1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
from collections import namedtuple
import numpy as np
from AnyQt.QtCore import Qt
from AnyQt.QtWidgets import QListWidget
import pyqtgraph as pg
from orangewidget.utils.visual_settings_dlg import VisualSettingsDialog
from Orange.base import Model
from Orange.classification import ThresholdClassifier, CalibratedLearner
from Orange.evaluation import Results
from Orange.evaluation.performance_curves import Curves
from Orange.widgets import widget, gui, settings
from Orange.widgets.evaluate.contexthandlers import \
EvaluationResultsContextHandler
from Orange.widgets.evaluate.utils import results_for_preview, \
check_can_calibrate
from Orange.widgets.utils import colorpalettes
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.utils.customizableplot import \
CommonParameterSetter
from Orange.widgets.visualize.utils.plotutils import GraphicsView, PlotItem
from Orange.widgets.widget import Input, Output, Msg
from Orange.widgets import report
MetricDefinition = namedtuple(
"metric_definition",
("name", "functions", "short_names", "explanation"))
Metrics = [MetricDefinition(*args) for args in (
("Calibration curve", None, (), ""),
("Classification accuracy", (Curves.ca, ), (), ""),
("F1", (Curves.f1, ), (), ""),
("Sensitivity and specificity",
(Curves.sensitivity, Curves.specificity),
("sens", "spec"),
"<p><b>Sensitivity</b> (falling) is the proportion of correctly "
"detected positive instances (TP / P).</p>"
"<p><b>Specificity</b> (rising) is the proportion of detected "
"negative instances (TN / N).</p>"),
("Precision and recall",
(Curves.precision, Curves.recall),
("prec", "recall"),
"<p><b>Precision</b> (rising) is the fraction of retrieved instances "
"that are relevant, TP / (TP + FP).</p>"
"<p><b>Recall</b> (falling) is the proportion of discovered relevant "
"instances, TP / P.</p>"),
("Pos and neg predictive value",
(Curves.ppv, Curves.npv),
("PPV", "TPV"),
"<p><b>Positive predictive value</b> (rising) is the proportion of "
"correct positives, TP / (TP + FP).</p>"
"<p><b>Negative predictive value</b> is the proportion of correct "
"negatives, TN / (TN + FN).</p>"),
("True and false positive rate",
(Curves.tpr, Curves.fpr),
("TPR", "FPR"),
"<p><b>True and false positive rate</b> are proportions of detected "
"and omitted positive instances</p>"),
)]
class ParameterSetter(CommonParameterSetter):
def __init__(self, master):
super().__init__()
self.master = master
def update_setters(self):
self.initial_settings = {
self.LABELS_BOX: {
self.FONT_FAMILY_LABEL: self.FONT_FAMILY_SETTING,
self.TITLE_LABEL: self.FONT_SETTING,
self.AXIS_TITLE_LABEL: self.FONT_SETTING,
self.AXIS_TICKS_LABEL: self.FONT_SETTING,
},
self.ANNOT_BOX: {
self.TITLE_LABEL: {self.TITLE_LABEL: ("", "")},
}
}
@property
def title_item(self):
return self.master.titleLabel
@property
def axis_items(self):
return [value["item"] for value in self.master.axes.values()]
class OWCalibrationPlot(widget.OWWidget):
name = "Calibration Plot"
description = "Calibration plot based on evaluation of classifiers."
icon = "icons/CalibrationPlot.svg"
priority = 1030
keywords = "calibration plot"
class Inputs:
evaluation_results = Input("Evaluation Results", Results)
class Outputs:
calibrated_model = Output("Calibrated Model", Model)
class Error(widget.OWWidget.Error):
non_discrete_target = Msg("Calibration plot requires a categorical "
"target variable.")
empty_input = widget.Msg("Empty result on input. Nothing to display.")
nan_classes = \
widget.Msg("Remove test data instances with unknown classes.")
all_target_class = widget.Msg(
"All data instances belong to target class.")
no_target_class = widget.Msg(
"No data instances belong to target class.")
class Warning(widget.OWWidget.Warning):
omitted_folds = widget.Msg(
"Test folds where all data belongs to (non)-target are not shown.")
omitted_nan_prob_points = widget.Msg(
"Instance for which the model couldn't compute probabilities are"
"skipped.")
no_valid_data = widget.Msg("No valid data for model(s) {}")
class Information(widget.OWWidget.Information):
no_output = Msg("Can't output a model: {}")
settingsHandler = EvaluationResultsContextHandler()
target_index = settings.ContextSetting(0)
selected_classifiers = settings.ContextSetting([])
score = settings.Setting(0)
output_calibration = settings.Setting(0)
fold_curves = settings.Setting(False)
display_rug = settings.Setting(True)
threshold = settings.Setting(0.5)
visual_settings = settings.Setting({}, schema_only=True)
auto_commit = settings.Setting(True)
graph_name = "plot" # pg.GraphicsItem (pg.PlotItem)
def __init__(self):
super().__init__()
self.results = None
self.scores = None
self.classifier_names = []
self.colors = []
self.line = None
self._last_score_value = -1
box = gui.vBox(self.controlArea, box="Settings")
self.target_cb = gui.comboBox(
box, self, "target_index", label="Target:",
orientation=Qt.Horizontal, callback=self.target_index_changed,
contentsLength=8, searchable=True)
gui.checkBox(
box, self, "display_rug", "Show rug",
callback=self._on_display_rug_changed)
gui.checkBox(
box, self, "fold_curves", "Curves for individual folds",
callback=self._replot)
self.classifiers_list_box = gui.listBox(
self.controlArea, self, "selected_classifiers", "classifier_names",
box="Classifier", selectionMode=QListWidget.ExtendedSelection,
callback=self._on_selection_changed)
self.classifiers_list_box.setMaximumHeight(100)
box = gui.vBox(self.controlArea, "Metrics")
combo = gui.comboBox(
box, self, "score", items=(metric.name for metric in Metrics),
callback=self.score_changed)
self.explanation = gui.widgetLabel(
box, wordWrap=True, fixedWidth=combo.sizeHint().width())
self.explanation.setContentsMargins(8, 8, 0, 0)
font = self.explanation.font()
font.setPointSizeF(0.85 * font.pointSizeF())
self.explanation.setFont(font)
gui.radioButtons(
box, self, value="output_calibration",
btnLabels=("Sigmoid calibration", "Isotonic calibration"),
label="Output model calibration", callback=self.commit.deferred)
self.info_box = gui.widgetBox(self.controlArea, "Info")
self.info_label = gui.widgetLabel(self.info_box)
gui.rubber(self.controlArea)
gui.auto_apply(self.buttonsArea, self, "auto_commit")
self.plotview = GraphicsView()
self.plot = PlotItem(enableMenu=False)
self.plot.parameter_setter = ParameterSetter(self.plot)
self.plot.setMouseEnabled(False, False)
self.plot.hideButtons()
for axis_name in ("bottom", "left"):
axis = self.plot.getAxis(axis_name)
# Remove the condition (that is, allow setting this for bottom
# axis) when pyqtgraph is fixed
# Issue: https://github.com/pyqtgraph/pyqtgraph/issues/930
# Pull request: https://github.com/pyqtgraph/pyqtgraph/pull/932
if axis_name != "bottom": # remove if when pyqtgraph is fixed
axis.setStyle(stopAxisAtTick=(True, True))
self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0), padding=0.05)
self.plotview.setCentralItem(self.plot)
self.mainArea.layout().addWidget(self.plotview)
self._set_explanation()
VisualSettingsDialog(self, self.plot.parameter_setter.initial_settings)
@Inputs.evaluation_results
def set_results(self, results):
self.closeContext()
self.clear()
self.Error.clear()
self.Information.clear()
self.results = None
if results is not None:
if not results.domain.has_discrete_class:
self.Error.non_discrete_target()
elif not results.actual.size:
self.Error.empty_input()
elif np.any(np.isnan(results.actual)):
self.Error.nan_classes()
else:
self.results = results
self._initialize(results)
class_var = self.results.domain.class_var
self.target_index = int(len(class_var.values) == 2)
self.openContext(class_var, self.classifier_names)
self._replot()
self.commit.now()
def clear(self):
self.plot.clear()
self.results = None
self.classifier_names = []
self.selected_classifiers = []
self.target_cb.clear()
self.colors = []
def target_index_changed(self):
if len(self.results.domain.class_var.values) == 2:
self.threshold = 1 - self.threshold
self._set_explanation()
self._replot()
self.commit.deferred()
def score_changed(self):
self._set_explanation()
self._replot()
if self._last_score_value != self.score:
self.commit.deferred()
self._last_score_value = self.score
def _set_explanation(self):
explanation = Metrics[self.score].explanation
if explanation:
self.explanation.setText(explanation)
self.explanation.show()
else:
self.explanation.hide()
if self.score == 0:
self.controls.output_calibration.show()
self.info_box.hide()
else:
self.controls.output_calibration.hide()
self.info_box.show()
axis = self.plot.getAxis("bottom")
axis.setLabel("Predicted probability" if self.score == 0
else "Threshold probability to classify as positive")
axis = self.plot.getAxis("left")
axis.setLabel(Metrics[self.score].name)
def _initialize(self, results):
n = len(results.predicted)
names = getattr(results, "learner_names", None)
if names is None:
names = ["#{}".format(i + 1) for i in range(n)]
self.classifier_names = names
self.colors = colorpalettes.get_default_curve_colors(n)
for i in range(n):
item = self.classifiers_list_box.item(i)
item.setIcon(colorpalettes.ColorIcon(self.colors[i]))
self.selected_classifiers = list(range(n))
self.target_cb.addItems(results.domain.class_var.values)
self.target_index = 0
def _rug(self, data, pen_args):
color = pen_args["pen"].color()
rh = 0.025
rug_x = np.c_[data.probs[:-1], data.probs[:-1]]
rug_x_true = rug_x[data.ytrue].ravel()
rug_x_false = rug_x[~data.ytrue].ravel()
rug_y_true = np.ones_like(rug_x_true)
rug_y_true[1::2] = 1 - rh
rug_y_false = np.zeros_like(rug_x_false)
rug_y_false[1::2] = rh
self.plot.plot(
rug_x_false, rug_y_false,
pen=color, connect="pairs", antialias=True)
self.plot.plot(
rug_x_true, rug_y_true,
pen=color, connect="pairs", antialias=True)
def plot_metrics(self, data, metrics, pen_args):
if metrics is None:
return self._prob_curve(data.ytrue, data.probs[:-1], pen_args)
ys = [metric(data) for metric in metrics]
for y in ys:
self.plot.plot(data.probs, y, **pen_args)
return data.probs, ys
def _prob_curve(self, ytrue, probs, pen_args):
xmin, xmax = probs.min(), probs.max()
x = np.linspace(xmin, xmax, 100)
if xmax != xmin:
f = gaussian_smoother(probs, ytrue, sigma=0.15 * (xmax - xmin))
y = f(x)
else:
y = np.full(100, xmax)
self.plot.plot(x, y, symbol="+", symbolSize=4, **pen_args)
return x, (y, )
def _setup_plot(self):
target = self.target_index
results = self.results
metrics = Metrics[self.score].functions
plot_folds = self.fold_curves and results.folds is not None
self.scores = []
if not self._check_class_presence(results.actual == target):
return
self.Warning.omitted_folds.clear()
self.Warning.omitted_nan_prob_points.clear()
no_valid_models = []
shadow_width = 4 + 4 * plot_folds
for clsf in self.selected_classifiers:
data = Curves.from_results(results, target, clsf)
if data.tot == 0: # all probabilities are nan
no_valid_models.append(clsf)
continue
if data.tot != results.probabilities.shape[1]: # some are nan
self.Warning.omitted_nan_prob_points()
color = self.colors[clsf]
pen_args = dict(
pen=pg.mkPen(color, width=1), antiAlias=True,
shadowPen=pg.mkPen(color.lighter(160), width=shadow_width))
self.scores.append(
(self.classifier_names[clsf],
self.plot_metrics(data, metrics, pen_args)))
if self.display_rug:
self._rug(data, pen_args)
if plot_folds:
pen_args = dict(
pen=pg.mkPen(color, width=1, style=Qt.DashLine),
antiAlias=True)
for fold in range(len(results.folds)):
fold_results = results.get_fold(fold)
fold_curve = Curves.from_results(fold_results, target, clsf)
# Can't check this before: p and n can be 0 because of
# nan probabilities
if fold_curve.p * fold_curve.n == 0:
self.Warning.omitted_folds()
self.plot_metrics(fold_curve, metrics, pen_args)
if no_valid_models:
self.Warning.no_valid_data(
", ".join(self.classifier_names[i] for i in no_valid_models))
if self.score == 0:
self.plot.plot([0, 1], [0, 1], antialias=True)
else:
self.line = pg.InfiniteLine(
pos=self.threshold, movable=True,
pen=pg.mkPen(color="k", style=Qt.DashLine, width=2),
hoverPen=pg.mkPen(color="k", style=Qt.DashLine, width=3),
bounds=(0, 1),
)
self.line.sigPositionChanged.connect(self.threshold_change)
self.line.sigPositionChangeFinished.connect(
self.threshold_change_done)
self.plot.addItem(self.line)
def _check_class_presence(self, ytrue):
self.Error.all_target_class.clear()
self.Error.no_target_class.clear()
if np.max(ytrue) == 0:
self.Error.no_target_class()
return False
if np.min(ytrue) == 1:
self.Error.all_target_class()
return False
return True
def _replot(self):
self.plot.clear()
if self.results is not None:
self._setup_plot()
self._update_info()
def _on_display_rug_changed(self):
self._replot()
def _on_selection_changed(self):
self._replot()
self.commit.deferred()
def threshold_change(self):
self.threshold = round(self.line.pos().x(), 2)
self.line.setPos(self.threshold)
self._update_info()
def get_info_text(self, short):
if short:
def elided(s):
return s[:17] + "..." if len(s) > 20 else s
text = f"""<table>
<tr>
<th align='right'>Threshold: p=</th>
<td colspan='4'>{self.threshold:.2f}<br/></td>
</tr>"""
else:
def elided(s):
return s
text = f"""<table>
<tr>
<th align='right'>Threshold:</th>
<td colspan='4'>p = {self.threshold:.2f}<br/>
</td>
<tr/>
</tr>"""
if self.scores is not None:
short_names = Metrics[self.score].short_names
if short_names:
text += f"""<tr>
<th></th>
{"<td></td>".join(f"<td align='right'>{n}</td>"
for n in short_names)}
</tr>"""
for name, (probs, curves) in self.scores:
ind = min(np.searchsorted(probs, self.threshold),
len(probs) - 1)
text += f"<tr><th align='right'>{elided(name)}:</th>"
text += "<td>/</td>".join(f'<td>{curve[ind]:.3f}</td>'
for curve in curves)
text += "</tr>"
text += "<table>"
return text
return None
def _update_info(self):
self.info_label.setText(self.get_info_text(short=True))
def threshold_change_done(self):
self.commit.deferred()
@gui.deferred
def commit(self):
self.Information.no_output.clear()
wrapped = None
results = self.results
if results is not None:
problems = check_can_calibrate(
self.results, self.selected_classifiers,
require_binary=self.score != 0)
if problems:
self.Information.no_output(problems)
else:
clsf_idx = self.selected_classifiers[0]
model = results.models[0, clsf_idx]
if self.score == 0:
cal_learner = CalibratedLearner(
None, self.output_calibration)
wrapped = cal_learner.get_model(
model, results.actual, results.probabilities[clsf_idx])
else:
threshold = [1 - self.threshold,
self.threshold][self.target_index]
wrapped = ThresholdClassifier(model, threshold)
self.Outputs.calibrated_model.send(wrapped)
def send_report(self):
if self.results is None:
return
self.report_items((
("Target class", self.target_cb.currentText()),
("Output model calibration",
self.score == 0
and ("Sigmoid calibration",
"Isotonic calibration")[self.output_calibration])
))
caption = report.list_legend(self.classifiers_list_box,
self.selected_classifiers)
self.report_plot()
self.report_caption(caption)
self.report_caption(self.controls.score.currentText())
if self.score != 0:
self.report_raw(self.get_info_text(short=False))
def set_visual_settings(self, key, value):
self.plot.parameter_setter.set_parameter(key, value)
self.visual_settings[key] = value
def gaussian_smoother(x, y, sigma=1.0):
x = np.asarray(x)
y = np.asarray(y)
gamma = 1. / (2 * sigma ** 2)
a = 1. / (sigma * np.sqrt(2 * np.pi))
if x.shape != y.shape:
raise ValueError
def smoother(xs):
W = a * np.exp(-gamma * ((xs - x) ** 2))
return np.average(y, weights=W)
return np.vectorize(smoother, otypes=[float])
if __name__ == "__main__": # pragma: no cover
WidgetPreview(OWCalibrationPlot).run(results_for_preview())
|