File: test_randomize.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (135 lines) | stat: -rw-r--r-- 5,641 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring

import unittest

import numpy as np
import scipy.sparse as sp
from Orange.data import Table
from Orange.preprocess import Randomize


class TestRandomizer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        np.random.seed(42)
        cls.zoo = Table("zoo")

    def test_randomize_default(self):
        data = self.zoo
        randomizer = Randomize()
        data_rand = randomizer(data)
        self.assertTrue((data.X == data_rand.X).all())
        self.assertTrue((data.metas == data_rand.metas).all())
        self.assertTrue((data.Y != data_rand.Y).any())
        self.assertTrue((np.sort(data.Y, axis=0) == np.sort(
            data_rand.Y, axis=0)).all())

    def test_randomize_classes(self):
        data = self.zoo
        randomizer = Randomize(rand_type=Randomize.RandomizeClasses)
        data_rand = randomizer(data)
        self.assertTrue((data.X == data_rand.X).all())
        self.assertTrue((data.metas == data_rand.metas).all())
        self.assertTrue((data.Y != data_rand.Y).any())
        self.assertTrue((np.sort(data.Y, axis=0) == np.sort(
            data_rand.Y, axis=0)).all())

    def test_randomize_attributes(self):
        data = self.zoo
        randomizer = Randomize(rand_type=Randomize.RandomizeAttributes)
        data_rand = randomizer(data)
        self.assertTrue((data.Y == data_rand.Y).all())
        self.assertTrue((data.metas == data_rand.metas).all())
        self.assertTrue((data.X != data_rand.X).any())
        self.assertTrue((np.sort(data.X, axis=0) == np.sort(
            data_rand.X, axis=0)).all())

    def test_randomize_metas(self):
        data = self.zoo
        randomizer = Randomize(rand_type=Randomize.RandomizeMetas)
        data_rand = randomizer(data)
        self.assertTrue((data.X == data_rand.X).all())
        self.assertTrue((data.Y == data_rand.Y).all())
        self.assertTrue((data.metas != data_rand.metas).any())
        self.assertTrue((np.sort(data.metas, axis=0) == np.sort(
            data_rand.metas, axis=0)).all())

    def test_randomize_all(self):
        data = self.zoo
        rand_type = Randomize.RandomizeClasses | Randomize.RandomizeAttributes \
                    | Randomize.RandomizeMetas
        randomizer = Randomize(rand_type=rand_type)
        data_rand = randomizer(data)
        self.assertTrue((data.Y != data_rand.Y).any())
        self.assertTrue((np.sort(data.Y, axis=0) == np.sort(
            data_rand.Y, axis=0)).all())
        self.assertTrue((data.X != data_rand.X).any())
        self.assertTrue((np.sort(data.X, axis=0) == np.sort(
            data_rand.X, axis=0)).all())
        self.assertTrue((data.metas != data_rand.metas).any())
        self.assertTrue((np.sort(data.metas, axis=0) == np.sort(
            data_rand.metas, axis=0)).all())

    def test_randomize_keep_original_data(self):
        data_orig = self.zoo
        data = Table("zoo")
        _ = Randomize(rand_type=Randomize.RandomizeClasses)(data)
        _ = Randomize(rand_type=Randomize.RandomizeAttributes)(data)
        _ = Randomize(rand_type=Randomize.RandomizeMetas)(data)
        self.assertTrue((data.X == data_orig.X).all())
        self.assertTrue((data.metas == data_orig.metas).all())
        self.assertTrue((data.Y == data_orig.Y).all())

    def test_randomize_replicate(self):
        randomizer1 = Randomize(rand_seed=1)
        rand_data11 = randomizer1(self.zoo)
        rand_data12 = randomizer1(self.zoo)
        randomizer2 = Randomize(rand_seed=1)
        rand_data2 = randomizer2(self.zoo)
        np.testing.assert_array_equal(rand_data11.Y, rand_data12.Y)
        np.testing.assert_array_equal(rand_data11.Y, rand_data2.Y)

    def test_randomize(self):
        x = np.arange(10000, dtype=int).reshape((100, 100))
        randomized = Randomize().randomize(x.copy())

        # Do not mix data between columns
        np.testing.assert_equal(randomized % 100, x % 100)

        # Do not shuffle entire rows:
        # lexical sorting of rows should not equal the original table
        randomized = np.array(sorted(list(map(list, randomized))), dtype=int)
        self.assertFalse(np.all(randomized == x))

    def test_randomize_sparse(self):
        x = np.array([[0, 0, 3, 0],
                      [1, 0, 2, 0],
                      [4, 5, 6, 7]])
        randomize = Randomize().randomize

        randomized = randomize(sp.csr_matrix(x), rand_state=1)
        randomized = randomized.toarray()
        # Data is shuffled (rand_seed=1 should always shuffle it)
        self.assertFalse(np.all(x == randomized))
        # Data remains within a column
        self.assertTrue(all(sorted(x[:, i]) == sorted(randomized[:, i])
                            for i in range(4)))
        # Do not shuffle entire rows
        randomized = np.array(sorted(list(map(list, randomized))), dtype=int)
        self.assertFalse(np.all(randomized == x))

        # Test that shuffle is not sparse structure dependent
        x = np.array([[1, 2, 3, 4],
                      [0, 0, 0, 0],
                      [0, 0, 0, 0],
                      [0, 0, 0, 0]])

        randomized = randomize(sp.csr_matrix(x), rand_state=0x393f)
        self.assertFalse(np.all(x == randomized.todense()))

        # Do not just assign some indices. I.e. make sure that the shuffling is
        # dependent in the input's non-zero indices.
        r_once = randomize(sp.csr_matrix(x), rand_state=1)
        r_twice = randomize(r_once.copy(), rand_state=1)
        self.assertFalse(np.all(r_once.todense() == r_twice.todense()))