1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
import json
import unittest
import sys
from typing import Type
from unittest.mock import patch, Mock
from Orange.classification import GBClassifier
try:
from Orange.classification import XGBClassifier, XGBRFClassifier
except ImportError:
XGBClassifier = XGBRFClassifier = None
try:
from Orange.classification import CatGBClassifier
except ImportError:
CatGBClassifier = None
from Orange.data import Table
from Orange.modelling import GBLearner
from Orange.preprocess.score import Scorer
from Orange.regression import GBRegressor
try:
from Orange.regression import XGBRegressor, XGBRFRegressor
except ImportError:
XGBRegressor = XGBRFRegressor = None
try:
from Orange.regression import CatGBRegressor
except ImportError:
CatGBRegressor = None
from Orange.widgets.model.owgradientboosting import OWGradientBoosting, \
LearnerItemModel, GBLearnerEditor, XGBLearnerEditor, XGBRFLearnerEditor, \
CatGBLearnerEditor, BaseEditor
from Orange.widgets.settings import SettingProvider
from Orange.widgets.tests.base import WidgetTest, ParameterMapping, \
WidgetLearnerTestMixin, datasets, simulate, GuiTest
from Orange.widgets.widget import OWWidget
def get_tree_train_params(model):
ln = json.loads(model.skl_model.get_booster().save_config())["learner"]
try:
return ln["gradient_booster"]["tree_train_param"]
except KeyError:
return ln["gradient_booster"]["updater"]["grow_colmaker"]["train_param"]
def create_parent(editor_class):
class DummyWidget(OWWidget):
name = "Mock"
settings_changed = Mock()
editor = SettingProvider(editor_class)
return DummyWidget()
class TestLearnerItemModel(GuiTest):
def test_model(self):
classifiers = [GBClassifier, XGBClassifier,
XGBRFClassifier, CatGBClassifier]
widget = create_parent(CatGBLearnerEditor)
model = LearnerItemModel(widget)
n_items = 4
self.assertEqual(model.rowCount(), n_items)
for i in range(n_items):
self.assertEqual(model.item(i).isEnabled(),
classifiers[i] is not None)
@patch("Orange.widgets.model.owgradientboosting.LearnerItemModel.LEARNERS",
[(GBLearner, "", ""),
(None, "Gradient Boosting (catboost)", "catboost")])
def test_missing_lib(self):
widget = create_parent(CatGBLearnerEditor)
model = LearnerItemModel(widget)
self.assertEqual(model.rowCount(), 2)
self.assertTrue(model.item(0).isEnabled())
self.assertFalse(model.item(1).isEnabled())
class BaseEditorTest(GuiTest):
EditorClass: Type[BaseEditor] = None
def setUp(self):
super().setUp()
editor_class = self.EditorClass
self.widget = create_parent(editor_class)
self.editor = editor_class(self.widget) # pylint: disable=not-callable
def tearDown(self) -> None:
self.widget.deleteLater()
super().tearDown()
class TestGBLearnerEditor(BaseEditorTest):
EditorClass = GBLearnerEditor
def test_arguments(self):
args = {"n_estimators": 100, "learning_rate": 0.1, "max_depth": 3,
"random_state": 0, "subsample": 1, "min_samples_split": 2}
self.assertDictEqual(self.editor.get_arguments(), args)
def test_learner_parameters(self):
params = (("Method", "Gradient Boosting (scikit-learn)"),
("Number of trees", 100),
("Learning rate", 0.1),
("Replicable training", "Yes"),
("Maximum tree depth", 3),
("Fraction of training instances", 1),
("Stop splitting nodes with maximum instances", 2))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = GBClassifier()
model = booster(data)
params = model.skl_model.get_params()
self.assertEqual(params["n_estimators"], self.editor.n_estimators)
self.assertEqual(params["learning_rate"], self.editor.learning_rate)
self.assertEqual(params["max_depth"], self.editor.max_depth)
self.assertEqual(params["subsample"], self.editor.subsample)
self.assertEqual(params["min_samples_split"],
self.editor.min_samples_split)
self.assertTrue(self.editor.random_state) # different than default
self.assertIsNone(params["random_state"])
def test_default_parameters_reg(self):
data = Table("housing")
booster = GBRegressor()
model = booster(data)
params = model.skl_model.get_params()
self.assertEqual(params["n_estimators"], self.editor.n_estimators)
self.assertEqual(params["learning_rate"], self.editor.learning_rate)
self.assertEqual(params["max_depth"], self.editor.max_depth)
self.assertEqual(params["subsample"], self.editor.subsample)
self.assertEqual(params["min_samples_split"],
self.editor.min_samples_split)
self.assertTrue(self.editor.random_state) # different than default
self.assertIsNone(params["random_state"])
class TestXGBLearnerEditor(BaseEditorTest):
EditorClass = XGBLearnerEditor
def test_arguments(self):
args = {"n_estimators": 100, "learning_rate": 0.3, "max_depth": 6,
"reg_lambda": 1, "colsample_bytree": 1, "colsample_bylevel": 1,
"colsample_bynode": 1, "subsample": 1, "random_state": 0}
self.assertDictEqual(self.editor.get_arguments(), args)
@unittest.skipIf(XGBClassifier is None, "Missing 'xgboost' package")
def test_learner_parameters(self):
params = (("Method", "Extreme Gradient Boosting (xgboost)"),
("Number of trees", 100),
("Learning rate", 0.3),
("Replicable training", "Yes"),
("Maximum tree depth", 6),
("Regularization strength", 1),
("Fraction of training instances", 1),
("Fraction of features for each tree", 1),
("Fraction of features for each level", 1),
("Fraction of features for each split", 1))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
@unittest.skipIf(XGBClassifier is None, "Missing 'xgboost' package")
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = XGBClassifier()
model = booster(data)
params = model.skl_model.get_params()
tp = get_tree_train_params(model)
self.assertEqual(params["n_estimators"], self.editor.n_estimators)
self.assertEqual(
round(float(tp["learning_rate"]), 1), self.editor.learning_rate
)
self.assertEqual(int(tp["max_depth"]), self.editor.max_depth)
self.assertEqual(float(tp["reg_lambda"]), self.editor.lambda_)
self.assertEqual(int(tp["subsample"]), self.editor.subsample)
self.assertEqual(int(tp["colsample_bytree"]), self.editor.colsample_bytree)
self.assertEqual(int(tp["colsample_bylevel"]), self.editor.colsample_bylevel)
self.assertEqual(int(tp["colsample_bynode"]), self.editor.colsample_bynode)
@unittest.skipIf(XGBRegressor is None, "Missing 'xgboost' package")
def test_default_parameters_reg(self):
data = Table("housing")
booster = XGBRegressor()
model = booster(data)
params = model.skl_model.get_params()
tp = get_tree_train_params(model)
self.assertEqual(params["n_estimators"], self.editor.n_estimators)
self.assertEqual(
round(float(tp["learning_rate"]), 1), self.editor.learning_rate
)
self.assertEqual(int(tp["max_depth"]), self.editor.max_depth)
self.assertEqual(float(tp["reg_lambda"]), self.editor.lambda_)
self.assertEqual(int(tp["subsample"]), self.editor.subsample)
self.assertEqual(int(tp["colsample_bytree"]), self.editor.colsample_bytree)
self.assertEqual(int(tp["colsample_bylevel"]), self.editor.colsample_bylevel)
self.assertEqual(int(tp["colsample_bynode"]), self.editor.colsample_bynode)
class TestXGBRFLearnerEditor(BaseEditorTest):
EditorClass = XGBRFLearnerEditor
def test_arguments(self):
args = {"n_estimators": 100, "learning_rate": 0.3, "max_depth": 6,
"reg_lambda": 1, "colsample_bytree": 1, "colsample_bylevel": 1,
"colsample_bynode": 1, "subsample": 1, "random_state": 0}
self.assertDictEqual(self.editor.get_arguments(), args)
@unittest.skipIf(XGBRFClassifier is None, "Missing 'xgboost' package")
def test_learner_parameters(self):
params = (("Method",
"Extreme Gradient Boosting Random Forest (xgboost)"),
("Number of trees", 100),
("Learning rate", 0.3),
("Replicable training", "Yes"),
("Maximum tree depth", 6),
("Regularization strength", 1),
("Fraction of training instances", 1),
("Fraction of features for each tree", 1),
("Fraction of features for each level", 1),
("Fraction of features for each split", 1))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
@unittest.skipIf(XGBRFClassifier is None, "Missing 'xgboost' package")
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = XGBRFClassifier()
model = booster(data)
params = model.skl_model.get_params()
tp = get_tree_train_params(model)
self.assertEqual(params["n_estimators"], self.editor.n_estimators)
self.assertEqual(
round(float(tp["learning_rate"]), 1), self.editor.learning_rate
)
self.assertEqual(int(tp["max_depth"]), self.editor.max_depth)
self.assertEqual(float(tp["reg_lambda"]), self.editor.lambda_)
self.assertEqual(int(tp["subsample"]), self.editor.subsample)
self.assertEqual(int(tp["colsample_bytree"]), self.editor.colsample_bytree)
self.assertEqual(int(tp["colsample_bylevel"]), self.editor.colsample_bylevel)
self.assertEqual(int(tp["colsample_bynode"]), self.editor.colsample_bynode)
@unittest.skipIf(XGBRFRegressor is None, "Missing 'xgboost' package")
def test_default_parameters_reg(self):
data = Table("housing")
booster = XGBRFRegressor()
model = booster(data)
params = model.skl_model.get_params()
tp = get_tree_train_params(model)
self.assertEqual(params["n_estimators"], self.editor.n_estimators)
self.assertEqual(
round(float(tp["learning_rate"]), 1), self.editor.learning_rate
)
self.assertEqual(int(tp["max_depth"]), self.editor.max_depth)
self.assertEqual(float(tp["reg_lambda"]), self.editor.lambda_)
self.assertEqual(int(tp["subsample"]), self.editor.subsample)
self.assertEqual(int(tp["colsample_bytree"]), self.editor.colsample_bytree)
self.assertEqual(int(tp["colsample_bylevel"]), self.editor.colsample_bylevel)
self.assertEqual(int(tp["colsample_bynode"]), self.editor.colsample_bynode)
class TestCatGBLearnerEditor(BaseEditorTest):
EditorClass = CatGBLearnerEditor
def test_arguments(self):
args = {"n_estimators": 100, "learning_rate": 0.3, "max_depth": 6,
"reg_lambda": 3, "colsample_bylevel": 1, "random_state": 0}
self.assertDictEqual(self.editor.get_arguments(), args)
@unittest.skipIf(CatGBClassifier is None, "Missing 'catboost' package")
def test_learner_parameters(self):
params = (("Method", "Gradient Boosting (catboost)"),
("Number of trees", 100),
("Learning rate", 0.3),
("Replicable training", "Yes"),
("Maximum tree depth", 6),
("Regularization strength", 3),
("Fraction of features for each tree", 1))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
@unittest.skipIf(CatGBClassifier is None, "Missing 'catboost' package")
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = CatGBClassifier()
model = booster(data)
params = model.cat_model.get_all_params()
self.assertEqual(self.editor.n_estimators, 100)
self.assertEqual(params["iterations"], 1000)
self.assertEqual(params["depth"], self.editor.max_depth)
self.assertEqual(params["l2_leaf_reg"], self.editor.lambda_)
self.assertEqual(params["rsm"], self.editor.colsample_bylevel)
self.assertEqual(self.editor.learning_rate, 0.3)
# params["learning_rate"] is automatically defined so don't test it
@unittest.skipIf(CatGBRegressor is None, "Missing 'catboost' package")
def test_default_parameters_reg(self):
data = Table("housing")
booster = CatGBRegressor()
model = booster(data)
params = model.cat_model.get_all_params()
self.assertEqual(self.editor.n_estimators, 100)
self.assertEqual(params["iterations"], 1000)
self.assertEqual(params["depth"], self.editor.max_depth)
self.assertEqual(params["l2_leaf_reg"], self.editor.lambda_)
self.assertEqual(params["rsm"], self.editor.colsample_bylevel)
self.assertEqual(self.editor.learning_rate, 0.3)
# params["learning_rate"] is automatically defined so don't test it
class TestOWGradientBoosting(WidgetTest, WidgetLearnerTestMixin):
def setUp(self):
self.widget = self.create_widget(OWGradientBoosting,
stored_settings={"auto_apply": False})
self.init()
controls = self.widget.editor.controls
self.parameters = [
ParameterMapping("n_estimators", controls.n_estimators, [500, 10]),
ParameterMapping("learning_rate", controls.learning_rate),
ParameterMapping("max_depth", controls.max_depth),
ParameterMapping("min_samples_split", controls.min_samples_split),
]
def test_scorer(self):
self.assertIsInstance(
self.get_output(self.widget.Outputs.learner), Scorer
)
def test_datasets(self):
for ds in datasets.datasets():
self.send_signal(self.widget.Inputs.data, ds)
@unittest.skipIf(XGBClassifier is None, "Missing 'xgboost' package")
def test_xgb_params(self):
simulate.combobox_activate_index(self.widget.controls.method_index, 1)
editor = self.widget.editor
controls = editor.controls
reg_slider = controls.lambda_index
self.parameters = [
ParameterMapping("n_estimators", controls.n_estimators, [500, 10]),
ParameterMapping("learning_rate", controls.learning_rate),
ParameterMapping("max_depth", controls.max_depth),
ParameterMapping("reg_lambda", reg_slider,
values=[editor.LAMBDAS[0], editor.LAMBDAS[-1]],
getter=lambda: editor.LAMBDAS[reg_slider.value()],
setter=lambda val: reg_slider.setValue(
editor.LAMBDAS.index(val))),
]
self.test_parameters()
def test_methods(self):
self.send_signal(self.widget.Inputs.data, self.data)
method_cb = self.widget.controls.method_index
for i, (cls, _, _) in enumerate(LearnerItemModel.LEARNERS):
if cls is None:
continue
simulate.combobox_activate_index(method_cb, i)
self.click_apply()
self.assertIsInstance(self.widget.learner, cls)
def test_missing_lib(self):
modules = {k: v for k, v in sys.modules.items()
if "orange" not in k.lower()} # retain built-ins
modules["xgboost"] = None
modules["catboost"] = None
# pylint: disable=reimported,redefined-outer-name
# pylint: disable=import-outside-toplevel
with patch.dict(sys.modules, modules, clear=True):
from Orange.widgets.model.owgradientboosting import \
OWGradientBoosting
widget = self.create_widget(OWGradientBoosting,
stored_settings={"method_index": 3})
self.assertEqual(widget.method_index, 0)
if __name__ == "__main__":
unittest.main()
|