File: owparameterfitter.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (664 lines) | stat: -rw-r--r-- 24,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
from typing import Optional, Callable, Collection, Sequence

import numpy as np
from AnyQt.QtCore import QPointF, Qt, QSize
from AnyQt.QtGui import QStandardItemModel, QStandardItem, \
    QPainter, QFontMetrics
from AnyQt.QtWidgets import QGraphicsSceneHelpEvent, QToolTip, \
    QGridLayout, QSizePolicy, QWidget

import pyqtgraph as pg

from orangewidget.utils.itemmodels import signal_blocking
from orangewidget.utils.visual_settings_dlg import VisualSettingsDialog, \
    KeyType, ValueType

from Orange.base import Learner
from Orange.data import Table
from Orange.evaluation import CrossValidation, TestOnTrainingData, Results
from Orange.evaluation.scoring import Score, AUC, R2
from Orange.modelling import Fitter
from Orange.util import dummy_callback, wrap_callback
from Orange.widgets import gui
from Orange.widgets.settings import Setting
from Orange.widgets.utils import userinput
from Orange.widgets.utils.concurrent import ConcurrentWidgetMixin, TaskState
from Orange.widgets.utils.multi_target import check_multiple_targets_input
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.owscatterplotgraph import LegendItem
from Orange.widgets.visualize.utils.customizableplot import \
    CommonParameterSetter, Updater
from Orange.widgets.visualize.utils.plotutils import PlotWidget, \
    HelpEventDelegate
from Orange.widgets.widget import OWWidget, Input, Msg

N_FOLD = 7
MIN_MAX_SPIN = 100000
ScoreType = tuple[int, tuple[float, float]]
# scores, score name, label
FitterResults = tuple[list[ScoreType], str, str]


def _validate(
        data: Table,
        learner: Learner,
        scorer: type[Score],
        progress_callback: Callable
) -> tuple[float, float]:
    res: Results = TestOnTrainingData()(data, [learner],
                                        suppresses_exceptions=False,
                                        callback=wrap_callback(
                                            progress_callback, 0, 1/(1+N_FOLD))
                                        )
    res_cv: Results = CrossValidation(k=N_FOLD)(data, [learner],
                                                suppresses_exceptions=False,
                                                callback=wrap_callback(
                                                    progress_callback, 1/(1+N_FOLD), 1.)
                                                )
    # pylint: disable=unsubscriptable-object
    return scorer(res)[0], scorer(res_cv)[0]


def _search(
        data: Table,
        learner: Learner,
        fitted_parameter_props: Learner.FittedParameter,
        initial_parameters: dict[str, int],
        steps: Collection[int],
        progress_callback: Callable = dummy_callback
) -> FitterResults:
    progress_callback(0, "Calculating...")
    scores = []
    scorer = AUC if data.domain.has_discrete_class else R2
    name = fitted_parameter_props.name
    for i, value in enumerate(steps):
        params = initial_parameters.copy()
        params[name] = value
        result = _validate(data, type(learner)(**params), scorer,
                           wrap_callback(progress_callback, i / len(steps), (i+1) / len(steps)))
        scores.append((value, result))
    return scores, scorer.name, fitted_parameter_props.label


def run(
        data: Table,
        learner: Learner,
        fitted_parameter_props: Learner.FittedParameter,
        initial_parameters: dict[str, int],
        steps: Collection[int],
        state: TaskState
) -> FitterResults:
    def callback(i: float, status: str = ""):
        state.set_progress_value(i * 100)
        if status:
            state.set_status(status)
        if state.is_interruption_requested():
            # pylint: disable=broad-exception-raised
            raise Exception

    return _search(data, learner, fitted_parameter_props, initial_parameters,
                   steps, callback)


class ParameterSetter(CommonParameterSetter):
    GRID_LABEL, SHOW_GRID_LABEL = "Gridlines", "Show"
    DEFAULT_ALPHA_GRID, DEFAULT_SHOW_GRID = 80, True

    def __init__(self, master):
        self.grid_settings: Optional[dict] = None
        self.master: FitterPlot = master
        super().__init__()

    def update_setters(self):
        self.grid_settings = {
            Updater.ALPHA_LABEL: self.DEFAULT_ALPHA_GRID,
            self.SHOW_GRID_LABEL: self.DEFAULT_SHOW_GRID,
        }

        self.initial_settings = {
            self.LABELS_BOX: {
                self.FONT_FAMILY_LABEL: self.FONT_FAMILY_SETTING,
                self.AXIS_TITLE_LABEL: self.FONT_SETTING,
                self.AXIS_TICKS_LABEL: self.FONT_SETTING,
                self.LEGEND_LABEL: self.FONT_SETTING,
            },
            self.PLOT_BOX: {
                self.GRID_LABEL: {
                    self.SHOW_GRID_LABEL: (None, True),
                    Updater.ALPHA_LABEL: (range(0, 255, 5),
                                          self.DEFAULT_ALPHA_GRID),
                },
            },
        }

        def update_grid(**settings):
            self.grid_settings.update(**settings)
            self.master.showGrid(
                x=False, y=self.grid_settings[self.SHOW_GRID_LABEL],
                alpha=self.grid_settings[Updater.ALPHA_LABEL] / 255)

        self._setters[self.PLOT_BOX] = {self.GRID_LABEL: update_grid}

    @property
    def axis_items(self):
        return [value["item"] for value in
                self.master.getPlotItem().axes.values()]

    @property
    def legend_items(self):
        return self.master.legend.items


class FitterPlot(PlotWidget):
    BAR_WIDTH = 0.4

    def __init__(self):
        super().__init__(enableMenu=False)
        self.__bar_item_tr: Optional[pg.BarGraphItem] = None
        self.__bar_item_cv: Optional[pg.BarGraphItem] = None
        self.__data: Optional[list[ScoreType]] = None
        self.legend = self._create_legend()
        self.parameter_setter = ParameterSetter(self)
        self.setMouseEnabled(False, False)
        self.hideButtons()

        self.showGrid(x=False, y=self.parameter_setter.DEFAULT_SHOW_GRID,
                      alpha=self.parameter_setter.DEFAULT_ALPHA_GRID / 255)

        self.tooltip_delegate = HelpEventDelegate(self.help_event)
        self.scene().installEventFilter(self.tooltip_delegate)

    def _create_legend(self) -> LegendItem:
        legend = LegendItem()
        legend.setParentItem(self.getViewBox())
        legend.anchor((1, 1), (1, 1), offset=(-5, -5))
        legend.hide()
        return legend

    def clear_all(self):
        self.clear()
        self.__bar_item_tr = None
        self.__bar_item_cv = None
        self.__data = None
        self.setLabel(axis="bottom", text=None)
        self.setLabel(axis="left", text=None)
        self.getAxis("bottom").setTicks(None)

    def set_data(
            self,
            scores: list[ScoreType],
            score_name: str,
            parameter_name: str
    ):
        self.__data = scores
        self.clear()
        self.setLabel(axis="bottom", text=parameter_name)
        self.setLabel(axis="left", text=score_name)

        ticks = [[(i, str(val)) for i, (val, _)
                  in enumerate(scores)]]
        self.getAxis("bottom").setTicks(ticks)

        brush_tr = "#6fa255"
        brush_cv = "#3a78b6"
        pen = pg.mkPen("#333")
        kwargs = {"pen": pen, "width": self.BAR_WIDTH}
        bar_item_tr = pg.BarGraphItem(x=np.arange(len(scores)) - 0.2,
                                      height=[(s[0]) for _, s in scores],
                                      brush=brush_tr, **kwargs)
        bar_item_cv = pg.BarGraphItem(x=np.arange(len(scores)) + 0.2,
                                      height=[(s[1]) for _, s in scores],
                                      brush=brush_cv, **kwargs)
        self.addItem(bar_item_tr)
        self.addItem(bar_item_cv)
        self.__bar_item_tr = bar_item_tr
        self.__bar_item_cv = bar_item_cv

        self.legend.clear()
        kwargs = {"pen": pen, "symbol": "s"}
        scatter_item_tr = pg.ScatterPlotItem(brush=brush_tr, **kwargs)
        scatter_item_cv = pg.ScatterPlotItem(brush=brush_cv, **kwargs)
        self.legend.addItem(scatter_item_tr, "Train")
        self.legend.addItem(scatter_item_cv, "CV")
        Updater.update_legend_font(self.legend.items,
                                   **self.parameter_setter.legend_settings)
        self.legend.show()

    def help_event(self, ev: QGraphicsSceneHelpEvent) -> bool:
        if self.__bar_item_tr is None:
            return False

        pos = self.__bar_item_tr.mapFromScene(ev.scenePos())
        index = self.__get_index_at(pos)
        text = ""
        if index is not None:
            _, scores = self.__data[index]
            text = "<table align=left>" \
                   "<tr>" \
                   "<td><b>Train:</b></td>" \
                   f"<td>{round(scores[0], 3)}</td>" \
                   "</tr><tr>" \
                   "<td><b>CV:</b></td>" \
                   f"<td>{round(scores[1], 3)}</td>" \
                   "</tr>" \
                   "</table>"
        if text:
            QToolTip.showText(ev.screenPos(), text, widget=self)
            return True
        else:
            return False

    def __get_index_at(self, point: QPointF) -> Optional[int]:
        x = point.x()
        index = round(x)
        # pylint: disable=unsubscriptable-object
        heights_tr: list = self.__bar_item_tr.opts["height"]
        heights_cv: list = self.__bar_item_cv.opts["height"]
        if 0 <= index < len(heights_tr) and abs(index - x) <= self.BAR_WIDTH:
            if index > x and 0 <= point.y() <= heights_tr[index]:
                return index
            if x > index and 0 <= point.y() <= heights_cv[index]:
                return index
        return None


class RangePreview(QWidget):
    def __init__(self):
        super().__init__()
        font = self.font()
        font.setPointSize(font.pointSize() - 3)
        self.setFont(font)

        self.__steps: Optional[Sequence[int]] = None
        self.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Preferred)

    def minimumSizeHint(self):
        return QSize(1, 20)

    def set_steps(self, steps: Optional[Sequence[int]]):
        self.__steps = steps
        self.update()

    def steps(self):
        return self.__steps

    def paintEvent(self, _):
        if not self.__steps:
            return
        painter = QPainter(self)
        metrics = QFontMetrics(self.font())
        style = self.style()
        rect = self.rect()

        # Indent by the width of the radio button indicator
        rect.adjust(style.pixelMetric(style.PM_IndicatorWidth)
                    + style.pixelMetric(style.PM_CheckBoxLabelSpacing), 0, 0, 0)

        last_text = f"{self.__steps[-1]}"
        if len(self.__steps) > 1:
            last_text = ", " + last_text
        last_width = metrics.horizontalAdvance(last_text)

        elided_text = metrics.elidedText(
            "Steps: " + ", ".join(map(str, self.__steps[:-1])),
            Qt.ElideRight, rect.width() - last_width)
        elided_width = metrics.horizontalAdvance(elided_text)

        # Right-align by indenting by the underflow width
        rect.adjust(rect.width() - elided_width - last_width, 0, 0, 0)

        painter.drawText(rect, Qt.AlignLeft, elided_text)
        rect.adjust(elided_width, 0, 0, 0)
        painter.drawText(rect, Qt.AlignLeft, last_text)


class OWParameterFitter(OWWidget, ConcurrentWidgetMixin):
    name = "Parameter Fitter"
    description = "Fit learner for various values of fitting parameter."
    icon = "icons/ParameterFitter.svg"
    priority = 1110

    visual_settings = Setting({}, schema_only=True)
    graph_name = "graph.plotItem"

    class Inputs:
        data = Input("Data", Table)
        learner = Input("Learner", Learner)

    DEFAULT_PARAMETER_INDEX = 0
    DEFAULT_MINIMUM = 1
    DEFAULT_MAXIMUM = 9
    parameter_index = Setting(DEFAULT_PARAMETER_INDEX, schema_only=True)
    FROM_RANGE, MANUAL = range(2)
    type: int = Setting(FROM_RANGE)
    minimum: int = Setting(DEFAULT_MINIMUM, schema_only=True)
    maximum: int = Setting(DEFAULT_MAXIMUM, schema_only=True)
    manual_steps: str = Setting("", schema_only=True)
    auto_commit = Setting(True)

    class Error(OWWidget.Error):
        unknown_err = Msg("{}")
        not_enough_data = Msg(f"At least {N_FOLD} instances are needed.")
        incompatible_learner = Msg("{}")
        manual_steps_error = Msg("Invalid values for '{}': {}")
        min_max_error = Msg("Minimum must be less than maximum.")
        missing_target = Msg("Data has no target.")

    class Warning(OWWidget.Warning):
        no_parameters = Msg("{} has no parameters to fit.")

    def __init__(self):
        OWWidget.__init__(self)
        ConcurrentWidgetMixin.__init__(self)
        self._data: Optional[Table] = None
        self._learner: Optional[Learner] = None
        self.__parameters_model = QStandardItemModel()
        self.__initialize_settings = False

        self.setup_gui()
        VisualSettingsDialog(
            self, self.graph.parameter_setter.initial_settings
        )

    def setup_gui(self):
        self._add_plot()
        self._add_controls()

    def _add_plot(self):
        # This is a part of __init__
        # pylint: disable=attribute-defined-outside-init
        box = gui.vBox(self.mainArea)
        self.graph = FitterPlot()
        box.layout().addWidget(self.graph)

    def _add_controls(self):
        # This is a part of __init__
        # pylint: disable=attribute-defined-outside-init
        layout = QGridLayout()
        gui.widgetBox(self.controlArea, "Settings", orientation=layout)
        self.__combo = gui.comboBox(None, self, "parameter_index",
                                    model=self.__parameters_model,
                                    callback=self.__on_parameter_changed)
        layout.addWidget(self.__combo, 0, 0, 1, 2)

        buttons = gui.radioButtons(None, self, "type",
                                   callback=self.__on_type_changed)
        button = gui.appendRadioButton(buttons, "Range:")
        layout.addWidget(button, 1, 0)

        # pylint: disable=use-dict-literal
        kw = dict(minv=-MIN_MAX_SPIN, maxv=MIN_MAX_SPIN,
                  alignment=Qt.AlignRight,
                  callback=self.__on_min_max_changed)
        box = gui.hBox(None)
        self.__spin_min = gui.spin(box, self, "minimum", label="From:", **kw)
        layout.addWidget(box, 1, 1)

        box = gui.hBox(None)
        self.__spin_max = gui.spin(box, self, "maximum", label="To:", **kw)
        layout.addWidget(box, 2, 1)

        self.range_preview = RangePreview()
        layout.addWidget(self.range_preview, 3, 0, 1, 2)

        gui.appendRadioButton(buttons, "Manual:")
        layout.addWidget(buttons, 4, 0)
        self.edit = gui.lineEdit(None, self, "manual_steps",
                                 placeholderText="e.g. 10, 20, ..., 50",
                                 callback=self.__on_manual_changed)
        layout.addWidget(self.edit, 4, 1)

        # gui.lineEdit's connect does not call the callback on return pressed
        # if the line hasn't changed.
        @self.edit.returnPressed.connect
        def _():
            if self.type != self.MANUAL:
                self.type = self.MANUAL
                self.__on_type_changed()

        gui.rubber(self.controlArea)

        gui.auto_apply(self.buttonsArea, self, "auto_commit")

        self._update_preview()

    def __on_type_changed(self):
        self._settings_changed()

    def __on_parameter_changed(self):
        self.__initialize_settings = True
        self._set_range_controls(self.fitted_parameters[self.parameter_index])
        self._settings_changed()

    def __on_min_max_changed(self):
        self.type = self.FROM_RANGE
        self._settings_changed()

    def __on_manual_changed(self):
        self.type = self.MANUAL
        self._settings_changed()

    def _settings_changed(self):
        self._update_preview()
        self.commit.deferred()

    @property
    def fitted_parameters(self) -> list:
        if not self._learner:
            return []
        return self._learner.fitted_parameters

    @property
    def initial_parameters(self) -> dict:
        if not self._learner:
            return {}
        if isinstance(self._learner, Fitter):
            return self._learner.get_params(self._data or "classification")
        return self._learner.params

    @property
    def steps(self) -> tuple[int, ...]:
        self.Error.min_max_error.clear()
        self.Error.manual_steps_error.clear()

        if self.type == self.FROM_RANGE:
            return self._steps_from_range()
        else:
            return self._steps_from_manual()

    def _steps_from_range(self) -> tuple[int, ...]:
        if self.maximum < self.minimum:
            self.Error.min_max_error()
            return ()

        if self.minimum == self.maximum:
            return (self.minimum, )

        diff = self.maximum - self.minimum
        # This should give between 10 and 15 steps
        exp = max(0, int(np.ceil(np.log10(diff / 1.5))) - 1)
        step = int(10 ** exp)
        return (self.minimum,
                *range((self.minimum // step + 1) * step, self.maximum, step),
                self.maximum)

    def _steps_from_manual(self) -> tuple[int, ...]:
        param = self.fitted_parameters[self.parameter_index]
        try:
            steps = userinput.numbers_from_list(
                self.manual_steps, int, param.min, param.max)
        except ValueError as ex:
            self.Error.manual_steps_error(param.label, ex)
            return ()
        if steps and "..." not in self.manual_steps:
            self.manual_steps = ", ".join(map(str, steps))
        return steps

    @Inputs.data
    @check_multiple_targets_input
    def set_data(self, data: Optional[Table]):
        self.Error.not_enough_data.clear()
        self.Error.missing_target.clear()
        self._data = data
        if self._data and len(self._data) < N_FOLD:
            self.Error.not_enough_data()
            self._data = None
        if self._data and len(self._data.domain.class_vars) < 1:
            self.Error.missing_target()
            self._data = None

    @Inputs.learner
    def set_learner(self, learner: Optional[Learner]):
        self.Warning.clear()
        self.Error.manual_steps_error.clear()
        self.Error.min_max_error.clear()
        self.__parameters_model.clear()

        if not learner:
            self.__initialize_settings = False
            # reset spin controls
            ars = (None, None, int, None, None)
            self._set_range_controls(Learner.FittedParameter(*ars))

        elif self._learner:
            self.__initialize_settings = \
                learner.fitted_parameters != self.fitted_parameters

        else:
            # changed by user or opened workflow
            self.__initialize_settings = \
                self.parameter_index == self.DEFAULT_PARAMETER_INDEX and \
                self.minimum == self.DEFAULT_MINIMUM and \
                self.maximum == self.DEFAULT_MAXIMUM

        self._learner = learner
        if self._learner is None:
            return

        for param in self.fitted_parameters:
            item = QStandardItem(param.label)
            self.__parameters_model.appendRow(item)

        if not self.fitted_parameters:
            self.Warning.no_parameters(self._learner.name)
        else:
            if self.__initialize_settings:
                self.parameter_index = 0
            else:
                self.__combo.setCurrentIndex(self.parameter_index)
            self._set_range_controls(
                self.fitted_parameters[self.parameter_index])

        self._update_preview()

    def handleNewSignals(self):
        self.Error.unknown_err.clear()
        self.Error.incompatible_learner.clear()
        self.clear()

        if not self._data or not self._learner:
            return

        reason = self._learner.incompatibility_reason(self._data.domain)
        if reason:
            self.Error.incompatible_learner(reason)
            return

        self.commit.now()

    def _set_range_controls(self, param: Learner.FittedParameter):
        assert param.type == int, \
            "The widget currently supports only int parameters"

        # Block signals to avoid changing `self.type`
        with signal_blocking(self.__spin_min), signal_blocking(self.__spin_max):
            if param.min is not None:
                self.__spin_min.setMinimum(param.min)
                self.__spin_max.setMinimum(param.min)
                self.minimum = param.min if self.__initialize_settings else \
                    max(self.minimum, param.min)
            else:
                self.__spin_min.setMinimum(-MIN_MAX_SPIN)
                self.__spin_max.setMinimum(-MIN_MAX_SPIN)
                if self.__initialize_settings:
                    self.minimum = self.initial_parameters[param.name]
            if param.max is not None:
                self.__spin_min.setMaximum(param.max)
                self.__spin_max.setMaximum(param.max)
                if self.__initialize_settings:
                    self.maximum = param.max
                self.maximum = param.max if self.__initialize_settings else \
                    min(self.maximum, param.max)
            else:
                self.__spin_min.setMaximum(MIN_MAX_SPIN)
                self.__spin_max.setMaximum(MIN_MAX_SPIN)
                if self.__initialize_settings:
                    self.maximum = self.initial_parameters[param.name]
            self.__initialize_settings = False

        tip = "Enter a list of values"
        if param.min is not None:
            if param.max is not None:
                self.edit.setToolTip(f"{tip} between {param.min} and {param.max}.")
            else:
                self.edit.setToolTip(f"{tip} greater or equal to {param.min}.")
        elif param.max is not None:
            self.edit.setToolTip(f"{tip} smaller or equal to {param.max}.")
        else:
            self.edit.setToolTip("")

    def _update_preview(self):
        if self.type == self.FROM_RANGE:
            self.range_preview.set_steps(self.steps)
        else:
            self.range_preview.set_steps(None)

    def clear(self):
        self.cancel()
        self.graph.clear_all()

    @gui.deferred
    def commit(self):
        self.graph.clear_all()
        if self._data is None or self._learner is None or \
                not self.fitted_parameters or not self.steps:
            return
        self.start(run, self._data, self._learner,
                   self.fitted_parameters[self.parameter_index],
                   self.initial_parameters, self.steps)

    def on_done(self, result: FitterResults):
        self.graph.set_data(*result)

    def on_exception(self, ex: Exception):
        self.Error.unknown_err(ex)

    def on_partial_result(self, _):
        pass

    def onDeleteWidget(self):
        self.shutdown()
        super().onDeleteWidget()

    def send_report(self):
        if self._data is None or self._learner is None \
                or not self.fitted_parameters:
            return
        parameter = self.fitted_parameters[self.parameter_index].label
        self.report_items("Settings",
                          [("Parameter", parameter),
                           ("Range", ", ".join(map(str, self.steps)))])
        self.report_name("Plot")
        self.report_plot()

    def set_visual_settings(self, key: KeyType, value: ValueType):
        self.graph.parameter_setter.set_parameter(key, value)
        # pylint: disable=unsupported-assignment-operation
        self.visual_settings[key] = value


if __name__ == "__main__":
    from Orange.regression import PLSRegressionLearner

    WidgetPreview(OWParameterFitter).run(
        set_data=Table("housing"), set_learner=PLSRegressionLearner())