1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
from typing import Optional, Callable, Collection, Sequence
import numpy as np
from AnyQt.QtCore import QPointF, Qt, QSize
from AnyQt.QtGui import QStandardItemModel, QStandardItem, \
QPainter, QFontMetrics
from AnyQt.QtWidgets import QGraphicsSceneHelpEvent, QToolTip, \
QGridLayout, QSizePolicy, QWidget
import pyqtgraph as pg
from orangewidget.utils.itemmodels import signal_blocking
from orangewidget.utils.visual_settings_dlg import VisualSettingsDialog, \
KeyType, ValueType
from Orange.base import Learner
from Orange.data import Table
from Orange.evaluation import CrossValidation, TestOnTrainingData, Results
from Orange.evaluation.scoring import Score, AUC, R2
from Orange.modelling import Fitter
from Orange.util import dummy_callback, wrap_callback
from Orange.widgets import gui
from Orange.widgets.settings import Setting
from Orange.widgets.utils import userinput
from Orange.widgets.utils.concurrent import ConcurrentWidgetMixin, TaskState
from Orange.widgets.utils.multi_target import check_multiple_targets_input
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.owscatterplotgraph import LegendItem
from Orange.widgets.visualize.utils.customizableplot import \
CommonParameterSetter, Updater
from Orange.widgets.visualize.utils.plotutils import PlotWidget, \
HelpEventDelegate
from Orange.widgets.widget import OWWidget, Input, Msg
N_FOLD = 7
MIN_MAX_SPIN = 100000
ScoreType = tuple[int, tuple[float, float]]
# scores, score name, label
FitterResults = tuple[list[ScoreType], str, str]
def _validate(
data: Table,
learner: Learner,
scorer: type[Score],
progress_callback: Callable
) -> tuple[float, float]:
res: Results = TestOnTrainingData()(data, [learner],
suppresses_exceptions=False,
callback=wrap_callback(
progress_callback, 0, 1/(1+N_FOLD))
)
res_cv: Results = CrossValidation(k=N_FOLD)(data, [learner],
suppresses_exceptions=False,
callback=wrap_callback(
progress_callback, 1/(1+N_FOLD), 1.)
)
# pylint: disable=unsubscriptable-object
return scorer(res)[0], scorer(res_cv)[0]
def _search(
data: Table,
learner: Learner,
fitted_parameter_props: Learner.FittedParameter,
initial_parameters: dict[str, int],
steps: Collection[int],
progress_callback: Callable = dummy_callback
) -> FitterResults:
progress_callback(0, "Calculating...")
scores = []
scorer = AUC if data.domain.has_discrete_class else R2
name = fitted_parameter_props.name
for i, value in enumerate(steps):
params = initial_parameters.copy()
params[name] = value
result = _validate(data, type(learner)(**params), scorer,
wrap_callback(progress_callback, i / len(steps), (i+1) / len(steps)))
scores.append((value, result))
return scores, scorer.name, fitted_parameter_props.label
def run(
data: Table,
learner: Learner,
fitted_parameter_props: Learner.FittedParameter,
initial_parameters: dict[str, int],
steps: Collection[int],
state: TaskState
) -> FitterResults:
def callback(i: float, status: str = ""):
state.set_progress_value(i * 100)
if status:
state.set_status(status)
if state.is_interruption_requested():
# pylint: disable=broad-exception-raised
raise Exception
return _search(data, learner, fitted_parameter_props, initial_parameters,
steps, callback)
class ParameterSetter(CommonParameterSetter):
GRID_LABEL, SHOW_GRID_LABEL = "Gridlines", "Show"
DEFAULT_ALPHA_GRID, DEFAULT_SHOW_GRID = 80, True
def __init__(self, master):
self.grid_settings: Optional[dict] = None
self.master: FitterPlot = master
super().__init__()
def update_setters(self):
self.grid_settings = {
Updater.ALPHA_LABEL: self.DEFAULT_ALPHA_GRID,
self.SHOW_GRID_LABEL: self.DEFAULT_SHOW_GRID,
}
self.initial_settings = {
self.LABELS_BOX: {
self.FONT_FAMILY_LABEL: self.FONT_FAMILY_SETTING,
self.AXIS_TITLE_LABEL: self.FONT_SETTING,
self.AXIS_TICKS_LABEL: self.FONT_SETTING,
self.LEGEND_LABEL: self.FONT_SETTING,
},
self.PLOT_BOX: {
self.GRID_LABEL: {
self.SHOW_GRID_LABEL: (None, True),
Updater.ALPHA_LABEL: (range(0, 255, 5),
self.DEFAULT_ALPHA_GRID),
},
},
}
def update_grid(**settings):
self.grid_settings.update(**settings)
self.master.showGrid(
x=False, y=self.grid_settings[self.SHOW_GRID_LABEL],
alpha=self.grid_settings[Updater.ALPHA_LABEL] / 255)
self._setters[self.PLOT_BOX] = {self.GRID_LABEL: update_grid}
@property
def axis_items(self):
return [value["item"] for value in
self.master.getPlotItem().axes.values()]
@property
def legend_items(self):
return self.master.legend.items
class FitterPlot(PlotWidget):
BAR_WIDTH = 0.4
def __init__(self):
super().__init__(enableMenu=False)
self.__bar_item_tr: Optional[pg.BarGraphItem] = None
self.__bar_item_cv: Optional[pg.BarGraphItem] = None
self.__data: Optional[list[ScoreType]] = None
self.legend = self._create_legend()
self.parameter_setter = ParameterSetter(self)
self.setMouseEnabled(False, False)
self.hideButtons()
self.showGrid(x=False, y=self.parameter_setter.DEFAULT_SHOW_GRID,
alpha=self.parameter_setter.DEFAULT_ALPHA_GRID / 255)
self.tooltip_delegate = HelpEventDelegate(self.help_event)
self.scene().installEventFilter(self.tooltip_delegate)
def _create_legend(self) -> LegendItem:
legend = LegendItem()
legend.setParentItem(self.getViewBox())
legend.anchor((1, 1), (1, 1), offset=(-5, -5))
legend.hide()
return legend
def clear_all(self):
self.clear()
self.__bar_item_tr = None
self.__bar_item_cv = None
self.__data = None
self.setLabel(axis="bottom", text=None)
self.setLabel(axis="left", text=None)
self.getAxis("bottom").setTicks(None)
def set_data(
self,
scores: list[ScoreType],
score_name: str,
parameter_name: str
):
self.__data = scores
self.clear()
self.setLabel(axis="bottom", text=parameter_name)
self.setLabel(axis="left", text=score_name)
ticks = [[(i, str(val)) for i, (val, _)
in enumerate(scores)]]
self.getAxis("bottom").setTicks(ticks)
brush_tr = "#6fa255"
brush_cv = "#3a78b6"
pen = pg.mkPen("#333")
kwargs = {"pen": pen, "width": self.BAR_WIDTH}
bar_item_tr = pg.BarGraphItem(x=np.arange(len(scores)) - 0.2,
height=[(s[0]) for _, s in scores],
brush=brush_tr, **kwargs)
bar_item_cv = pg.BarGraphItem(x=np.arange(len(scores)) + 0.2,
height=[(s[1]) for _, s in scores],
brush=brush_cv, **kwargs)
self.addItem(bar_item_tr)
self.addItem(bar_item_cv)
self.__bar_item_tr = bar_item_tr
self.__bar_item_cv = bar_item_cv
self.legend.clear()
kwargs = {"pen": pen, "symbol": "s"}
scatter_item_tr = pg.ScatterPlotItem(brush=brush_tr, **kwargs)
scatter_item_cv = pg.ScatterPlotItem(brush=brush_cv, **kwargs)
self.legend.addItem(scatter_item_tr, "Train")
self.legend.addItem(scatter_item_cv, "CV")
Updater.update_legend_font(self.legend.items,
**self.parameter_setter.legend_settings)
self.legend.show()
def help_event(self, ev: QGraphicsSceneHelpEvent) -> bool:
if self.__bar_item_tr is None:
return False
pos = self.__bar_item_tr.mapFromScene(ev.scenePos())
index = self.__get_index_at(pos)
text = ""
if index is not None:
_, scores = self.__data[index]
text = "<table align=left>" \
"<tr>" \
"<td><b>Train:</b></td>" \
f"<td>{round(scores[0], 3)}</td>" \
"</tr><tr>" \
"<td><b>CV:</b></td>" \
f"<td>{round(scores[1], 3)}</td>" \
"</tr>" \
"</table>"
if text:
QToolTip.showText(ev.screenPos(), text, widget=self)
return True
else:
return False
def __get_index_at(self, point: QPointF) -> Optional[int]:
x = point.x()
index = round(x)
# pylint: disable=unsubscriptable-object
heights_tr: list = self.__bar_item_tr.opts["height"]
heights_cv: list = self.__bar_item_cv.opts["height"]
if 0 <= index < len(heights_tr) and abs(index - x) <= self.BAR_WIDTH:
if index > x and 0 <= point.y() <= heights_tr[index]:
return index
if x > index and 0 <= point.y() <= heights_cv[index]:
return index
return None
class RangePreview(QWidget):
def __init__(self):
super().__init__()
font = self.font()
font.setPointSize(font.pointSize() - 3)
self.setFont(font)
self.__steps: Optional[Sequence[int]] = None
self.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Preferred)
def minimumSizeHint(self):
return QSize(1, 20)
def set_steps(self, steps: Optional[Sequence[int]]):
self.__steps = steps
self.update()
def steps(self):
return self.__steps
def paintEvent(self, _):
if not self.__steps:
return
painter = QPainter(self)
metrics = QFontMetrics(self.font())
style = self.style()
rect = self.rect()
# Indent by the width of the radio button indicator
rect.adjust(style.pixelMetric(style.PM_IndicatorWidth)
+ style.pixelMetric(style.PM_CheckBoxLabelSpacing), 0, 0, 0)
last_text = f"{self.__steps[-1]}"
if len(self.__steps) > 1:
last_text = ", " + last_text
last_width = metrics.horizontalAdvance(last_text)
elided_text = metrics.elidedText(
"Steps: " + ", ".join(map(str, self.__steps[:-1])),
Qt.ElideRight, rect.width() - last_width)
elided_width = metrics.horizontalAdvance(elided_text)
# Right-align by indenting by the underflow width
rect.adjust(rect.width() - elided_width - last_width, 0, 0, 0)
painter.drawText(rect, Qt.AlignLeft, elided_text)
rect.adjust(elided_width, 0, 0, 0)
painter.drawText(rect, Qt.AlignLeft, last_text)
class OWParameterFitter(OWWidget, ConcurrentWidgetMixin):
name = "Parameter Fitter"
description = "Fit learner for various values of fitting parameter."
icon = "icons/ParameterFitter.svg"
priority = 1110
visual_settings = Setting({}, schema_only=True)
graph_name = "graph.plotItem"
class Inputs:
data = Input("Data", Table)
learner = Input("Learner", Learner)
DEFAULT_PARAMETER_INDEX = 0
DEFAULT_MINIMUM = 1
DEFAULT_MAXIMUM = 9
parameter_index = Setting(DEFAULT_PARAMETER_INDEX, schema_only=True)
FROM_RANGE, MANUAL = range(2)
type: int = Setting(FROM_RANGE)
minimum: int = Setting(DEFAULT_MINIMUM, schema_only=True)
maximum: int = Setting(DEFAULT_MAXIMUM, schema_only=True)
manual_steps: str = Setting("", schema_only=True)
auto_commit = Setting(True)
class Error(OWWidget.Error):
unknown_err = Msg("{}")
not_enough_data = Msg(f"At least {N_FOLD} instances are needed.")
incompatible_learner = Msg("{}")
manual_steps_error = Msg("Invalid values for '{}': {}")
min_max_error = Msg("Minimum must be less than maximum.")
missing_target = Msg("Data has no target.")
class Warning(OWWidget.Warning):
no_parameters = Msg("{} has no parameters to fit.")
def __init__(self):
OWWidget.__init__(self)
ConcurrentWidgetMixin.__init__(self)
self._data: Optional[Table] = None
self._learner: Optional[Learner] = None
self.__parameters_model = QStandardItemModel()
self.__initialize_settings = False
self.setup_gui()
VisualSettingsDialog(
self, self.graph.parameter_setter.initial_settings
)
def setup_gui(self):
self._add_plot()
self._add_controls()
def _add_plot(self):
# This is a part of __init__
# pylint: disable=attribute-defined-outside-init
box = gui.vBox(self.mainArea)
self.graph = FitterPlot()
box.layout().addWidget(self.graph)
def _add_controls(self):
# This is a part of __init__
# pylint: disable=attribute-defined-outside-init
layout = QGridLayout()
gui.widgetBox(self.controlArea, "Settings", orientation=layout)
self.__combo = gui.comboBox(None, self, "parameter_index",
model=self.__parameters_model,
callback=self.__on_parameter_changed)
layout.addWidget(self.__combo, 0, 0, 1, 2)
buttons = gui.radioButtons(None, self, "type",
callback=self.__on_type_changed)
button = gui.appendRadioButton(buttons, "Range:")
layout.addWidget(button, 1, 0)
# pylint: disable=use-dict-literal
kw = dict(minv=-MIN_MAX_SPIN, maxv=MIN_MAX_SPIN,
alignment=Qt.AlignRight,
callback=self.__on_min_max_changed)
box = gui.hBox(None)
self.__spin_min = gui.spin(box, self, "minimum", label="From:", **kw)
layout.addWidget(box, 1, 1)
box = gui.hBox(None)
self.__spin_max = gui.spin(box, self, "maximum", label="To:", **kw)
layout.addWidget(box, 2, 1)
self.range_preview = RangePreview()
layout.addWidget(self.range_preview, 3, 0, 1, 2)
gui.appendRadioButton(buttons, "Manual:")
layout.addWidget(buttons, 4, 0)
self.edit = gui.lineEdit(None, self, "manual_steps",
placeholderText="e.g. 10, 20, ..., 50",
callback=self.__on_manual_changed)
layout.addWidget(self.edit, 4, 1)
# gui.lineEdit's connect does not call the callback on return pressed
# if the line hasn't changed.
@self.edit.returnPressed.connect
def _():
if self.type != self.MANUAL:
self.type = self.MANUAL
self.__on_type_changed()
gui.rubber(self.controlArea)
gui.auto_apply(self.buttonsArea, self, "auto_commit")
self._update_preview()
def __on_type_changed(self):
self._settings_changed()
def __on_parameter_changed(self):
self.__initialize_settings = True
self._set_range_controls(self.fitted_parameters[self.parameter_index])
self._settings_changed()
def __on_min_max_changed(self):
self.type = self.FROM_RANGE
self._settings_changed()
def __on_manual_changed(self):
self.type = self.MANUAL
self._settings_changed()
def _settings_changed(self):
self._update_preview()
self.commit.deferred()
@property
def fitted_parameters(self) -> list:
if not self._learner:
return []
return self._learner.fitted_parameters
@property
def initial_parameters(self) -> dict:
if not self._learner:
return {}
if isinstance(self._learner, Fitter):
return self._learner.get_params(self._data or "classification")
return self._learner.params
@property
def steps(self) -> tuple[int, ...]:
self.Error.min_max_error.clear()
self.Error.manual_steps_error.clear()
if self.type == self.FROM_RANGE:
return self._steps_from_range()
else:
return self._steps_from_manual()
def _steps_from_range(self) -> tuple[int, ...]:
if self.maximum < self.minimum:
self.Error.min_max_error()
return ()
if self.minimum == self.maximum:
return (self.minimum, )
diff = self.maximum - self.minimum
# This should give between 10 and 15 steps
exp = max(0, int(np.ceil(np.log10(diff / 1.5))) - 1)
step = int(10 ** exp)
return (self.minimum,
*range((self.minimum // step + 1) * step, self.maximum, step),
self.maximum)
def _steps_from_manual(self) -> tuple[int, ...]:
param = self.fitted_parameters[self.parameter_index]
try:
steps = userinput.numbers_from_list(
self.manual_steps, int, param.min, param.max)
except ValueError as ex:
self.Error.manual_steps_error(param.label, ex)
return ()
if steps and "..." not in self.manual_steps:
self.manual_steps = ", ".join(map(str, steps))
return steps
@Inputs.data
@check_multiple_targets_input
def set_data(self, data: Optional[Table]):
self.Error.not_enough_data.clear()
self.Error.missing_target.clear()
self._data = data
if self._data and len(self._data) < N_FOLD:
self.Error.not_enough_data()
self._data = None
if self._data and len(self._data.domain.class_vars) < 1:
self.Error.missing_target()
self._data = None
@Inputs.learner
def set_learner(self, learner: Optional[Learner]):
self.Warning.clear()
self.Error.manual_steps_error.clear()
self.Error.min_max_error.clear()
self.__parameters_model.clear()
if not learner:
self.__initialize_settings = False
# reset spin controls
ars = (None, None, int, None, None)
self._set_range_controls(Learner.FittedParameter(*ars))
elif self._learner:
self.__initialize_settings = \
learner.fitted_parameters != self.fitted_parameters
else:
# changed by user or opened workflow
self.__initialize_settings = \
self.parameter_index == self.DEFAULT_PARAMETER_INDEX and \
self.minimum == self.DEFAULT_MINIMUM and \
self.maximum == self.DEFAULT_MAXIMUM
self._learner = learner
if self._learner is None:
return
for param in self.fitted_parameters:
item = QStandardItem(param.label)
self.__parameters_model.appendRow(item)
if not self.fitted_parameters:
self.Warning.no_parameters(self._learner.name)
else:
if self.__initialize_settings:
self.parameter_index = 0
else:
self.__combo.setCurrentIndex(self.parameter_index)
self._set_range_controls(
self.fitted_parameters[self.parameter_index])
self._update_preview()
def handleNewSignals(self):
self.Error.unknown_err.clear()
self.Error.incompatible_learner.clear()
self.clear()
if not self._data or not self._learner:
return
reason = self._learner.incompatibility_reason(self._data.domain)
if reason:
self.Error.incompatible_learner(reason)
return
self.commit.now()
def _set_range_controls(self, param: Learner.FittedParameter):
assert param.type == int, \
"The widget currently supports only int parameters"
# Block signals to avoid changing `self.type`
with signal_blocking(self.__spin_min), signal_blocking(self.__spin_max):
if param.min is not None:
self.__spin_min.setMinimum(param.min)
self.__spin_max.setMinimum(param.min)
self.minimum = param.min if self.__initialize_settings else \
max(self.minimum, param.min)
else:
self.__spin_min.setMinimum(-MIN_MAX_SPIN)
self.__spin_max.setMinimum(-MIN_MAX_SPIN)
if self.__initialize_settings:
self.minimum = self.initial_parameters[param.name]
if param.max is not None:
self.__spin_min.setMaximum(param.max)
self.__spin_max.setMaximum(param.max)
if self.__initialize_settings:
self.maximum = param.max
self.maximum = param.max if self.__initialize_settings else \
min(self.maximum, param.max)
else:
self.__spin_min.setMaximum(MIN_MAX_SPIN)
self.__spin_max.setMaximum(MIN_MAX_SPIN)
if self.__initialize_settings:
self.maximum = self.initial_parameters[param.name]
self.__initialize_settings = False
tip = "Enter a list of values"
if param.min is not None:
if param.max is not None:
self.edit.setToolTip(f"{tip} between {param.min} and {param.max}.")
else:
self.edit.setToolTip(f"{tip} greater or equal to {param.min}.")
elif param.max is not None:
self.edit.setToolTip(f"{tip} smaller or equal to {param.max}.")
else:
self.edit.setToolTip("")
def _update_preview(self):
if self.type == self.FROM_RANGE:
self.range_preview.set_steps(self.steps)
else:
self.range_preview.set_steps(None)
def clear(self):
self.cancel()
self.graph.clear_all()
@gui.deferred
def commit(self):
self.graph.clear_all()
if self._data is None or self._learner is None or \
not self.fitted_parameters or not self.steps:
return
self.start(run, self._data, self._learner,
self.fitted_parameters[self.parameter_index],
self.initial_parameters, self.steps)
def on_done(self, result: FitterResults):
self.graph.set_data(*result)
def on_exception(self, ex: Exception):
self.Error.unknown_err(ex)
def on_partial_result(self, _):
pass
def onDeleteWidget(self):
self.shutdown()
super().onDeleteWidget()
def send_report(self):
if self._data is None or self._learner is None \
or not self.fitted_parameters:
return
parameter = self.fitted_parameters[self.parameter_index].label
self.report_items("Settings",
[("Parameter", parameter),
("Range", ", ".join(map(str, self.steps)))])
self.report_name("Plot")
self.report_plot()
def set_visual_settings(self, key: KeyType, value: ValueType):
self.graph.parameter_setter.set_parameter(key, value)
# pylint: disable=unsupported-assignment-operation
self.visual_settings[key] = value
if __name__ == "__main__":
from Orange.regression import PLSRegressionLearner
WidgetPreview(OWParameterFitter).run(
set_data=Table("housing"), set_learner=PLSRegressionLearner())
|