1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring
import pickle
import unittest
import numpy as np
from Orange.data import Table
from Orange.preprocess import Continuize, Normalize
from Orange.projection import PCA, SparsePCA, IncrementalPCA, TruncatedSVD
from Orange.tests import test_filename
class TestPCA(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.ionosphere = Table(test_filename('datasets/ionosphere.tab'))
cls.iris = Table('iris')
cls.zoo = Table('zoo')
def test_pca(self):
data = self.ionosphere
self.__pca_test_helper(data, n_com=3, min_xpl_var=0.5)
self.__pca_test_helper(data, n_com=10, min_xpl_var=0.7)
self.__pca_test_helper(data, n_com=32, min_xpl_var=1)
def __pca_test_helper(self, data, n_com, min_xpl_var):
pca = PCA(n_components=n_com)
pca_model = pca(data)
pca_xpl_var = np.sum(pca_model.explained_variance_ratio_)
self.assertGreaterEqual(pca_xpl_var + 1e-6, min_xpl_var)
self.assertEqual(n_com, pca_model.n_components)
self.assertEqual((n_com, data.X.shape[1]), pca_model.components_.shape)
proj = np.dot(data.X - pca_model.mean_, pca_model.components_.T)
np.testing.assert_almost_equal(pca_model(data).X, proj)
def test_sparse_pca(self):
data = self.ionosphere[:100]
self.__sparse_pca_test_helper(data, n_com=3, max_err=1500)
self.__sparse_pca_test_helper(data, n_com=10, max_err=1000)
self.__sparse_pca_test_helper(data, n_com=32, max_err=500)
def __sparse_pca_test_helper(self, data, n_com, max_err):
sparse_pca = SparsePCA(n_components=n_com, ridge_alpha=0.001, random_state=0)
pca_model = sparse_pca(data)
self.assertEqual(n_com, pca_model.n_components)
self.assertEqual((n_com, data.X.shape[1]), pca_model.components_.shape)
self.assertLessEqual(pca_model.error_[-1], max_err)
def test_randomized_pca(self):
data = self.ionosphere
self.__rnd_pca_test_helper(data, n_com=3, min_xpl_var=0.5)
self.__rnd_pca_test_helper(data, n_com=10, min_xpl_var=0.7)
self.__rnd_pca_test_helper(data, n_com=32, min_xpl_var=0.98)
def __rnd_pca_test_helper(self, data, n_com, min_xpl_var):
rnd_pca = PCA(n_components=n_com, svd_solver='randomized')
pca_model = rnd_pca(data)
pca_xpl_var = np.sum(pca_model.explained_variance_ratio_)
self.assertGreaterEqual(pca_xpl_var, min_xpl_var)
self.assertEqual(n_com, pca_model.n_components)
self.assertEqual((n_com, data.X.shape[1]), pca_model.components_.shape)
proj = np.dot(data.X - pca_model.mean_, pca_model.components_.T)
np.testing.assert_almost_equal(pca_model(data).X, proj)
def test_incremental_pca(self):
data = self.ionosphere
self.__ipca_test_helper(data, n_com=3, min_xpl_var=0.49)
self.__ipca_test_helper(data, n_com=32, min_xpl_var=1)
def __ipca_test_helper(self, data, n_com, min_xpl_var):
pca = IncrementalPCA(n_components=n_com)
pca_model = pca(data[::2])
pca_xpl_var = np.sum(pca_model.explained_variance_ratio_)
self.assertGreaterEqual(pca_xpl_var + 1e-6, min_xpl_var)
self.assertEqual(n_com, pca_model.n_components)
self.assertEqual((n_com, data.X.shape[1]), pca_model.components_.shape)
proj = np.dot(data.X - pca_model.mean_, pca_model.components_.T)
np.testing.assert_almost_equal(pca_model(data).X, proj)
pc1_ipca = pca_model.components_[0]
self.assertAlmostEqual(np.linalg.norm(pc1_ipca), 1)
pc1_pca = PCA(n_components=n_com)(data).components_[0]
self.assertAlmostEqual(np.linalg.norm(pc1_pca), 1)
self.assertNotAlmostEqual(abs(pc1_ipca.dot(pc1_pca)), 1, 2)
pc1_ipca = pca_model.partial_fit(data[1::2]).components_[0]
self.assertAlmostEqual(abs(pc1_ipca.dot(pc1_pca)), 1, 4)
def test_truncated_svd(self):
data = self.ionosphere
self.__truncated_svd_test_helper(data, n_components=3, min_variance=0.5)
self.__truncated_svd_test_helper(data, n_components=10, min_variance=0.7)
self.__truncated_svd_test_helper(data, n_components=31, min_variance=0.99)
def __truncated_svd_test_helper(self, data, n_components, min_variance):
model = TruncatedSVD(n_components=n_components)(data)
svd_variance = np.sum(model.explained_variance_ratio_)
self.assertGreaterEqual(svd_variance + 1e-6, min_variance)
self.assertEqual(n_components, model.n_components)
self.assertEqual((n_components, data.X.shape[1]), model.components_.shape)
proj = np.dot(data.X, model.components_.T)
np.testing.assert_almost_equal(model(data).X, proj)
def test_compute_value(self):
iris = self.iris
pca = PCA(n_components=2)(iris)
pca_iris = pca(iris)
pca_iris2 = iris.transform(pca_iris.domain)
np.testing.assert_almost_equal(pca_iris.X, pca_iris2.X)
np.testing.assert_equal(pca_iris.Y, pca_iris2.Y)
pca_iris3 = pickle.loads(pickle.dumps(pca_iris))
np.testing.assert_almost_equal(pca_iris.X, pca_iris3.X)
np.testing.assert_equal(pca_iris.Y, pca_iris3.Y)
def test_transformed_domain_does_not_pickle_data(self):
iris = self.iris
pca = PCA(n_components=2)(iris)
pca_iris = pca(iris)
pca_iris2 = iris.transform(pca_iris.domain)
pca_iris2 = pickle.loads(pickle.dumps(pca_iris))
self.assertIsNone(pca_iris2.domain[0].compute_value.transformed)
def test_chain(self):
zoo_c = Continuize()(self.zoo)
pca = PCA(n_components=3)(zoo_c)(self.zoo)
pca2 = PCA(n_components=3)(zoo_c)(zoo_c)
pp = [Continuize()]
pca3 = PCA(n_components=3, preprocessors=pp)(self.zoo)(self.zoo)
np.testing.assert_almost_equal(pca.X, pca2.X)
np.testing.assert_almost_equal(pca.X, pca3.X)
def test_PCA_scorer(self):
data = self.iris
pca = PCA(preprocessors=[Normalize()])
pca.component = 1
scores = pca.score_data(data)
self.assertEqual(scores.shape[1], len(data.domain.attributes))
self.assertEqual(['petal length', 'petal width'],
sorted([data.domain.attributes[i].name
for i in np.argsort(scores[0])[-2:]]))
self.assertEqual([round(s, 4) for s in scores[0]],
[0.5224, 0.2634, 0.5813, 0.5656])
def test_PCA_scorer_component(self):
pca = PCA()
for i in range(1, len(self.zoo.domain.attributes) + 1):
pca.component = i
scores = pca.score_data(self.zoo)
self.assertEqual(scores.shape,
(pca.component, len(self.zoo.domain.attributes)))
def test_PCA_scorer_all_components(self):
n_attr = len(self.iris.domain.attributes)
pca = PCA()
scores = pca.score_data(self.iris)
self.assertEqual(scores.shape, (n_attr, n_attr))
def test_max_components(self):
d = np.random.RandomState(0).rand(20, 20)
data = Table.from_numpy(None, d)
pca = PCA()(data)
self.assertEqual(len(pca.explained_variance_ratio_), 20)
pca = PCA(n_components=10)(data)
self.assertEqual(len(pca.explained_variance_ratio_), 10)
def test_eq_hash(self):
d = np.random.RandomState(0).rand(20, 20)
data = Table.from_numpy(None, d)
p1 = PCA()(data)
p2 = PCA()(data)
np.testing.assert_equal(p1(data).X, p2(data).X)
# even though results are the same, these transformations
# are different because the PCA object is
self.assertNotEqual(p1, p2)
self.assertNotEqual(p1.domain, p2.domain)
self.assertNotEqual(hash(p1), hash(p2))
self.assertNotEqual(hash(p1.domain), hash(p2.domain))
def test_eq_hash_fake_same_projection(self):
d = np.random.RandomState(0).rand(20, 20)
data = Table.from_numpy(None, d)
p1 = PCA()(data)
p2 = PCA()(data)
# copy projection
p2.domain[0].compute_value.compute_shared.projection = \
p1.domain[0].compute_value.compute_shared.projection
p2.proj = p1.proj
# reset hash caches because object were hacked
# pylint: disable=protected-access
p1.domain._hash = None
p2.domain._hash = None
p1.domain[0].compute_value.compute_shared._hash = None
p2.domain[0].compute_value.compute_shared._hash = None
self.assertEqual(p1, p2)
self.assertEqual(p1.domain, p2.domain)
self.assertEqual(hash(p1), hash(p2))
self.assertEqual(hash(p1.domain), hash(p2.domain))
|