1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
"""
Correlations widget
"""
import warnings
from enum import IntEnum
from operator import attrgetter
from types import SimpleNamespace
from itertools import combinations, groupby, chain
import numpy as np
from scipy.stats import spearmanr, pearsonr
from sklearn.cluster import KMeans
from AnyQt.QtCore import Qt, QItemSelectionModel, QItemSelection, \
QSize, pyqtSignal as Signal
from AnyQt.QtGui import QStandardItem
from AnyQt.QtWidgets import QHeaderView
from Orange.data import Table, Domain, ContinuousVariable, StringVariable
from Orange.preprocess import SklImpute, Normalize, Remove
from Orange.statistics.util import FDR
from Orange.widgets import gui
from Orange.widgets.settings import Setting, ContextSetting, \
DomainContextHandler
from Orange.widgets.utils import vartype
from Orange.widgets.utils.itemmodels import DomainModel
from Orange.widgets.utils.signals import Input, Output
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.utils import VizRankDialogAttrPair
from Orange.widgets.widget import OWWidget, AttributeList, Msg
NAN = 2
SIZE_LIMIT = 1000000
class CorrelationType(IntEnum):
"""
Correlation type enumerator. Possible correlations: Pearson, Spearman.
"""
PEARSON, SPEARMAN = 0, 1
@staticmethod
def items():
"""
Texts for correlation types. Can be used in gui controls (eg. combobox).
"""
return ["Pearson correlation", "Spearman correlation"]
class Cluster(SimpleNamespace):
instances = None # type: Optional[List]
centroid = None # type: Optional[np.ndarray]
class KMeansCorrelationHeuristic:
"""
Heuristic to obtain the most promising attribute pairs, when there are too
many attributes to calculate correlations for all possible pairs.
"""
def __init__(self, data):
self.n_attributes = len(data.domain.attributes)
self.data = data
self.clusters = None
self.n_clusters = int(np.sqrt(self.n_attributes))
def get_clusters_of_attributes(self):
"""
Generates groups of attribute IDs, grouped by cluster. Clusters are
obtained by KMeans algorithm.
:return: generator of attributes grouped by cluster
"""
data = Normalize()(self.data).X.T
if data.base is not None:
data = data.copy()
self._impute_means(data)
kmeans = KMeans(n_clusters=self.n_clusters, random_state=0, n_init=1).fit(data)
labels_attrs = sorted([(l, i) for i, l in enumerate(kmeans.labels_)])
return [Cluster(instances=list(pair[1] for pair in group),
centroid=kmeans.cluster_centers_[l])
for l, group in groupby(labels_attrs, key=lambda x: x[0])]
@staticmethod
def _impute_means(arr):
nans = np.isnan(arr)
if np.any(nans):
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
means = np.nanmean(arr, axis=1)
means = np.nan_to_num(means)
inds = np.where(nans)
arr[inds] = means[inds[0]]
def get_states(self, initial_state):
"""
Generates states (attribute pairs) - the most promising first, i.e.
states within clusters, following by states among clusters.
:param initial_state: initial state; None if this is the first call
:return: generator of tuples of states
"""
if self.clusters is None:
self.clusters = self.get_clusters_of_attributes()
clusters = self.clusters
# combinations within clusters
states0 = chain.from_iterable(combinations(cluster.instances, 2)
for cluster in clusters)
if self.n_clusters == 1:
return states0
# combinations among clusters - closest clusters first
centroids = [c.centroid for c in clusters]
centroids_combs = np.array(list(combinations(centroids, 2)))
distances = np.linalg.norm((centroids_combs[:, 0] -
centroids_combs[:, 1]), axis=1)
cluster_combs = list(combinations(range(len(clusters)), 2))
states = ((min((c1, c2)), max((c1, c2))) for i in np.argsort(distances)
for c1 in clusters[cluster_combs[i][0]].instances
for c2 in clusters[cluster_combs[i][1]].instances)
states = chain(states0, states)
if initial_state is not None:
while next(states) != initial_state:
pass
return chain([initial_state], states)
return states
class CorrelationRank(VizRankDialogAttrPair):
"""
Correlations rank widget.
"""
threadStopped = Signal()
PValRole = next(gui.OrangeUserRole)
CorrRole = next(gui.OrangeUserRole)
def __init__(self, *args):
super().__init__(*args)
self.heuristic = None
self.use_heuristic = False
self.sel_feature_index = None
def initialize(self):
super().initialize()
data = self.master.actual_data
self.attrs = data and data.domain.attributes
self.model_proxy.setFilterKeyColumn(-1)
self.heuristic = None
self.use_heuristic = False
if self.master.feature is not None:
self.sel_feature_index = data.domain.index(self.master.feature)
else:
self.sel_feature_index = None
if data:
# use heuristic if data is too big
self.use_heuristic = len(data) * len(self.attrs) ** 2 > SIZE_LIMIT \
and self.sel_feature_index is None
if self.use_heuristic:
self.heuristic = KMeansCorrelationHeuristic(data)
def compute_score(self, state):
(attr1, attr2), corr_type = state, self.master.correlation_type
data = self.master.actual_data.X
col1, col2 = data[:, attr1], data[:, attr2]
mask = ~np.isnan(col1) & ~np.isnan(col2)
if np.sum(mask) < 2:
return np.inf, np.nan, np.nan # no valid data
col1, col2 = col1[mask], col2[mask]
corr = pearsonr if corr_type == CorrelationType.PEARSON else spearmanr
r, p_value = corr(col1, col2)
return -abs(r) if not np.isnan(r) else np.inf, r, p_value
def row_for_state(self, score, state):
attrs = sorted((self.attrs[x] for x in state), key=attrgetter("name"))
attr_items = []
for attr, halign in zip(attrs, (Qt.AlignRight, Qt.AlignLeft)):
item = QStandardItem(attr.name)
item.setData(attrs, self._AttrRole)
item.setData(halign + Qt.AlignVCenter, Qt.TextAlignmentRole)
item.setToolTip(attr.name)
attr_items.append(item)
if halign is Qt.AlignRight:
colon = QStandardItem(":")
colon.setData(Qt.AlignCenter, Qt.TextAlignmentRole)
attr_items.append(colon)
if np.isnan(score[1]):
correlation_item = QStandardItem("N/A")
else:
correlation_item = QStandardItem(f"{score[1]:+.3f}")
correlation_item.setData(
self.NEGATIVE_COLOR if score[1] < 0 else self.POSITIVE_COLOR,
gui.TableBarItem.BarColorRole)
correlation_item.setData(score[1], self.CorrRole)
correlation_item.setData(score[2], self.PValRole)
correlation_item.setData(attrs, self._AttrRole)
return [correlation_item] + attr_items
def check_preconditions(self):
return self.master.actual_data is not None
def iterate_states(self, initial_state):
if self.sel_feature_index is not None:
return self.iterate_states_by_feature()
elif self.use_heuristic:
return self.heuristic.get_states(initial_state)
else:
return super().iterate_states(initial_state)
def iterate_states_by_feature(self):
for j in range(len(self.attrs)):
if j != self.sel_feature_index:
yield self.sel_feature_index, j
def state_count(self):
n = len(self.attrs)
return n * (n - 1) / 2 if self.sel_feature_index is None else n - 1
@staticmethod
def bar_length(score):
return abs(score[1])
def stopped(self):
self.threadStopped.emit()
header = self.rank_table.horizontalHeader()
header.setSectionResizeMode(1, QHeaderView.Stretch)
header.setSectionResizeMode(2, QHeaderView.ResizeToContents)
def start(self, task, *args, **kwargs):
self._set_empty_status()
super().start(task, *args, **kwargs)
self.__set_state_busy()
def cancel(self):
super().cancel()
self.__set_state_ready()
def _connect_signals(self, state):
super()._connect_signals(state)
state.progress_changed.connect(self.master.progressBarSet)
state.status_changed.connect(self.master.setStatusMessage)
def _disconnect_signals(self, state):
super()._disconnect_signals(state)
state.progress_changed.disconnect(self.master.progressBarSet)
state.status_changed.disconnect(self.master.setStatusMessage)
def _on_task_done(self, future):
super()._on_task_done(future)
self.__set_state_ready()
def __set_state_ready(self):
self._set_empty_status()
self.master.setBlocking(False)
def __set_state_busy(self):
self.master.progressBarInit()
self.master.setBlocking(True)
def _set_empty_status(self):
self.master.progressBarFinished()
self.master.setStatusMessage("")
class OWCorrelations(OWWidget):
name = "Correlations"
description = "Compute all pairwise attribute correlations."
icon = "icons/Correlations.svg"
priority = 1106
category = "Unsupervised"
class Inputs:
data = Input("Data", Table)
class Outputs:
data = Output("Data", Table)
features = Output("Features", AttributeList)
correlations = Output("Correlations", Table, dynamic=False)
want_main_area = False
want_control_area = True
correlation_type: int
settings_version = 3
settingsHandler = DomainContextHandler()
selection = ContextSetting([])
feature = ContextSetting(None)
correlation_type = Setting(0)
impute_missing = Setting(True)
class Information(OWWidget.Information):
removed_cons_feat = Msg("Constant features have been removed.")
class Error(OWWidget.Error):
not_enough_vars = Msg("At least two numeric features are needed.")
not_enough_inst = Msg("At least two instances are needed.")
def __init__(self):
super().__init__()
self.data = None # type: Table
self.cont_data = None # type: Table
self.actual_data = None # type: Table
# GUI
box = gui.vBox(self.controlArea)
self.correlation_combo = gui.comboBox(
box, self, "correlation_type", items=CorrelationType.items(),
orientation=Qt.Horizontal, callback=self._correlation_combo_changed
)
self.feature_model = DomainModel(
order=DomainModel.ATTRIBUTES, separators=False,
placeholder="(All combinations)", valid_types=ContinuousVariable)
gui.comboBox(
box, self, "feature", callback=self._feature_combo_changed,
model=self.feature_model, searchable=True
)
gui.checkBox(
box, self, "impute_missing", "Impute missing values",
toolTip="Replace missing values with means;\n"
"if disabled, rows with missing values for the corre"
"sponding variables are ignored",
callback=self._impute_missing_changed
)
self.vizrank, _ = CorrelationRank.add_vizrank(
None, self, None, self._vizrank_selection_changed)
self.vizrank.button.setEnabled(False)
self.vizrank.threadStopped.connect(self._vizrank_stopped)
gui.separator(box)
box.layout().addWidget(self.vizrank.filter)
box.layout().addWidget(self.vizrank.rank_table)
button_box = gui.hBox(self.buttonsArea)
button_box.layout().addWidget(self.vizrank.button)
@staticmethod
def sizeHint():
return QSize(350, 400)
def _correlation_combo_changed(self):
self.apply()
def _feature_combo_changed(self):
self.apply()
def _impute_missing_changed(self):
self.set_actual_data()
self.apply()
def _vizrank_selection_changed(self, *args):
self.selection = list(args)
self.commit()
def _vizrank_stopped(self):
self._vizrank_select()
def _vizrank_select(self):
model = self.vizrank.rank_table.model()
if not model.rowCount():
return
selection = QItemSelection()
# This flag is needed because data in the model could be
# filtered by a feature and therefore selection could not be found
selection_in_model = False
if self.selection:
sel_names = sorted(var.name for var in self.selection)
for i in range(model.rowCount()):
# pylint: disable=protected-access
names = sorted(x.name for x in model.data(
model.index(i, 0), CorrelationRank._AttrRole))
if names == sel_names:
selection.select(model.index(i, 0),
model.index(i, model.columnCount() - 1))
selection_in_model = True
break
if not selection_in_model:
selection.select(model.index(0, 0),
model.index(0, model.columnCount() - 1))
self.vizrank.rank_table.selectionModel().select(
selection, QItemSelectionModel.ClearAndSelect)
@Inputs.data
def set_data(self, data):
self.closeContext()
self.clear_messages()
self.data = data
self.cont_data = None
self.actual_data = None
self.selection = []
if data is not None:
if len(data) < 2:
self.Error.not_enough_inst()
else:
domain = data.domain
cont_vars = [a for a in domain.class_vars + domain.metas +
domain.attributes if a.is_continuous]
cont_data = Table.from_table(Domain(cont_vars), data)
remover = Remove(Remove.RemoveConstant)
cont_data = remover(cont_data)
if remover.attr_results["removed"]:
self.Information.removed_cons_feat()
if len(cont_data.domain.attributes) < 2:
self.Error.not_enough_vars()
else:
self.cont_data = cont_data
self.set_actual_data()
if self.actual_data and data.domain.has_continuous_class:
self.feature = self.actual_data.domain[data.domain.class_var.name]
else:
self.feature = None
self.openContext(self.actual_data)
self.apply()
self.vizrank.button.setEnabled(self.actual_data is not None)
def set_actual_data(self):
if self.cont_data is None:
self.actual_data = None
self.feature_model.set_domain(None)
self.feature = None
self.vizrank.setEnabled(False)
return
if self.impute_missing and self.cont_data.has_missing_attribute():
imputer = SklImpute(strategy="mean")
self.actual_data = imputer(self.cont_data)
else:
self.actual_data = self.cont_data
feature_name = self.feature and self.feature.name
self.feature_model.set_domain(self.actual_data.domain)
if feature_name and feature_name in self.actual_data.domain:
self.feature = self.actual_data.domain[feature_name]
else:
self.feature = None
def apply(self):
self.vizrank.initialize()
if self.actual_data is not None:
# this triggers self.commit() by changing vizrank selection
self.vizrank.toggle()
else:
self.commit()
def commit(self):
self.Outputs.data.send(self.data)
if self.data is None or self.cont_data is None:
self.Outputs.features.send(None)
self.Outputs.correlations.send(None)
return
attrs = [ContinuousVariable("Correlation"),
ContinuousVariable("uncorrected p"),
ContinuousVariable("FDR")]
metas = [StringVariable("Feature 1"), StringVariable("Feature 2")]
domain = Domain(attrs, metas=metas)
model = self.vizrank.rank_model
count = model.rowCount()
index = model.index
corr_p = np.array([
[d(CorrelationRank.CorrRole), d(CorrelationRank.PValRole)]
for d in (index(row, 0).data for row in range(count))
])
fdr = FDR(corr_p[:, 1])
x = np.hstack((corr_p, fdr[:, np.newaxis]))
# pylint: disable=protected-access
m = np.array([[a.name
for a in index(row, 0).data(CorrelationRank._AttrRole)]
for row in range(count)], dtype=object)
corr_table = Table(domain, x, metas=m)
corr_table.name = "Correlations"
# data has been imputed; send original attributes
self.Outputs.features.send(AttributeList(
[self.data.domain[var.name] for var in self.selection]))
self.Outputs.correlations.send(corr_table)
def send_report(self):
self.report_table(CorrelationType.items()[self.correlation_type],
self.vizrank.rank_table)
@classmethod
def migrate_context(cls, context, version):
if version < 2:
sel = context.values["selection"]
context.values["selection"] = [(var.name, vartype(var))
for var in sel[0]]
if version < 3:
sel = context.values["selection"]
context.values["selection"] = ([(name, vtype + 100)
for name, vtype in sel], -3)
def mock_data():
# pylint: disable=import-outside-toplevel
from Orange.data import DiscreteVariable
domain = Domain([DiscreteVariable("a", values="abc")]
+ [ContinuousVariable(x) for x in "defghij"])
n = np.nan
s = 1 / 2
return Table.from_numpy(
domain,
np.array([[0, 0, 0, 0, 1, 0], # a
[1, 0, 0, 1, 0, 0], # d 0
[0, 1, 1, 0, 1, 1], # e 1
[1, 0, 0, 1, 0, 0], # f 2
[1, 0, s, 1, 0, s], # g 3
[1, 0, n, 1, 0, n], # h 4
[n, 0, n, 1, 0, n], # i 5
[0, n, n, n, n, 1]] # j 6
).T
)
if __name__ == "__main__": # pragma: no cover
WidgetPreview(OWCorrelations).run(
Table("iris")
# mock_data()
)
|