1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
|
"""
TODO:
- Sorting by standard deviation: Use coefficient of variation (std/mean)
or quartile coefficient of dispersion (Q3 - Q1) / (Q3 + Q1)
- Standard deviation for nominal: try out Variation ratio (1 - n_mode/N)
"""
import datetime
from enum import IntEnum
from itertools import chain
from typing import Any, Optional, Tuple, List
import numpy as np
import scipy.stats as ss
import scipy.sparse as sp
from AnyQt.QtCore import Qt, QSize, QRectF, QModelIndex, pyqtSlot, \
QItemSelection, QItemSelectionRange, QItemSelectionModel
from AnyQt.QtGui import QPainter, QColor, QPalette, QFontMetrics
from AnyQt.QtWidgets import QStyledItemDelegate, QGraphicsScene, QTableView, \
QHeaderView, QStyle, QStyleOptionViewItem, \
QGraphicsView, QGraphicsItemGroup
import Orange.statistics.util as ut
from Orange.data import Table, StringVariable, DiscreteVariable, \
ContinuousVariable, TimeVariable, Domain, Variable
from Orange.util import utc_from_timestamp
from Orange.widgets import widget, gui
from Orange.widgets.data.utils.histogram import Histogram
from Orange.widgets.settings import Setting, ContextSetting, \
DomainContextHandler
from Orange.widgets.utils.itemmodels import DomainModel, AbstractSortTableModel
from Orange.widgets.utils.signals import Input, Output
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.utils import CanvasRectangle, CanvasText
from Orange.widgets.visualize.utils.plotutils import wrap_legend_items
def _categorical_entropy(x):
"""Compute the entropy of a dense/sparse matrix, column-wise. Assuming
categorical values."""
p = [ut.bincount(row)[0] for row in x.T]
p = [pk / np.sum(pk) for pk in p]
return np.fromiter((ss.entropy(pk) for pk in p), dtype=np.float64)
def coefficient_of_variation(x: np.ndarray) -> np.ndarray:
mu = ut.nanmean(x, axis=0)
mask = ~np.isclose(mu, 0, atol=1e-12)
result = np.full_like(mu, fill_value=np.inf)
result[mask] = np.sqrt(ut.nanvar(x, axis=0)[mask]) / mu[mask]
return result
def format_time_diff(start, end, round_up_after=2):
"""Return an approximate human readable time difference between two dates.
Parameters
----------
start : int
Unix timestamp
end : int
Unix timestamp
round_up_after : int
The number of time units before we round up to the next, larger time
unit e.g. setting to 2 will allow up to 2 days worth of hours to be
shown, after that the difference is shown in days. Or put another way
we will show from 1-48 hours before switching to days.
Returns
-------
str
"""
start = utc_from_timestamp(start)
end = utc_from_timestamp(end)
diff = abs(end - start) # type: datetime.timedelta
# Get the different resolutions
seconds = diff.total_seconds()
minutes = seconds // 60
hours = minutes // 60
days = diff.days
weeks = days // 7
months = (end.year - start.year) * 12 + end.month - start.month
years = months // 12
# Check which resolution is most appropriate
if years >= round_up_after:
return f'~{years} years'
elif months >= round_up_after:
return f'~{months} months'
elif weeks >= round_up_after:
return f'~{weeks} weeks'
elif days >= round_up_after:
return f'~{days} days'
elif hours >= round_up_after:
return f'~{hours} hours'
elif minutes >= round_up_after:
return f'~{minutes} minutes'
else:
return f'{seconds} seconds'
class FeatureStatisticsTableModel(AbstractSortTableModel):
CLASS_VAR, META, ATTRIBUTE = range(3)
COLOR_FOR_ROLE = {
CLASS_VAR: QColor(160, 160, 160),
META: QColor(220, 220, 200),
ATTRIBUTE: QColor(255, 255, 255),
}
HIDDEN_VAR_TYPES = (StringVariable,)
class Columns(IntEnum):
ICON, NAME, DISTRIBUTION, CENTER, MODE, MEDIAN, DISPERSION, MIN, MAX, \
MISSING = range(10)
@property
def name(self):
return {self.ICON: '',
self.NAME: 'Column',
self.DISTRIBUTION: 'Distribution',
self.CENTER: 'Mean',
self.MODE: 'Mode',
self.MEDIAN: 'Median',
self.DISPERSION: 'Dispersion',
self.MIN: 'Min.',
self.MAX: 'Max.',
self.MISSING: 'Missing',
}[self.value]
@property
def index(self):
return self.value
@classmethod
def from_index(cls, index):
return cls(index)
def __init__(self, data=None, parent=None):
"""
Parameters
----------
data : Optional[Table]
parent : Optional[QWidget]
"""
super().__init__(parent)
self.table = None # type: Optional[Table]
self.domain = None # type: Optional[Domain]
self.target_var = None # type: Optional[Variable]
self.n_attributes = self.n_instances = 0
self.__attributes = self.__class_vars = self.__metas = None
# sets of variables for fast membership tests
self.__attributes_set = set()
self.__class_vars_set = set()
self.__metas_set = set()
self.__distributions_cache = {}
no_data = np.array([])
self._variable_types = self._variable_names = no_data
self._min = self._max = no_data
self._center = self._median = self._mode = no_data
self._dispersion = no_data
self._missing = no_data
# Clear model initially to set default values
self.clear()
self.set_data(data)
def set_data(self, data):
if data is None:
self.clear()
return
self.beginResetModel()
self.table = data
self.domain = domain = data.domain
self.target_var = None
self.__attributes = self.__filter_attributes(
domain.attributes, self.table.X)
self.__class_vars = self.__filter_attributes(
domain.class_vars, self.table.Y.reshape((len(self.table.Y), -1)))
self.__metas = self.__filter_attributes(
domain.metas, self.table.metas)
self.__attributes_set = set(self.__metas[0])
self.__class_vars_set = set(self.__class_vars[0])
self.__metas_set = set(self.__metas[0])
self.n_attributes = len(self.variables)
self.n_instances = len(data)
self.__distributions_cache = {}
self.__compute_statistics()
self.endResetModel()
def clear(self):
self.beginResetModel()
self.table = self.domain = self.target_var = None
self.n_attributes = self.n_instances = 0
self.__attributes = (np.array([]), np.array([]))
self.__class_vars = (np.array([]), np.array([]))
self.__metas = (np.array([]), np.array([]))
self.__attributes_set = set()
self.__class_vars_set = set()
self.__metas_set = set()
self.__distributions_cache.clear()
self.endResetModel()
@property
def variables(self):
matrices = [self.__attributes[0], self.__class_vars[0], self.__metas[0]]
if not any(m.size for m in matrices):
return []
return np.hstack(matrices)
@staticmethod
def _attr_indices(attrs):
# type: (List) -> Tuple[List[int], List[int], List[int], List[int]]
"""Get the indices of different attribute types eg. discrete."""
disc_var_idx = [i for i, attr in enumerate(attrs) if isinstance(attr, DiscreteVariable)]
cont_var_idx = [i for i, attr in enumerate(attrs)
if isinstance(attr, ContinuousVariable)
and not isinstance(attr, TimeVariable)]
time_var_idx = [i for i, attr in enumerate(attrs) if isinstance(attr, TimeVariable)]
string_var_idx = [i for i, attr in enumerate(attrs) if isinstance(attr, StringVariable)]
return disc_var_idx, cont_var_idx, time_var_idx, string_var_idx
def __filter_attributes(self, attributes, matrix):
"""Filter out variables which shouldn't be visualized."""
attributes = np.asarray(attributes)
mask = [idx for idx, attr in enumerate(attributes)
if not isinstance(attr, self.HIDDEN_VAR_TYPES)]
return attributes[mask], matrix[:, mask]
def __compute_statistics(self):
# Since data matrices can of mixed sparsity, we need to compute
# attributes separately for each of them.
matrices = [self.__attributes, self.__class_vars, self.__metas]
# Filter out any matrices with size 0
matrices = list(filter(lambda tup: tup[1].size, matrices))
self._variable_types = np.array([type(var) for var in self.variables])
self._variable_names = np.array([var.name.lower() for var in self.variables])
self._min = self.__compute_stat(
matrices,
discrete_f=lambda x: ut.nanmin(x, axis=0),
continuous_f=lambda x: ut.nanmin(x, axis=0),
time_f=lambda x: ut.nanmin(x, axis=0),
)
self._dispersion = self.__compute_stat(
matrices,
discrete_f=_categorical_entropy,
continuous_f=coefficient_of_variation,
)
self._missing = self.__compute_stat(
matrices,
discrete_f=lambda x: ut.countnans(x, axis=0),
continuous_f=lambda x: ut.countnans(x, axis=0),
string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
time_f=lambda x: ut.countnans(x, axis=0),
default_val=len(matrices[0]) if matrices else 0
)
self._max = self.__compute_stat(
matrices,
discrete_f=lambda x: ut.nanmax(x, axis=0),
continuous_f=lambda x: ut.nanmax(x, axis=0),
time_f=lambda x: ut.nanmax(x, axis=0),
)
# Since scipy apparently can't do mode on sparse matrices, cast it to
# dense. This can be very inefficient for large matrices, and should
# be changed
def __mode(x, *args, **kwargs):
if sp.issparse(x):
x = x.todense(order="C")
# return ss.mode(x, *args, **kwargs)[0]
return ut.nanmode(x, *args, **kwargs)[0] # Temporary replacement for scipy
self._center = self.__compute_stat(
matrices,
discrete_f=None,
continuous_f=lambda x: ut.nanmean(x, axis=0),
time_f=lambda x: ut.nanmean(x, axis=0),
)
self._mode = self.__compute_stat(
matrices,
discrete_f=lambda x: __mode(x, axis=0),
continuous_f=lambda x: __mode(x, axis=0),
time_f=lambda x: __mode(x, axis=0),
)
self._median = self.__compute_stat(
matrices,
discrete_f=None,
continuous_f=lambda x: ut.nanmedian(x, axis=0),
time_f=lambda x: ut.nanmedian(x, axis=0),
)
def get_statistics_table(self):
"""Get the numeric computed statistics in a single matrix."""
if self.table is None or not self.rowCount():
return None
# don't match TimeVariable, pylint: disable=unidiomatic-typecheck
contivars = [type(var) is ContinuousVariable for var in self.variables]
if any(contivars):
def c(column):
return np.choose(contivars, [np.nan, column])
x = np.vstack((
c(self._center), c(self._median), self._dispersion,
c(self._min), c(self._max), self._missing,
)).T
attrs = [ContinuousVariable(column.name) for column in (
self.Columns.CENTER, self.Columns.MEDIAN,
self.Columns.DISPERSION,
self.Columns.MIN, self.Columns.MAX, self.Columns.MISSING)]
else:
x = np.vstack((self._dispersion, self._missing)).T
attrs = [ContinuousVariable(name)
for name in ("Entropy", self.Columns.MISSING.name)]
names = [var.name for var in self.variables]
modes = [var.str_val(val)
for var, val in zip(self.variables, self._mode)]
metas = np.vstack((names, modes)).T
meta_attrs = [StringVariable('Column'), StringVariable('Mode')]
domain = Domain(attributes=attrs, metas=meta_attrs)
statistics = Table.from_numpy(domain, x, metas=metas)
statistics.name = f'{self.table.name} (Column Statistics)'
return statistics
def __compute_stat(self, matrices, discrete_f=None, continuous_f=None,
time_f=None, string_f=None, default_val=np.nan):
"""Apply functions to appropriate variable types. The default value is
returned if there is no function defined for specific variable types.
"""
if not matrices:
return np.array([])
results = []
for variables, x in matrices:
result = np.full(len(variables), default_val)
# While the following caching and checks are messy, the indexing
# turns out to be a bottleneck for large datasets, so a single
# indexing operation improves performance
*idxs, str_idx = self._attr_indices(variables)
for func, idx in zip((discrete_f, continuous_f, time_f), idxs):
idx = np.array(idx)
if func and idx.size:
x_ = x[:, idx]
if x_.size:
if not np.issubdtype(x_.dtype, np.number):
x_ = x_.astype(np.float64)
try:
finites = np.isfinite(x_)
except TypeError:
result[idx] = func(x_)
else:
mask = np.any(finites, axis=0)
if np.any(mask):
result[idx[mask]] = func(x_[:, mask])
if string_f:
x_ = x[:, str_idx]
if x_.size:
if x_.dtype is not np.object:
x_ = x_.astype(np.object)
result[str_idx] = string_f(x_)
results.append(result)
return np.hstack(results)
def sortColumnData(self, column):
"""Prepare the arrays with which we will sort the rows. If we want to
sort based on a single value e.g. the name, return a 1d array.
Sometimes we may want to sort by multiple criteria, comparing
continuous variances with discrete entropies makes no sense, so we want
to group those variable types together.
"""
# Prepare indices for variable types so we can group them together
order = [ContinuousVariable, TimeVariable,
DiscreteVariable, StringVariable]
mapping = {var: idx for idx, var in enumerate(order)}
vmapping = np.vectorize(mapping.__getitem__)
var_types_indices = vmapping(self._variable_types)
# Store the variable name sorted indices so we can pass a default
# order when sorting by multiple keys
# Double argsort is "inverse" argsort:
# data will be *sorted* by these indices
var_name_indices = np.argsort(np.argsort(self._variable_names))
# Prepare vartype indices so ready when needed
disc_idx, _, time_idx, str_idx = self._attr_indices(self.variables)
# Sort by: (type)
if column == self.Columns.ICON:
return var_types_indices
# Sort by: (name)
elif column == self.Columns.NAME:
# We use `_variable_names` here and not the indices because the
# last (or single) row is actually sorted and we don't want to sort
# the indices
return self._variable_names
# Sort by: (None)
elif column == self.Columns.DISTRIBUTION:
return np.ones_like(var_types_indices)
# Sort by: (type, center)
elif column == self.Columns.CENTER:
# Sorting discrete or string values by mean makes no sense
vals = np.array(self._center)
vals[disc_idx] = var_name_indices[disc_idx]
vals[str_idx] = var_name_indices[str_idx]
return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
# Sort by: (type, mode)
elif column == self.Columns.MODE:
# Sorting discrete or string values by mode makes no sense
vals = np.array(self._mode)
vals[disc_idx] = var_name_indices[disc_idx]
vals[str_idx] = var_name_indices[str_idx]
return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
# Sort by: (type, median)
elif column == self.Columns.MEDIAN:
# Sorting discrete or string values by median makes no sense
vals = np.array(self._median)
vals[disc_idx] = var_name_indices[disc_idx]
vals[str_idx] = var_name_indices[str_idx]
return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
# Sort by: (type, dispersion)
elif column == self.Columns.DISPERSION:
# Sort time variables by their dispersion, which is not stored in
# the dispersion array
vals = np.array(self._dispersion)
vals[time_idx] = self._max[time_idx] - self._min[time_idx]
return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
# Sort by: (type, min)
elif column == self.Columns.MIN:
# Sorting discrete or string values by min makes no sense
vals = np.array(self._min)
vals[disc_idx] = var_name_indices[disc_idx]
vals[str_idx] = var_name_indices[str_idx]
return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
# Sort by: (type, max)
elif column == self.Columns.MAX:
# Sorting discrete or string values by min makes no sense
vals = np.array(self._max)
vals[disc_idx] = var_name_indices[disc_idx]
vals[str_idx] = var_name_indices[str_idx]
return np.vstack((var_types_indices, np.zeros_like(vals), vals)).T
# Sort by: (missing)
elif column == self.Columns.MISSING:
return self._missing
return None
def _sortColumnData(self, column):
"""Allow sorting with 2d arrays."""
data = np.asarray(self.sortColumnData(column))
data = data[self.mapToSourceRows(Ellipsis)]
assert data.ndim <= 2, 'Data should be at most 2-dimensional'
return data
def _argsortData(self, data, order):
if data.ndim == 1:
if np.issubdtype(data.dtype, np.number):
if order == Qt.DescendingOrder:
data = -data
indices = np.argsort(data, kind='stable')
# Always sort NaNs last
if np.issubdtype(data.dtype, np.number):
indices = np.roll(indices, -np.isnan(data).sum())
else:
# When not sorting by numbers, we can't do data = -data, but
# use indices = indices[::-1] instead. This is not stable, but
# doesn't matter because we use this only for variable names
# which are guaranteed to be unique
indices = np.argsort(data)
if order == Qt.DescendingOrder:
indices = indices[::-1]
else:
assert np.issubdtype(data.dtype, np.number), \
'We do not deal with non numeric values in sorting by ' \
'multiple values'
if order == Qt.DescendingOrder:
data[:, -1] = -data[:, -1]
# In order to make sure NaNs always appear at the end, insert a
# indicator whether NaN or not. Note that the data array must
# contain an empty column of zeros at index -2 since inserting an
# extra column after the fact can result in a MemoryError for data
# with a large amount of variables
assert np.all(data[:, -2] == 0), \
'Add an empty column of zeros at index -2 to accomodate NaNs'
np.isnan(data[:, -1], out=data[:, -2])
indices = np.lexsort(np.flip(data.T, axis=0))
return indices
def headerData(self, section, orientation, role):
# type: (int, Qt.Orientation, Qt.ItemDataRole) -> Any
if orientation == Qt.Horizontal:
if role == Qt.DisplayRole:
return self.Columns.from_index(section).name
return None
def data(self, index, role):
# type: (QModelIndex, Qt.ItemDataRole) -> Any
def background():
if attribute in self.__attributes_set:
return self.COLOR_FOR_ROLE[self.ATTRIBUTE]
if attribute in self.__metas_set:
return self.COLOR_FOR_ROLE[self.META]
if attribute in self.__class_vars_set:
return self.COLOR_FOR_ROLE[self.CLASS_VAR]
return None
def text_alignment():
if column == self.Columns.NAME:
return Qt.AlignLeft | Qt.AlignVCenter
return Qt.AlignRight | Qt.AlignVCenter
def decoration():
if column == self.Columns.ICON:
return gui.attributeIconDict[attribute]
return None
def display():
# pylint: disable=too-many-branches
def format_zeros(str_val):
"""Zeros should be handled separately as they cannot be negative."""
if float(str_val) == 0:
num_decimals = min(self.variables[row].number_of_decimals, 2)
str_val = f"{0:.{num_decimals}f}"
return str_val
def render_value(value):
if np.isnan(value):
return ""
if np.isinf(value):
return "∞"
str_val = attribute.str_val(value)
if attribute.is_continuous and not attribute.is_time:
str_val = format_zeros(str_val)
return str_val
if column == self.Columns.NAME:
return attribute.name
elif column == self.Columns.DISTRIBUTION:
if isinstance(attribute,
(DiscreteVariable, ContinuousVariable)):
if row not in self.__distributions_cache:
scene = QGraphicsScene(parent=self)
histogram = Histogram(
data=self.table,
variable=attribute,
color_attribute=self.target_var,
border=(0, 0, 2, 0),
bottom_padding=4,
border_color='#ccc',
)
scene.addItem(histogram)
self.__distributions_cache[row] = scene
return self.__distributions_cache[row]
elif column == self.Columns.CENTER:
return render_value(self._center[row])
elif column == self.Columns.MODE:
return render_value(self._mode[row])
elif column == self.Columns.MEDIAN:
return render_value(self._median[row])
elif column == self.Columns.DISPERSION:
if isinstance(attribute, TimeVariable):
return format_time_diff(self._min[row], self._max[row])
elif isinstance(attribute, DiscreteVariable):
return f"{self._dispersion[row]:.3g}"
else:
return render_value(self._dispersion[row])
elif column == self.Columns.MIN:
if not isinstance(attribute, DiscreteVariable):
return render_value(self._min[row])
elif column == self.Columns.MAX:
if not isinstance(attribute, DiscreteVariable):
return render_value(self._max[row])
elif column == self.Columns.MISSING:
missing = self._missing[row]
perc = int(round(100 * missing / self.n_instances))
return f'{missing} ({perc} %)'
return None
roles = {Qt.BackgroundRole: background,
Qt.TextAlignmentRole: text_alignment,
Qt.DecorationRole: decoration,
Qt.DisplayRole: display}
if not index.isValid() or role not in roles:
return None
row, column = self.mapToSourceRows(index.row()), index.column()
# Make sure we're not out of range
if not 0 <= row <= self.n_attributes:
return None
attribute = self.variables[row]
return roles[role]()
def rowCount(self, parent=QModelIndex()):
return 0 if parent.isValid() else self.n_attributes
def columnCount(self, parent=QModelIndex()):
return 0 if parent.isValid() else len(self.Columns)
def set_target_var(self, variable):
self.target_var = variable
self.__distributions_cache.clear()
start_idx = self.index(0, self.Columns.DISTRIBUTION)
end_idx = self.index(self.rowCount(), self.Columns.DISTRIBUTION)
self.dataChanged.emit(start_idx, end_idx)
class FeatureStatisticsTableView(QTableView):
HISTOGRAM_ASPECT_RATIO = (7, 3)
MINIMUM_HISTOGRAM_HEIGHT = 50
MAXIMUM_HISTOGRAM_HEIGHT = 80
def __init__(self, model, parent=None, **kwargs):
super().__init__(
parent=parent,
showGrid=False,
cornerButtonEnabled=False,
sortingEnabled=True,
selectionBehavior=QTableView.SelectRows,
selectionMode=QTableView.ExtendedSelection,
horizontalScrollMode=QTableView.ScrollPerPixel,
verticalScrollMode=QTableView.ScrollPerPixel,
**kwargs
)
self.setModel(model)
hheader = self.horizontalHeader()
hheader.setStretchLastSection(False)
# Contents precision specifies how many rows should be taken into
# account when computing the sizes, 0 being the visible rows. This is
# crucial, since otherwise the `ResizeToContents` section resize mode
# would call `sizeHint` on every single row in the data before first
# render. However this, this cannot be used here, since this only
# appears to work properly when the widget is actually shown. When the
# widget is not shown, size `sizeHint` is called on every row.
hheader.setResizeContentsPrecision(5)
# Set a nice default size so that headers have some space around titles
hheader.setDefaultSectionSize(100)
# Set individual column behaviour in `set_data` since the logical
# indices must be valid in the model, which requires data.
hheader.setSectionResizeMode(QHeaderView.Interactive)
columns = model.Columns
hheader.setSectionResizeMode(columns.ICON.index, QHeaderView.ResizeToContents)
hheader.setSectionResizeMode(columns.DISTRIBUTION.index, QHeaderView.Stretch)
vheader = self.verticalHeader()
vheader.setVisible(False)
vheader.setSectionResizeMode(QHeaderView.Fixed)
hheader.sectionResized.connect(self.bind_histogram_aspect_ratio)
# TODO: This shifts the scrollarea a bit down when opening widget
# hheader.sectionResized.connect(self.keep_row_centered)
self.setItemDelegate(NoFocusRectDelegate(parent=self))
self.setItemDelegateForColumn(
FeatureStatisticsTableModel.Columns.DISTRIBUTION,
DistributionDelegate(parent=self),
)
def bind_histogram_aspect_ratio(self, logical_index, _, new_size):
"""Force the horizontal and vertical header to maintain the defined
aspect ratio specified for the histogram."""
# Prevent function being exectued more than once per resize
if logical_index is not self.model().Columns.DISTRIBUTION.index:
return
ratio_width, ratio_height = self.HISTOGRAM_ASPECT_RATIO
unit_width = new_size // ratio_width
new_height = unit_width * ratio_height
effective_height = max(new_height, self.MINIMUM_HISTOGRAM_HEIGHT)
effective_height = min(effective_height, self.MAXIMUM_HISTOGRAM_HEIGHT)
self.verticalHeader().setDefaultSectionSize(effective_height)
def keep_row_centered(self, logical_index, _1, _2):
"""When resizing the widget when scrolled further down, the
positions of rows changes. Obviously, the user resized in order to
better see the row of interest. This keeps that row centered."""
# TODO: This does not work properly
# Prevent function being exectued more than once per resize
if logical_index is not self.model().Columns.DISTRIBUTION.index:
return
top_row = self.indexAt(self.rect().topLeft()).row()
bottom_row = self.indexAt(self.rect().bottomLeft()).row()
middle_row = top_row + (bottom_row - top_row) // 2
self.scrollTo(self.model().index(middle_row, 0), QTableView.PositionAtCenter)
class NoFocusRectDelegate(QStyledItemDelegate):
"""Removes the light blue background and border on a focused item."""
def paint(self, painter, option, index):
# type: (QPainter, QStyleOptionViewItem, QModelIndex) -> None
option.state &= ~QStyle.State_HasFocus
super().paint(painter, option, index)
class DistributionDelegate(NoFocusRectDelegate):
def paint(self, painter, option, index):
# type: (QPainter, QStyleOptionViewItem, QModelIndex) -> None
scene = index.data(Qt.DisplayRole) # type: Optional[QGraphicsScene]
if scene is None:
return super().paint(painter, option, index)
painter.setRenderHint(QPainter.Antialiasing)
scene.render(painter, target=QRectF(option.rect), mode=Qt.IgnoreAspectRatio)
# pylint complains about inconsistent return statements
return None
class OWFeatureStatistics(widget.OWWidget):
name = 'Column Statistics'
description = 'Show basic statistics for columns.'
icon = 'icons/FeatureStatistics.svg'
keywords = 'feature, variable'
class Inputs:
data = Input('Data', Table, default=True)
class Outputs:
reduced_data = Output('Reduced Data', Table, default=True)
statistics = Output('Statistics', Table)
want_main_area = False
settingsHandler = DomainContextHandler()
settings_version = 2
auto_commit = Setting(True)
color_var = ContextSetting(None) # type: Optional[Variable]
# filter_string = ContextSetting('')
sorting = Setting((0, Qt.AscendingOrder))
selected_vars = ContextSetting([], schema_only=True)
def __init__(self):
super().__init__()
self.data = None # type: Optional[Table]
self.model = FeatureStatisticsTableModel(parent=self)
self.table_view = FeatureStatisticsTableView(self.model, parent=self)
self.table_view.selectionModel().selectionChanged.connect(self.on_select)
self.table_view.horizontalHeader().sectionClicked.connect(self.on_header_click)
box = gui.vBox(self.controlArea)
box.setContentsMargins(0, 0, 0, 4)
pal = QPalette()
pal.setColor(QPalette.Window,
self.table_view.palette().color(QPalette.Base))
box.setAutoFillBackground(True)
box.setPalette(pal)
box.layout().addWidget(self.table_view)
self.legend_items = []
self.legend = QGraphicsScene()
self.legend_view = u = QGraphicsView(self.legend)
u.setRenderHints(QPainter.Antialiasing | QPainter.TextAntialiasing)
u.setFrameStyle(QGraphicsView.NoFrame)
u.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
u.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
box.layout().addWidget(u)
self.color_var_model = DomainModel(
valid_types=(ContinuousVariable, DiscreteVariable),
placeholder='None',
)
self.cb_color_var = gui.comboBox(
self.buttonsArea, master=self, value='color_var', model=self.color_var_model,
label='Color:', orientation=Qt.Horizontal, contentsLength=13,
searchable=True
)
self.cb_color_var.activated.connect(self.__color_var_changed)
gui.rubber(self.buttonsArea)
gui.auto_send(self.buttonsArea, self, "auto_commit")
@staticmethod
def sizeHint(): # pylint: disable=arguments-differ
return QSize(1050, 500)
def resizeEvent(self, event):
super().resizeEvent(event)
self.update_legend()
@Inputs.data
def set_data(self, data):
# Clear outputs and reset widget state
self.closeContext()
self.selected_vars = []
self.model.resetSorting()
self.Outputs.reduced_data.send(None)
self.Outputs.statistics.send(None)
# Setup widget state for new data and restore settings
if not data:
data = None
self.data = data
if data is not None:
self.color_var_model.set_domain(data.domain)
self.color_var = None
if self.data.domain.class_vars:
self.color_var = self.data.domain.class_vars[0]
else:
self.color_var_model.set_domain(None)
self.color_var = None
self.model.set_data(data)
self.openContext(self.data)
self.__restore_selection()
self.__restore_sorting()
self.__color_var_changed()
self.commit_statistics()
self.commit.now()
def __restore_selection(self):
"""Restore the selection on the table view from saved settings."""
selection_model = self.table_view.selectionModel()
selection = QItemSelection()
if self.selected_vars:
var_indices = {var: i for i, var in enumerate(self.model.variables)}
selected_indices = [var_indices[var] for var in self.selected_vars]
for row in self.model.mapFromSourceRows(selected_indices):
selection.append(QItemSelectionRange(
self.model.index(row, 0),
self.model.index(row, self.model.columnCount() - 1)
))
selection_model.select(selection, QItemSelectionModel.ClearAndSelect)
def __restore_sorting(self):
"""Restore the sort column and order from saved settings."""
sort_column, sort_order = self.sorting
if self.model.n_attributes and sort_column < self.model.columnCount():
self.model.sort(sort_column, sort_order)
self.table_view.horizontalHeader().setSortIndicator(sort_column, sort_order)
@pyqtSlot(int)
def on_header_click(self, *_):
# Store the header states
sort_order = self.model.sortOrder()
sort_column = self.model.sortColumn()
self.sorting = sort_column, sort_order
@pyqtSlot(int)
def __color_var_changed(self, *_):
if self.model is not None:
self.model.set_target_var(self.color_var)
self.update_legend_items()
self.update_legend()
def update_legend_items(self):
self.legend.clear()
if self.color_var is None or not self.color_var.is_discrete:
self.legend_items = []
return
self.legend_items = []
size = QFontMetrics(self.font()).height()
for name, color in zip(self.color_var.values, self.color_var.palette.qcolors):
item = QGraphicsItemGroup()
item.addToGroup(
CanvasRectangle(None, -size / 2, -size / 2, size, size,
Qt.gray, color))
item.addToGroup(
CanvasText(None, name, size, 0, Qt.AlignVCenter))
self.legend_items.append(item)
def update_legend(self):
view = self.legend_view
if not self.legend_items:
self.legend.clear()
view.hide()
return
size = QFontMetrics(self.font()).height()
legend = wrap_legend_items(
self.legend_items,
self.width() - 30, size, size * 1.75)
self.legend.addItem(legend)
legend.setPos(15, 0)
view.setFixedHeight(int(legend.boundingRect().height()) + size)
view.show()
def on_select(self):
selection_indices = list(self.model.mapToSourceRows([
i.row() for i in self.table_view.selectionModel().selectedRows()
]))
self.selected_vars = list(self.model.variables[selection_indices])
self.commit.deferred()
@gui.deferred
def commit(self):
if not self.selected_vars:
self.Outputs.reduced_data.send(None)
else:
# Send a table with only selected columns to output
self.Outputs.reduced_data.send(self.data[:, self.selected_vars])
def commit_statistics(self):
if not self.data:
self.Outputs.statistics.send(None)
return
# Send the statistics of the selected variables to ouput
statistics = self.model.get_statistics_table()
self.Outputs.statistics.send(statistics)
def send_report(self):
view = self.table_view
self.report_table(view)
@classmethod
def migrate_context(cls, context, version):
if not version or version < 2:
selected_rows = context.values.pop("selected_rows", None)
if not selected_rows:
selected_vars = []
else:
# This assumes that dict was saved by Python >= 3.6 so dict is
# ordered; if not, context hasn't had worked anyway.
all_vars = [
(var, tpe)
for (var, tpe) in chain(context.attributes.items(),
context.metas.items())
# it would be nicer to use cls.HIDDEN_VAR_TYPES, but there
# is no suitable conversion function, and StringVariable (3)
# was the only hidden var when settings_version < 2, so:
if tpe != 3]
selected_vars = [all_vars[i] for i in selected_rows]
context.values["selected_vars"] = selected_vars, -3
if __name__ == '__main__': # pragma: no cover
WidgetPreview(OWFeatureStatistics).run(Table("iris"))
|