File: test_remove.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (175 lines) | stat: -rw-r--r-- 8,041 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring

import unittest

import numpy as np

from Orange.data import Table
from Orange.preprocess import Remove, discretize
from Orange.tests import test_filename


class TestRemover(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        cls.test8 = Table(test_filename('datasets/test8.tab'))

    def test_remove(self):
        data = Table("iris")[:5]
        attr_flags = sum([Remove.SortValues,
                          Remove.RemoveConstant,
                          Remove.RemoveUnusedValues])
        class_flags = sum([Remove.SortValues,
                           Remove.RemoveConstant,
                           Remove.RemoveUnusedValues])
        remover = Remove(attr_flags, class_flags)
        new_data = remover(data)
        attr_res, class_res = remover.attr_results, remover.class_results

        self.assertEqual([a.name for a in new_data.domain.attributes],
                         ["sepal length", "sepal width", "petal length"])
        self.assertEqual([c.name for c in new_data.domain.class_vars], [])
        self.assertDictEqual(attr_res,
                             {'removed': 1, 'reduced': 0, 'sorted': 0})
        self.assertDictEqual(class_res,
                             {'removed': 1, 'reduced': 0, 'sorted': 0})

    def test_remove_constant_attr(self):
        data = self.test8
        remover = Remove(Remove.RemoveConstant)
        new_data = remover(data)
        attr_res, class_res = remover.attr_results, remover.class_results

        np.testing.assert_equal(new_data.X, np.hstack((data[:, 1],
                                                       data[:, 3])))
        np.testing.assert_equal(new_data.Y, data.Y)
        self.assertEqual([a.name for a in new_data.domain.attributes],
                         ["c0", "d0"])
        self.assertEqual([c.name for c in new_data.domain.class_vars],
                         ["cl1", "cl0", "cl3", "cl4"])
        self.assertEqual([a.values for a in new_data.domain.attributes
                          if a.is_discrete], [('4', '6')])
        self.assertEqual([c.values for c in new_data.domain.class_vars
                          if c.is_discrete], [('1', '2', '3'), ('2', )])
        self.assertDictEqual(attr_res,
                             {'removed': 2, 'reduced': 0, 'sorted': 0})
        self.assertDictEqual(class_res,
                             {'removed': 0, 'reduced': 0, 'sorted': 0})

    def test_remove_constant_class(self):
        data = self.test8
        remover = Remove(class_flags=Remove.RemoveConstant)
        new_data = remover(data)
        attr_res, class_res = remover.attr_results, remover.class_results

        np.testing.assert_equal(new_data.X, data.X)
        np.testing.assert_equal(new_data.Y, np.hstack((data[:, 4],
                                                       data[:, 5])))
        self.assertEqual([a.name for a in new_data.domain.attributes],
                         ["c1", "c0", "d1", "d0"])
        self.assertEqual([c.name for c in new_data.domain.class_vars],
                         ["cl1", "cl0"])
        self.assertEqual([a.values for a in new_data.domain.attributes
                          if a.is_discrete], [('1', ), ('4', '6')])
        self.assertEqual([c.values for c in new_data.domain.class_vars
                          if c.is_discrete], [('1', '2', '3')])
        self.assertDictEqual(attr_res,
                             {'removed': 0, 'reduced': 0, 'sorted': 0})
        self.assertDictEqual(class_res,
                             {'removed': 2, 'reduced': 0, 'sorted': 0})

    def test_remove_unused_values_attr(self):
        data = self.test8
        data = data[1:]
        remover = Remove(Remove.RemoveUnusedValues)
        new_data = remover(data)
        attr_res, class_res = remover.attr_results, remover.class_results

        np.testing.assert_equal(new_data.X, data.X)
        np.testing.assert_equal(new_data.Y, data.Y)
        self.assertEqual([a.name for a in new_data.domain.attributes],
                         ["c1", "c0", "d1", "d0"])
        self.assertEqual([c.name for c in new_data.domain.class_vars],
                         ["cl1", "cl0", "cl3", "cl4"])
        self.assertEqual([a.values for a in new_data.domain.attributes
                          if a.is_discrete], [('1', ), ('4', )])
        self.assertEqual([c.values for c in new_data.domain.class_vars
                          if c.is_discrete], [('1', '2', '3'), ('2', )])
        self.assertDictEqual(attr_res,
                             {'removed': 0, 'reduced': 1, 'sorted': 0})
        self.assertDictEqual(class_res,
                             {'removed': 0, 'reduced': 0, 'sorted': 0})

    def test_remove_unused_values_class(self):
        data = self.test8
        data = data[:2]
        remover = Remove(class_flags=Remove.RemoveUnusedValues)
        new_data = remover(data)
        attr_res, class_res = remover.attr_results, remover.class_results

        for i in range(len(data)):
            for j in range(len(data[i])):
                self.assertEqual(new_data[i, j], data[i, j])

        self.assertEqual([a.name for a in new_data.domain.attributes],
                         ["c1", "c0", "d1", "d0"])
        self.assertEqual([c.name for c in new_data.domain.class_vars],
                         ["cl1", "cl0", "cl3", "cl4"])
        self.assertEqual([a.values for a in new_data.domain.attributes
                          if a.is_discrete], [('1', ), ('4', '6')])
        self.assertEqual([c.values for c in new_data.domain.class_vars
                          if c.is_discrete], [('2', '3'), ('2', )])
        self.assertDictEqual(attr_res,
                             {'removed': 0, 'reduced': 0, 'sorted': 0})
        self.assertDictEqual(class_res,
                             {'removed': 0, 'reduced': 1, 'sorted': 0})

    def test_remove_unused_values_metas(self):
        data = Table(test_filename("datasets/test9.tab"))
        subset = data[:4]
        res = Remove(attr_flags=Remove.RemoveUnusedValues,
                     meta_flags=Remove.RemoveUnusedValues)(subset)

        self.assertEqual(res.domain["b"].values, res.domain["c"].values)
        self.assertEqual(res.domain["d"].values, ("1", "2"))
        self.assertEqual(res.domain["f"].values, ('1', 'hey'))

    def test_remove_unused_values_attr_sparse(self):
        data = self.test8
        data = data[1:].to_sparse()
        remover = Remove(Remove.RemoveUnusedValues)
        new_data = remover(data)
        attr_res = remover.attr_results

        self.assertEqual((new_data.X != data.X).nnz, 0)
        self.assertEqual([a.values for a in new_data.domain.attributes
                          if a.is_discrete], [('1', ), ('4', )])
        self.assertEqual([c.values for c in new_data.domain.class_vars
                          if c.is_discrete], [('1', '2', '3'), ('2', )])
        self.assertDictEqual(attr_res,
                             {'removed': 0, 'reduced': 1, 'sorted': 0})

    def test_remove_mapping(self):
        data = Table("iris")
        x = np.vstack((data.X[:50], data.X[100:]))
        y = np.hstack((data.Y[:50], data.Y[100:]))
        data = Table.from_numpy(data.domain, x, y)
        remover = Remove(class_flags=Remove.RemoveUnusedValues)
        cleaned = remover(data)
        np.testing.assert_array_equal(cleaned.Y[:50], 0)
        np.testing.assert_array_equal(cleaned.Y[50:], 1)

    def test_remove_mapping_after_compute_value(self):
        housing = Table("housing")
        method = discretize.EqualFreq(n=3)
        discretizer = discretize.DomainDiscretizer(
            discretize_class=True, method=method)
        domain = discretizer(housing)
        data = housing.transform(domain)
        val12 = np.nonzero(data.Y > 0)[0]
        data = data[val12]
        remover = Remove(class_flags=Remove.RemoveUnusedValues)
        cleaned = remover(data)
        np.testing.assert_equal(cleaned.Y, data.Y - 1)