1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring
import unittest
import pickle
import numpy as np
import Orange
from Orange.classification import SimpleTreeLearner as SimpleTreeCls
from Orange.regression import SimpleTreeLearner as SimpleTreeReg
from Orange.data import ContinuousVariable, Domain, DiscreteVariable, Table
from Orange.tests import test_filename
class TestSimpleTreeLearner(unittest.TestCase):
def setUp(self):
self.N = 50
self.Mi = 3
self.Mf = 3
self.cls_vals = 3
np.random.seed(42)
Xi = np.random.randint(0, 2, (self.N, self.Mi)).astype(np.float64)
Xf = np.random.normal(0, 1, (self.N, self.Mf)).astype(np.float64)
X = np.hstack((Xi, Xf))
y_cls = np.random.randint(0, self.cls_vals, self.N).astype(np.float64)
y_reg = np.random.normal(0, 1, self.N).astype(np.float64)
X[np.random.random(X.shape) < 0.1] = np.nan
y_cls[np.random.random(self.N) < 0.1] = np.nan
y_reg[np.random.random(self.N) < 0.1] = np.nan
di = [Orange.data.domain.DiscreteVariable(
'd{}'.format(i), ["0", "1"]) for i in range(self.Mi)]
df = [Orange.data.domain.ContinuousVariable(
'c{}'.format(i)) for i in range(self.Mf)]
dcls = Orange.data.domain.DiscreteVariable('yc', ["0", "1", "2"])
dreg = Orange.data.domain.ContinuousVariable('yr')
domain_cls = Orange.data.domain.Domain(di + df, dcls)
domain_reg = Orange.data.domain.Domain(di + df, dreg)
self.data_cls = Orange.data.Table.from_numpy(domain_cls, X, y_cls)
self.data_reg = Orange.data.Table.from_numpy(domain_reg, X, y_reg)
def test_SimpleTree_classification(self):
lrn = SimpleTreeCls()
clf = lrn(self.data_cls)
p = clf(self.data_cls, clf.Probs)
self.assertEqual(p.shape, (self.N, self.cls_vals))
self.assertAlmostEqual(p.min(), 0)
self.assertAlmostEqual(p.max(), 1)
np.testing.assert_almost_equal(p.sum(axis=1), np.ones(self.N))
def test_SimpleTree_classification_pickle(self):
lrn = SimpleTreeCls()
clf = lrn(self.data_cls)
p = clf(self.data_cls, clf.Probs)
clf_ = pickle.loads(pickle.dumps(clf))
p_ = clf_(self.data_cls, clf.Probs)
np.testing.assert_almost_equal(p, p_)
def test_SimpleTree_classification_tree(self):
lrn = SimpleTreeCls(min_instances=6, max_majority=0.7)
clf = lrn(self.data_cls)
self.assertEqual(
clf.dumps_tree(clf.node),
'{ 1 4 -1.17364 { 1 5 0.37564 { 2 0.00 0.00 0.56 } '
'{ 2 0.00 3.00 1.14 } } { 1 4 -0.41863 { 1 5 0.14592 '
'{ 2 3.54 0.54 0.70 } { 2 2.46 0.46 2.47 } } { 1 4 0.24404 '
'{ 1 4 0.00654 { 1 3 -0.15750 { 2 1.00 0.00 0.45 } '
'{ 2 1.00 3.00 0.48 } } { 2 1.00 5.00 0.70 } } { 1 5 0.32635 '
'{ 2 0.52 2.52 4.21 } { 2 2.48 3.48 1.30 } } } } }')
def test_SimpleTree_regression(self):
lrn = SimpleTreeReg()
clf = lrn(self.data_reg)
p = clf(self.data_reg)
self.assertEqual(p.shape, (self.N,))
def test_SimpleTree_regression_pickle(self):
pass
def test_SimpleTree_regression_tree(self):
lrn = SimpleTreeReg(min_instances=5)
clf = lrn(self.data_reg)
self.assertEqual(
clf.dumps_tree(clf.node),
'{ 0 2 { 1 4 0.13895 { 1 4 -0.32607 { 2 4.60993 1.71141 } '
'{ 2 4.96454 3.56122 } } { 2 7.09220 -4.32343 } } { 1 4 -0.35941 '
'{ 0 0 { 1 5 -0.20027 { 2 3.54255 0.95095 } { 2 5.50000 -5.56049 } '
'} { 2 7.62411 2.03615 } } { 1 5 0.40797 { 1 3 0.83459 '
'{ 2 3.71094 0.27028 } { 2 5.18490 3.70920 } } { 2 5.77083 5.93398 '
'} } } }')
def test_SimpleTree_single_instance(self):
data = Orange.data.Table('iris')
lrn = SimpleTreeCls()
clf = lrn(data)
for ins in data[::20]:
clf(ins)
val, prob = clf(ins, clf.ValueProbs)
self.assertEqual(sum(prob), 1)
def test_SimpleTree_to_string_classification(self):
domain = Domain([DiscreteVariable(name='d1', values='ef'),
ContinuousVariable(name='c1')],
DiscreteVariable(name='cls', values='abc'))
data = Table.from_list(domain, [['e', 1, 'a'],
['e', 1, 'b'],
['e', 2, 'b'],
['f', 2, "c"],
["e", 3, "a"],
['f', 3, "c"]])
lrn = SimpleTreeCls(min_instances=1)
clf = lrn(data)
clf_str = clf.to_string()
res = '\n' \
'd1 ([2.0, 2.0, 2.0])\n' \
': e\n' \
' c1 ([2.0, 2.0, 0.0])\n' \
' : <=2.5\n' \
' c1 ([1.0, 2.0, 0.0])\n' \
' : <=1.5 --> a ([1.0, 1.0, 0.0])\n' \
' : >1.5 --> b ([0.0, 1.0, 0.0])\n' \
' : >2.5 --> a ([1.0, 0.0, 0.0])\n' \
': f --> c ([0.0, 0.0, 2.0])'
self.assertEqual(clf_str, res)
def test_SimpleTree_to_string_regression(self):
domain = Domain([DiscreteVariable(name='d1', values='ef'),
ContinuousVariable(name='c1')],
ContinuousVariable(name='cls'))
data = Table.from_list(domain, [['e', 1, 10],
['e', 1, 20],
['e', 2, 20],
['f', 2, 30],
["e", 3, 10],
['f', 3, 30]])
lrn = SimpleTreeReg(min_instances=1)
reg = lrn(data)
reg_str = reg.to_string()
res = '\n' \
'd1 (20: 6.0)\n' \
': e\n' \
' c1 (15: 4.0)\n' \
' : <=2.5\n' \
' c1 (16.6667: 3.0)\n' \
' : <=1.5 --> (15: 2.0)\n' \
' : >1.5 --> (20: 1.0)\n' \
' : >2.5 --> (10: 1.0)\n' \
': f --> (30: 2.0)'
self.assertEqual(reg_str, res)
def test_SimpleTree_to_string_cls_decimals(self):
data = Table(test_filename("datasets/lenses.tab"))
lrn = SimpleTreeReg(min_instances=1)
cls = lrn(data)
cls_str = cls.to_string()
res = ' astigmatic ([4.0, 3.0, 5.0])'
self.assertEqual(cls_str.split("\n")[3], res)
def test_SimpleTree_to_string_reg_decimals(self):
data = Table("housing")
lrn = SimpleTreeReg(min_instances=1)
reg = lrn(data)
reg_str = reg.to_string()
res = ' LSTAT (19.9: 430.0)'
self.assertEqual(reg_str.split("\n")[3], res)
if __name__ == '__main__':
unittest.main()
|