1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring
import unittest
import numpy as np
from Orange.classification import (CN2Learner, CN2UnorderedLearner,
CN2SDLearner, CN2SDUnorderedLearner)
from Orange.classification.rules import (_RuleLearner, _RuleClassifier,
RuleHunter, Rule, EntropyEvaluator,
LaplaceAccuracyEvaluator,
WeightedRelativeAccuracyEvaluator,
argmaxrnd, hash_dist)
from Orange.data import Table
from Orange.data.filter import HasClass
from Orange.preprocess import Impute
class TestRuleInduction(unittest.TestCase):
def setUp(self):
self.titanic = Table('titanic')
self.iris = Table('iris')
def test_base_RuleLearner(self):
"""
Base rule induction learner test. To pass the test, all base
components are checked, including preprocessors, top-level
control procedure elements (covering algorithm, rule stopping,
data stopping), and bottom-level search procedure controller
(rule finder).
Every learner that extends _RuleLearner should override the fit
method. It should at this point not yet be available (exception
raised).
"""
base_rule_learner = _RuleLearner()
# test the number of default preprocessors
self.assertEqual(len(list(base_rule_learner.active_preprocessors)), 3)
# preprocessor types
preprocessor_types = [type(x) for x in base_rule_learner.active_preprocessors]
self.assertIn(HasClass, preprocessor_types)
self.assertIn(Impute, preprocessor_types)
# test find_rules
base_rule_learner.domain = self.iris.domain
base_rule_learner.find_rules(self.iris.X, self.iris.Y.astype(int),
None, None, [], self.iris.domain)
# test top-level control procedure elements
self.assertTrue(hasattr(base_rule_learner, "data_stopping"))
self.assertTrue(hasattr(base_rule_learner, "cover_and_remove"))
self.assertTrue(hasattr(base_rule_learner, "rule_stopping"))
# test exclusive covering algorithm
new_rule = Rule()
new_rule.covered_examples = np.array([True, False, True], dtype=bool)
new_rule.target_class = None
X, Y, W = base_rule_learner.exclusive_cover_and_remove(
self.iris.X[:3], self.iris.Y[:3], None, new_rule)
self.assertTrue(len(X) == len(Y) == 1)
# test rule finder
self.assertTrue(hasattr(base_rule_learner, "rule_finder"))
rule_finder = base_rule_learner.rule_finder
self.assertIsInstance(rule_finder, RuleHunter)
self.assertTrue(hasattr(rule_finder, "search_algorithm"))
self.assertTrue(hasattr(rule_finder, "search_strategy"))
self.assertTrue(hasattr(rule_finder, "quality_evaluator"))
self.assertTrue(hasattr(rule_finder, "complexity_evaluator"))
self.assertTrue(hasattr(rule_finder, "general_validator"))
self.assertTrue(hasattr(rule_finder, "significance_validator"))
def testBaseRuleClassifier(self):
"""
Every classifier that extends _RuleClassifier should override
the predict method. It should at this point not yet be available
(exception raised).
"""
base_rule_classifier = _RuleClassifier(domain=self.iris.domain)
self.assertRaises(NotImplementedError, base_rule_classifier.predict,
self.iris.X)
def testCN2Learner(self):
learner = CN2Learner()
# classic CN2 removes covered learning instances
self.assertTrue(learner.cover_and_remove ==
_RuleLearner.exclusive_cover_and_remove)
# Entropy measure is used to evaluate found hypotheses
self.assertTrue(type(learner.rule_finder.quality_evaluator) ==
EntropyEvaluator)
# test that the learning requirements are relaxed by default
self.assertTrue(learner.rule_finder.general_validator.max_rule_length >= 5)
self.assertTrue(learner.rule_finder.general_validator.min_covered_examples == 1)
classifier = learner(self.titanic)
self.assertEqual(classifier.original_domain, self.titanic.domain)
# all learning instances are covered when limitations do not
# impose rule length or minimum number of covered examples
num_covered = np.sum([rule.curr_class_dist
for rule in classifier.rule_list[:-1]])
self.assertEqual(num_covered, self.titanic.X.shape[0])
# prediction (matrix-wise, all testing instances at once)
# test that returned result is of correct size
predictions = classifier.predict(self.titanic.X)
self.assertEqual(len(predictions), self.titanic.X.shape[0])
def testCN2PrefersEquality(self):
learner = CN2Learner()
classifier = learner(self.titanic)
operators = [s.op for rule in classifier.rule_list for s in rule.selectors]
self.assertEqual(operators.count('!='), 4)
self.assertEqual(operators.count('=='), 23)
def testCN2RestrictEquality(self):
learner = CN2Learner(restrict_equality=True)
classifier = learner(self.titanic)
operators = [s.op for rule in classifier.rule_list for s in rule.selectors]
self.assertEqual(operators.count('!='), 0)
def testUnorderedCN2Learner(self):
learner = CN2UnorderedLearner()
# unordered CN2 removes covered learning instances
self.assertTrue(learner.cover_and_remove ==
_RuleLearner.exclusive_cover_and_remove)
# Laplace accuracy measure is used to evaluate found hypotheses
self.assertTrue(type(learner.rule_finder.quality_evaluator) ==
LaplaceAccuracyEvaluator)
# test that the learning requirements are relaxed by default
self.assertTrue(learner.rule_finder.general_validator.max_rule_length >= 5)
self.assertTrue(learner.rule_finder.general_validator.min_covered_examples == 1)
# by default, continuous variables are
# constrained by the learning algorithm
self.assertTrue(learner.rule_finder.search_strategy.constrain_continuous)
classifier = learner(self.iris)
self.assertEqual(classifier.original_domain, self.iris.domain)
# all learning instances should be covered given the parameters
for curr_class in range(len(self.iris.domain.class_var.values)):
target_covered = (np.sum([rule.curr_class_dist[rule.target_class]
for rule in classifier.rule_list
if rule.target_class == curr_class]))
self.assertEqual(target_covered, np.sum(self.iris.Y == curr_class))
# a custom example, test setting several parameters
learner = CN2UnorderedLearner()
learner.rule_finder.search_algorithm.beam_width = 5
learner.rule_finder.search_strategy.constrain_continuous = True
learner.rule_finder.general_validator.min_covered_examples = 10
learner.rule_finder.general_validator.max_rule_length = 2
learner.rule_finder.significance_validator.parent_alpha = 0.9
learner.rule_finder.significance_validator.default_alpha = 0.8
classifier = learner(self.iris)
# only the TRUE rule may exceed imposed limitations
for rule in classifier.rule_list[:-1]:
self.assertLessEqual(len(rule.selectors), 2)
self.assertGreaterEqual(np.max(rule.curr_class_dist), 10)
# prediction (matrix-wise, all testing instances at once)
# test that returned result is of correct size
predictions = classifier.predict(self.iris.X)
self.assertEqual(len(predictions), self.iris.X.shape[0])
def testOrderedCN2SDLearner(self):
learner = CN2SDLearner()
# Weighted relative accuracy measure is
# used to evaluate found hypotheses
self.assertTrue(type(learner.rule_finder.quality_evaluator) ==
WeightedRelativeAccuracyEvaluator)
# gamma parameter must be initialized and defined
self.assertTrue(hasattr(learner, "gamma"))
classifier = learner(self.titanic)
self.assertEqual(classifier.original_domain, self.titanic.domain)
# prediction (matrix-wise, all testing instances at once)
# test that returned result is of correct size
predictions = classifier.predict(self.titanic.X)
self.assertEqual(len(predictions), self.titanic.X.shape[0])
def testUnorderedCN2SDLearner(self):
learner = CN2SDUnorderedLearner()
learner.rule_finder.significance_validator.parent_alpha = 0.2
learner.rule_finder.significance_validator.default_alpha = 0.8
self.assertTrue(type(learner.rule_finder.quality_evaluator) ==
WeightedRelativeAccuracyEvaluator)
# gamma parameter must be initialized and defined
self.assertTrue(hasattr(learner, "gamma"))
classifier = learner(self.titanic)
self.assertEqual(classifier.original_domain, self.titanic.domain)
# prediction (matrix-wise, all testing instances at once)
# test that returned result is of correct size
predictions = classifier.predict(self.titanic.X)
self.assertEqual(len(predictions), self.titanic.X.shape[0])
def testArgMaxRnd(self):
temp = np.array([np.nan, 1, 2.3, 37, 37, 37, 1])
self.assertEqual(argmaxrnd(temp, hash_dist(np.array([3, 4]))), 5)
self.assertRaises(ValueError, argmaxrnd, np.ones((1, 1, 1)))
if __name__ == '__main__':
unittest.main()
|