File: test_preprocess.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (245 lines) | stat: -rw-r--r-- 8,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring

import pickle
import unittest
from unittest.mock import Mock

import numpy as np
from scipy.sparse import csr_matrix

from Orange.data import Table, Domain, ContinuousVariable
from Orange.preprocess import EntropyMDL, DoNotImpute, Default, Average, \
    SelectRandomFeatures, EqualFreq, RemoveNaNColumns, DropInstances, \
    EqualWidth, SelectBestFeatures, RemoveNaNRows, Preprocess, Scale, \
    Randomize, Continuize, Discretize, Impute, SklImpute, Normalize, \
    ProjectCUR, ProjectPCA, RemoveConstant, AdaptiveNormalize, RemoveSparse


class TestPreprocess(unittest.TestCase):
    def test_read_data_calls_reader(self):
        class MockPreprocessor(Preprocess):
            __init__ = Mock(return_value=None)
            __call__ = Mock()
            @classmethod
            def reset(cls):
                cls.__init__.reset_mock()
                cls.__call__.reset_mock()

        table = Mock(Table)
        MockPreprocessor(1, 2, a=3)(table)
        MockPreprocessor.__init__.assert_called_with(1, 2, a=3)
        MockPreprocessor.__call__.assert_called_with(table)
        MockPreprocessor.reset()

        MockPreprocessor(1, 2, a=3)
        MockPreprocessor.__init__.assert_called_with(1, 2, a=3)
        self.assertEqual(MockPreprocessor.__call__.call_count, 0)

        MockPreprocessor(a=3)
        MockPreprocessor.__init__.assert_called_with(a=3)
        self.assertEqual(MockPreprocessor.__call__.call_count, 0)

        MockPreprocessor()
        MockPreprocessor.__init__.assert_called_with()
        self.assertEqual(MockPreprocessor.__call__.call_count, 0)


class TestRemoveConstant(unittest.TestCase):
    def test_remove_columns(self):
        X = np.random.rand(6, 5)
        X[:, (1, 3)] = 5
        X[3, 1] = np.nan
        X[1, 1] = np.nan
        X[:, 4] = np.nan
        data = Table.from_numpy(None, X)
        d = RemoveConstant()(data)
        self.assertEqual(len(d.domain.attributes), 2)

        pp_rc = RemoveConstant()
        d = pp_rc(data)
        self.assertEqual(len(d.domain.attributes), 2)

    def test_nothing_to_remove(self):
        data = Table("iris")
        d = RemoveConstant()(data)
        self.assertEqual(len(d.domain.attributes), 4)


class TestRemoveNaNRows(unittest.TestCase):
    def test_remove_row(self):
        data = Table("iris")
        with data.unlocked():
            data.X[0, 0] = np.nan
        pp_data = RemoveNaNRows()(data)
        self.assertEqual(len(pp_data), len(data) - 1)
        self.assertFalse(np.isnan(pp_data.X).any())


class TestRemoveNaNColumns(unittest.TestCase):
    def test_column_filtering(self):
        data = Table("iris")
        with data.unlocked():
            data.X[:, (1, 3)] = np.nan

        new_data = RemoveNaNColumns()(data)
        self.assertEqual(len(new_data.domain.attributes),
                         len(data.domain.attributes) - 2)

        data = Table("iris")
        with data.unlocked():
            data.X[0, 0] = np.nan
        new_data = RemoveNaNColumns()(data)
        self.assertEqual(len(new_data.domain.attributes),
                         len(data.domain.attributes))

    def test_column_filtering_sparse(self):
        data = Table("iris")
        with data.unlocked():
            data.X = csr_matrix(data.X)

        new_data = RemoveNaNColumns()(data)
        self.assertEqual(data, new_data)


class TestScaling(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.table = Table.from_numpy(None, [[1, 2, 3],
                                            [2, 3, 4],
                                            [3, 4, 5],
                                            [4, 5, 6]])

    def test_scaling_mean_span(self):
        table = Scale(center=Scale.Mean, scale=Scale.Span)(self.table)
        np.testing.assert_almost_equal(np.mean(table, 0), 0)
        np.testing.assert_almost_equal(np.ptp(table, 0), 1)

    def test_scaling_median_stddev(self):
        table = Scale(center=Scale.Median, scale=Scale.Std)(self.table)
        np.testing.assert_almost_equal(np.std(table, 0), 1)
        # NB: This test just covers. The following fails. You figure it out.
        # np.testing.assert_almost_equal(np.median(table, 0), 0)


class TestReprs(unittest.TestCase):
    def test_reprs(self):
        preprocs = [Continuize, Discretize, Impute, SklImpute, Normalize,
                    Randomize, ProjectPCA, ProjectCUR, Scale,
                    EqualFreq, EqualWidth, EntropyMDL, SelectBestFeatures,
                    SelectRandomFeatures, RemoveNaNColumns, DoNotImpute, DropInstances,
                    Average, Default, RemoveSparse]

        for preproc in preprocs:
            repr_str = repr(preproc())
            new_preproc = eval(repr_str)
            self.assertEqual(repr(new_preproc), repr_str)


class TestEnumPickling(unittest.TestCase):
    def test_continuize_pickling(self):
        c = Continuize(multinomial_treatment=Continuize.FirstAsBase)
        s = pickle.dumps(c, -1)
        c1 = pickle.loads(s)
        self.assertIs(c1.multinomial_treatment, c.multinomial_treatment)

    def test_randomize_pickling(self):
        c = Randomize(rand_type=Randomize.RandomizeMetas)
        s = pickle.dumps(c, -1)
        c1 = pickle.loads(s)
        self.assertIs(c1.rand_type, c.rand_type)

    def test_scaling_pickling(self):
        c = Scale(center=Scale.Median, scale=Scale.Span)
        s = pickle.dumps(c, -1)
        c1 = pickle.loads(s)
        self.assertIs(c1.center, c.center)
        self.assertIs(c1.scale, c.scale)


class TestAdaptiveNormalize(unittest.TestCase):
    """
    Checks if output for sparse data is the same as for Scale
    preprocessor. For dense data the output should match that
     of Normalize preprocessor.
    """

    def setUp(self):
        self.data = Table("iris")

    def test_dense_pps(self):
        true_out = Normalize()(self.data)
        out = AdaptiveNormalize()(self.data)
        np.testing.assert_array_equal(out, true_out)

    def test_sparse_pps(self):
        with self.data.unlocked():
            self.data.X = csr_matrix(self.data.X)
        out = AdaptiveNormalize()(self.data)
        true_out = Scale(center=Scale.NoCentering, scale=Scale.Span)(self.data)
        np.testing.assert_array_equal(out, true_out)
        self.data = self.data.X.toarray()


class TestRemoveSparse(unittest.TestCase):

    def setUp(self):
        domain = Domain([ContinuousVariable('a'), ContinuousVariable('b')])
        self.data = Table.from_numpy(domain, np.zeros((3, 2)))

    def test_0_dense(self):
        with self.data.unlocked():
            self.data[1:, 1] = 7
            true_out = self.data[:, 1].copy()
        with true_out.unlocked(true_out.X):
            true_out.X = true_out.X.reshape(-1, 1)
        out = RemoveSparse(0.5, True)(self.data)
        np.testing.assert_array_equal(out, true_out)

        out = RemoveSparse(2, True)(self.data)
        np.testing.assert_array_equal(out, true_out)

    def test_0_sparse(self):
        with self.data.unlocked():
            self.data[1:, 1] = 7
            true_out = self.data[:, 1].copy()
            self.data.X = csr_matrix(self.data.X)
        with true_out.unlocked(true_out.X):
            true_out.X = csr_matrix(true_out.X)
        out = RemoveSparse(0.5, True)(self.data).X
        np.testing.assert_array_equal(out, true_out)

        out = RemoveSparse(1, True)(self.data).X
        np.testing.assert_array_equal(out, true_out)

    def test_nan_dense(self):
        with self.data.unlocked():
            self.data[1:, 1] = np.nan
            self.data.X[:, 0] = 7
            true_out = self.data[:, 0].copy()
        with true_out.unlocked(true_out.X):
            true_out.X = true_out.X.reshape(-1, 1)
        out = RemoveSparse(0.5, False)(self.data)
        np.testing.assert_array_equal(out, true_out)

        out = RemoveSparse(1, False)(self.data)
        np.testing.assert_array_equal(out, true_out)

    def test_nan_sparse(self):
        with self.data.unlocked():
            self.data[1:, 1] = np.nan
            self.data.X[:, 0] = 7
            true_out = self.data[:, 0].copy()
            with true_out.unlocked(true_out.X):
                true_out.X = true_out.X.reshape(-1, 1)
                true_out.X = csr_matrix(true_out.X)
            self.data.X = csr_matrix(self.data.X)
        out = RemoveSparse(0.5, False)(self.data)
        np.testing.assert_array_equal(out, true_out)

        out = RemoveSparse(1, False)(self.data)
        np.testing.assert_array_equal(out, true_out)


if __name__ == '__main__':
    unittest.main()