', 'a', '?', 'a', 1., 'a', '?', 'a', 1.],
                    [0., 0., 'a', 'b', 0., '?', 0.5, 'b', '?', 'b', 0.],
                    [0., 0.5, 'a', 'b', 1., 'b', 0., 'c', '?', 'c', 0.5]]
        self.compare_tables(data_norm, solution)

    def test_normalize_sparse(self):
        domain = Domain([ContinuousVariable(str(i)) for i in range(3)])
        # pylint: disable=bad-whitespace
        X = np.array([
            [0, -1, -2],
            [0,  1,  2],
        ])
        data = Table.from_numpy(domain, X).to_sparse()

        # pylint: disable=bad-whitespace
        solution = sp.csr_matrix(np.array([
            [0, -1, -1],
            [0,  1,  1],
        ]))

        normalizer = Normalize()
        normalized = normalizer(data)
        self.assertEqual((normalized.X != solution).nnz, 0)

        # raise error for non-zero offsets
        with data.unlocked():
            data.X = sp.csr_matrix(np.array([
                [0, 0, 0],
                [0, 1, 3],
                [0, 2, 4],
            ]))
        with self.assertRaises(ValueError):
            normalizer(data)

    def test_skip_normalization(self):
        data = self.data.copy()
        for attr in data.domain.attributes:
            attr.attributes = {'skip-normalization': True}

        normalizer = Normalize()
        normalized = normalizer(data)
        np.testing.assert_array_equal(data.X, normalized.X)

    def test_datetime_normalization(self):
        data = Table(test_filename("datasets/test10.tab"))
        normalizer = Normalize(zero_based=False,
                               norm_type=Normalize.NormalizeBySD,
                               transform_class=False)
        data_norm = normalizer(data)
        solution = [[0., '1995-01-21', 'a', 'a', '?', 'a', 1.225, 'a', '?', 'a', 2],
                    [0., '2003-07-23', 'a', 'b', -1., '?', 0., 'b', '?', 'b', 0],
                    [0., '1967-03-12', 'a', 'b', 1., 'b', -1.225, 'c', '?', 'c', 1]]
        self.compare_tables(data_norm, solution)

    def test_retain_vars_attributes(self):
        data = Table("iris")
        attributes = {"foo": "foo", "baz": 1}
        data.domain.attributes[0].attributes = attributes
        self.assertDictEqual(
            Normalize(norm_type=Normalize.NormalizeBySD)(
                data).domain.attributes[0].attributes, attributes)
        self.assertDictEqual(
            Normalize(norm_type=Normalize.NormalizeBySpan)(
                data).domain.attributes[0].attributes, attributes)

    def test_number_of_decimals(self):
        foo = ContinuousVariable("Foo", number_of_decimals=0)
        data = Table.from_list(Domain((foo,)), [[1], [2], [3]])

        normalized = Normalize()(data)
        norm_foo: ContinuousVariable = normalized.domain.attributes[0]

        self.assertGreater(norm_foo.number_of_decimals, 0)

        for val1, val2 in zip(normalized[:, "Foo"],
                              ["-1.225", "0.0", "1.225"]):
            self.assertEqual(str(val1[0]), val2)


if __name__ == "__main__":
    unittest.main()