1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
from typing import Optional, Tuple, Callable, List, Dict, Union
import numpy as np
from scipy.stats import spearmanr, linregress
from AnyQt.QtCore import Qt
from AnyQt.QtWidgets import QLabel
import pyqtgraph as pg
from orangewidget.utils.visual_settings_dlg import VisualSettingsDialog, \
KeyType, ValueType
from Orange.base import Learner
from Orange.data import Table
from Orange.data.table import DomainTransformationError
from Orange.evaluation import CrossValidation, R2, AUC, TestOnTrainingData, \
Results
from Orange.evaluation.scoring import Score
from Orange.util import dummy_callback
from Orange.widgets import gui
from Orange.widgets.settings import Setting
from Orange.widgets.utils.concurrent import ConcurrentWidgetMixin, TaskState
from Orange.widgets.utils.multi_target import check_multiple_targets_input
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.owscatterplotgraph import LegendItem
from Orange.widgets.visualize.utils.customizableplot import \
CommonParameterSetter, Updater
from Orange.widgets.visualize.utils.plotutils import PlotWidget
from Orange.widgets.widget import OWWidget, Input, Msg
N_FOLD = 7
# corr, scores_tr, intercept_tr, slope_tr,
# scores_cv, intercept_cv, slope_cv, score_name
PermutationResults = \
Tuple[np.ndarray, List, float, float, List, float, float, str]
def _f_lin(
intercept: float,
slope: float,
x: Union[float, np.ndarray]
) -> Union[float, np.ndarray]:
return intercept + slope * x
def _correlation(y: np.ndarray, y_pred: np.ndarray) -> float:
return spearmanr(y, y_pred)[0] * 100
def _validate(
data: Table,
learner: Learner,
scorer: Score
) -> Tuple[float, float]:
res: Results = TestOnTrainingData()(data, [learner],
suppresses_exceptions=False)
res_cv: Results = CrossValidation(k=N_FOLD)(data, [learner],
suppresses_exceptions=False)
# pylint: disable=unsubscriptable-object
return scorer(res)[0], scorer(res_cv)[0]
def permutation(
data: Table,
learner: Learner,
n_perm: int = 100,
progress_callback: Callable = dummy_callback
) -> PermutationResults:
scorer = AUC if data.domain.has_discrete_class else R2
score_tr, score_cv = _validate(data, learner, scorer)
scores_tr = [score_tr]
scores_cv = [score_cv]
correlations = [100.0]
progress_callback(0, "Calculating...")
np.random.seed(0)
data_perm = data.copy()
for i in range(n_perm):
progress_callback(i / n_perm)
np.random.shuffle(data_perm.Y)
score_tr, score_cv = _validate(data_perm, learner, scorer)
correlations.append(_correlation(data.Y, data_perm.Y))
scores_tr.append(score_tr)
scores_cv.append(score_cv)
correlations = np.abs(correlations)
res_tr = linregress([correlations[0], np.mean(correlations[1:])],
[scores_tr[0], np.mean(scores_tr[1:])])
res_cv = linregress([correlations[0], np.mean(correlations[1:])],
[scores_cv[0], np.mean(scores_cv[1:])])
return (correlations, scores_tr, res_tr.intercept, res_tr.slope,
scores_cv, res_cv.intercept, res_cv.slope, scorer.name)
def run(
data: Table,
learner: Learner,
n_perm: int,
state: TaskState
) -> PermutationResults:
def callback(i: float, status: str = ""):
state.set_progress_value(i * 100)
if status:
state.set_status(status)
if state.is_interruption_requested():
# pylint: disable=broad-exception-raised
raise Exception
return permutation(data, learner, n_perm, callback)
class ParameterSetter(CommonParameterSetter):
GRID_LABEL, SHOW_GRID_LABEL = "Gridlines", "Show"
DEFAULT_ALPHA_GRID, DEFAULT_SHOW_GRID = 80, True
def __init__(self, master):
self.grid_settings: Dict = None
self.master: PermutationPlot = master
super().__init__()
def update_setters(self):
self.grid_settings = {
Updater.ALPHA_LABEL: self.DEFAULT_ALPHA_GRID,
self.SHOW_GRID_LABEL: self.DEFAULT_SHOW_GRID,
}
self.initial_settings = {
self.LABELS_BOX: {
self.FONT_FAMILY_LABEL: self.FONT_FAMILY_SETTING,
self.TITLE_LABEL: self.FONT_SETTING,
self.AXIS_TITLE_LABEL: self.FONT_SETTING,
self.AXIS_TICKS_LABEL: self.FONT_SETTING,
self.LEGEND_LABEL: self.FONT_SETTING,
},
self.PLOT_BOX: {
self.GRID_LABEL: {
self.SHOW_GRID_LABEL: (None, True),
Updater.ALPHA_LABEL: (range(0, 255, 5),
self.DEFAULT_ALPHA_GRID),
},
},
}
def update_grid(**settings):
self.grid_settings.update(**settings)
self.master.showGrid(
x=self.grid_settings[self.SHOW_GRID_LABEL],
y=self.grid_settings[self.SHOW_GRID_LABEL],
alpha=self.grid_settings[Updater.ALPHA_LABEL] / 255)
self._setters[self.PLOT_BOX] = {self.GRID_LABEL: update_grid}
@property
def title_item(self):
return self.master.getPlotItem().titleLabel
@property
def axis_items(self):
return [value["item"] for value in
self.master.getPlotItem().axes.values()]
@property
def legend_items(self):
return self.master.legend.items
class PermutationPlot(PlotWidget):
def __init__(self):
super().__init__(enableMenu=False)
self.legend = self._create_legend()
self.parameter_setter = ParameterSetter(self)
self.setMouseEnabled(False, False)
self.hideButtons()
self.showGrid(True, True)
text = "Correlation between original Y and permuted Y (%)"
self.setLabel(axis="bottom", text=text)
def _create_legend(self) -> LegendItem:
legend = LegendItem()
legend.setParentItem(self.getViewBox())
legend.anchor((1, 1), (1, 1), offset=(-5, -5))
legend.hide()
return legend
def set_data(
self,
corr: np.ndarray,
scores_tr: List,
intercept_tr: float,
slope_tr: float,
scores_cv: List,
intercept_cv: float,
slope_cv: float,
score_name: str
):
self.clear()
self.setLabel(axis="left", text=score_name)
y = 0.5 if score_name == "AUC" else 0
line = pg.InfiniteLine(pos=(0, y), angle=0, pen=pg.mkPen("#000"))
x = np.array([0, 100])
pen = pg.mkPen("#000", width=2, style=Qt.DashLine)
y_tr = _f_lin(intercept_tr, slope_tr, x)
y_cv = _f_lin(intercept_cv, slope_cv, x)
line_tr = pg.PlotCurveItem(x, y_tr, pen=pen)
line_cv = pg.PlotCurveItem(x, y_cv, pen=pen)
point_pen = pg.mkPen("#333")
kwargs_tr = {"pen": point_pen, "symbol": "o", "brush": "#6fa255"}
kwargs_cv = {"pen": point_pen, "symbol": "s", "brush": "#3a78b6"}
kwargs = {"size": 12, "hoverable": True,
"tip": 'x: {x:.3g}\ny: {y:.3g}'.format}
kwargs.update(kwargs_tr)
points_tr = pg.ScatterPlotItem(corr, scores_tr, **kwargs)
kwargs.update(kwargs_cv)
points_cv = pg.ScatterPlotItem(corr, scores_cv, **kwargs)
self.addItem(points_tr)
self.addItem(points_cv)
self.addItem(line)
self.addItem(line_tr)
self.addItem(line_cv)
self.legend.clear()
self.legend.addItem(pg.ScatterPlotItem(**kwargs_tr), "Train")
self.legend.addItem(pg.ScatterPlotItem(**kwargs_cv), "CV")
self.legend.show()
class OWPermutationPlot(OWWidget, ConcurrentWidgetMixin):
name = "Permutation Plot"
description = "Permutation analysis plotting"
icon = "icons/PermutationPlot.svg"
priority = 1100
n_permutations = Setting(20)
visual_settings = Setting({}, schema_only=True)
graph_name = "graph.plotItem"
class Inputs:
data = Input("Data", Table)
learner = Input("Learner", Learner)
class Error(OWWidget.Error):
domain_transform_err = Msg("{}")
unknown_err = Msg("{}")
not_enough_data = Msg(f"At least {N_FOLD} instances are needed.")
incompatible_learner = Msg("{}")
def __init__(self):
OWWidget.__init__(self)
ConcurrentWidgetMixin.__init__(self)
self._data: Optional[Table] = None
self._learner: Optional[Learner] = None
self._info: QLabel = None
self.graph: PermutationPlot = None
self.setup_gui()
VisualSettingsDialog(
self, self.graph.parameter_setter.initial_settings
)
def setup_gui(self):
self._add_plot()
self._add_controls()
def _add_plot(self):
box = gui.vBox(self.mainArea)
self.graph = PermutationPlot()
box.layout().addWidget(self.graph)
def _add_controls(self):
box = gui.vBox(self.controlArea, "Settings")
gui.spin(box, self, "n_permutations", label="Permutations:",
minv=1, maxv=1000, callback=self._run)
gui.rubber(self.controlArea)
box = gui.vBox(self.controlArea, "Info")
self._info = gui.label(box, self, "", textFormat=Qt.RichText,
minimumWidth=180)
self.__set_info(None)
def __set_info(self, result: PermutationResults):
html = "No data available."
if result is not None:
intercept_tr, slope_tr, _, intercept_cv, slope_cv = result[2: -1]
y_tr = _f_lin(intercept_tr, slope_tr, 100)
y_cv = _f_lin(intercept_cv, slope_cv, 100)
html = f"""
<table width=100% align="center" style="font-size:11px">
<tr style="background:#fefefe">
<th style="background:transparent;padding: 2px 4px"></th>
<th style="background:transparent;padding: 2px 4px">Corr = 0</th>
<th style="background:transparent;padding: 2px 4px">Corr = 100</th>
</tr>
<tr style="background:#fefefe">
<th style="padding: 2px 4px" align=right>Train</th>
<td style="padding: 2px 4px" align=right>{intercept_tr:.4f}</td>
<td style="padding: 2px 4px" align=right>{y_tr:.4f}</td>
</tr>
<tr style="background:#fefefe">
<th style="padding: 2px 4px" align=right>CV</th>
<td style="padding: 2px 4px" align=right>{intercept_cv:.4f}</td>
<td style="padding: 2px 4px" align=right>{y_cv:.4f}</td>
</tr>
</table>
"""
self._info.setText(html)
@Inputs.data
@check_multiple_targets_input
def set_data(self, data: Table):
self.Error.not_enough_data.clear()
self._data = data
if self._data and len(self._data) < N_FOLD:
self.Error.not_enough_data()
self._data = None
@Inputs.learner
def set_learner(self, learner: Learner):
self._learner = learner
def handleNewSignals(self):
self.Error.incompatible_learner.clear()
self.Error.unknown_err.clear()
self.Error.domain_transform_err.clear()
self.clear()
if self._data is None or self._learner is None:
return
reason = self._learner.incompatibility_reason(self._data.domain)
if reason:
self.Error.incompatible_learner(reason)
return
self._run()
def clear(self):
self.cancel()
self.graph.clear()
self.graph.setTitle()
self.__set_info(None)
def _run(self):
if self._data is None or self._learner is None:
return
self.start(run, self._data, self._learner, self.n_permutations)
def on_done(self, result: PermutationResults):
self.graph.set_data(*result)
self.__set_info(result)
def on_exception(self, ex: Exception):
if isinstance(ex, DomainTransformationError):
self.Error.domain_transform_err(ex)
else:
self.Error.unknown_err(ex)
def on_partial_result(self, _):
pass
def onDeleteWidget(self):
self.shutdown()
super().onDeleteWidget()
def send_report(self):
if self._data is None or self._learner is None:
return
self.report_items("Settings", [("Permutations", self.n_permutations)])
self.report_raw("Info", self._info.text())
self.report_name("Plot")
self.report_plot()
def set_visual_settings(self, key: KeyType, value: ValueType):
self.graph.parameter_setter.set_parameter(key, value)
# pylint: disable=unsupported-assignment-operation
self.visual_settings[key] = value
if __name__ == "__main__":
from Orange.classification import LogisticRegressionLearner
WidgetPreview(OWPermutationPlot).run(
set_data=Table("iris"), set_learner=LogisticRegressionLearner())
|