File: base.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (1081 lines) | stat: -rw-r--r-- 44,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
# pylint: disable=protected-access,unused-import
from contextlib import contextmanager
import os
import pickle
from unittest.mock import Mock, patch

import numpy as np
import scipy.sparse as sp

from AnyQt.QtCore import Qt, QRectF, QPointF
from AnyQt.QtGui import QFont, QTextDocumentFragment
from AnyQt.QtTest import QSignalSpy
from AnyQt.QtWidgets import (
    QComboBox, QSpinBox, QDoubleSpinBox, QSlider
)

from orangewidget.utils.signals import MultiInput
from orangewidget.widget import StateInfo
from orangewidget.tests.base import (
    GuiTest, WidgetTest as WidgetTestBase, DummySignalManager, DEFAULT_TIMEOUT
)
from Orange.base import SklModel, Model
from Orange.classification.base_classification import (
    LearnerClassification, ModelClassification
)
from Orange.data import (
    Table, Domain, DiscreteVariable, ContinuousVariable, StringVariable
)
from Orange.modelling import Fitter
from Orange.preprocess import RemoveNaNColumns, Randomize, Continuize
from Orange.preprocess.preprocess import PreprocessorList
from Orange.regression.base_regression import (
    LearnerRegression, ModelRegression
)
from Orange.widgets.tests.utils import simulate
from Orange.widgets.utils.annotated_data import (
    ANNOTATED_DATA_FEATURE_NAME, ANNOTATED_DATA_SIGNAL_NAME
)
from Orange.widgets.utils.owlearnerwidget import OWBaseLearner
from Orange.widgets.visualize.utils.plotutils import AnchorItem
from Orange.widgets.widget import OWWidget


class WidgetTest(WidgetTestBase):
    __e3 = np.empty((3, 0), dtype=np.float64)
    __y3 = np.ones(3, dtype=np.float64)
    __dataa = [
        ("data with just nans", Table(
            Domain([ContinuousVariable(x) for x in "abc"],
                   ContinuousVariable("y"),
                   [StringVariable("m")]),
            np.full((3, 3), np.nan),
            np.full(3, np.nan),
            np.full((3, 1), "", dtype=object))),
        ("data without rows", Table(
            Domain([ContinuousVariable(x) for x in "abc"]),
            __e3.T)),
        ("data with just attributes", Table(
            Domain([ContinuousVariable(x) for x in "abc"]),
            np.ones((3, 3), dtype=np.float64))),
        ("no data (after having attributes)", None),
        ("data with just class", Table(
            Domain([], DiscreteVariable("y", values=tuple("abc"))),
            __e3, __y3)
         ),
        ("data with just continouos outcome", Table(
            Domain([], ContinuousVariable("y")),
            __e3, __y3)
         ),
        ("no data (after having class)", None),
        ("data with just metas", Table(
            Domain([], None, [StringVariable(x) for x in "abc"]),
            __e3, __e3, np.full((3, 3), "x", dtype=object))),
        ("with without attributes, class or metas", Table(
            Domain([], None, []), __e3, __e3, __e3)
         ),
        ("no data (after seeing a ghost)", None),
    ]

    def __init_subclass__(cls, **kwargs):
        super(cls).__init_subclass__(**kwargs)

        if not hasattr(cls, "test_zero_size_data"):
            def test_zero_size_data(self):
                widget = getattr(self, "widget", None)
                if widget is None:
                    self.skipTest("not tested because .widget is not set")
                for input in widget.get_signals("inputs"):
                    input_id = (1, ) if isinstance(input, MultiInput) else ()
                    if input.type is Table:
                        for msg, data in cls.__dataa:
                            with self.subTest(msg):
                                self.send_signal(input, data, *input_id)

            cls.test_zero_size_data = test_zero_size_data

    def assert_table_equal(self, table1, table2):
        if table1 is None or table2 is None:
            self.assertIs(table1, table2)
            return
        self.assert_domain_equal(table1.domain, table2.domain)
        np.testing.assert_array_equal(table1.X, table2.X)
        np.testing.assert_array_equal(table1.Y, table2.Y)
        np.testing.assert_array_equal(table1.metas, table2.metas)

    def assert_domain_equal(self, domain1, domain2):
        """
        Test domains for equality.

        Unlike in domain1 == domain2 uses `Variable.__eq__`, which in case of
        DiscreteVariable ignores `values`, this method also checks that both
        domain have equal `values`.
        """
        for var1, var2 in zip(domain1.variables + domain1.metas,
                              domain2.variables + domain2.metas):
            self.assertEqual(type(var1), type(var2))
            self.assertEqual(var1.name, var2.name)
            if var1.is_discrete:
                self.assertEqual(var1.values, var2.values)


class TestWidgetTest(WidgetTest):
    """Meta tests for widget test helpers"""

    def test_process_events_handles_timeouts(self):
        with self.assertRaises(TimeoutError):
            self.process_events(until=lambda: False, timeout=0)

    def test_minimum_size(self):
        return  # skip this test


class BaseParameterMapping:
    """Base class for mapping between gui components and learner's parameters
    when testing learner widgets.

    Parameters
    ----------
    name : str
        Name of learner's parameter.

    gui_element : QWidget
        Gui component who's corresponding parameter is to be tested.

    values: list
        List of values to be tested.

    getter: function
        It gets component's value.

    setter: function
        It sets component's value.
    """

    def __init__(self, name, gui_element, values, getter, setter,
                 problem_type="both"):
        self.name = name
        self.gui_element = gui_element
        self.values = values
        self.get_value = getter
        self.set_value = setter
        self.problem_type = problem_type

    def __str__(self):
        if self.problem_type == "both":
            return self.name
        else:
            return "%s (%s)" % (self.name, self.problem_type)


class DefaultParameterMapping(BaseParameterMapping):
    """Class for mapping between gui components and learner's parameters
    when testing unchecked properties and therefore default parameters
    should be used.

    Parameters
    ----------
    name : str
        Name of learner's parameter.

    default_value: str, int,
        Value that should be used by default.
    """

    def __init__(self, name, default_value):
        super().__init__(name, None, [default_value],
                         lambda: default_value, lambda x: None)


class ParameterMapping(BaseParameterMapping):
    """Class for mapping between gui components and learner parameters
    when testing learner widgets

    Parameters
    ----------
    name : str
        Name of learner's parameter.

    gui_element : QWidget
        Gui component who's corresponding parameter is to be tested.

    values: list, mandatory for ComboBox, optional otherwise
        List of values to be tested. When None, it is set according to
        component's type.

    getter: function, optional
        It gets component's value. When None, it is set according to
        component's type.

    setter: function, optional
        It sets component's value. When None, it is set according to
        component's type.
    """

    def __init__(self, name, gui_element, values=None,
                 getter=None, setter=None, **kwargs):
        super().__init__(
            name, gui_element,
            values or self._default_values(gui_element),
            getter or self._default_get_value(gui_element, values),
            setter or self._default_set_value(gui_element, values),
            **kwargs)

    @staticmethod
    def get_gui_element(widget, attribute):
        return widget.controlled_attributes[attribute][0].control

    @classmethod
    def from_attribute(cls, widget, attribute, parameter=None):
        return cls(parameter or attribute, cls.get_gui_element(widget, attribute))

    @staticmethod
    def _default_values(gui_element):
        if isinstance(gui_element, (QSpinBox, QDoubleSpinBox, QSlider)):
            return [gui_element.minimum(), gui_element.maximum()]
        else:
            raise TypeError("{} is not supported".format(gui_element))

    @staticmethod
    def _default_get_value(gui_element, values):
        if isinstance(gui_element, (QSpinBox, QDoubleSpinBox, QSlider)):
            return gui_element.value
        elif isinstance(gui_element, QComboBox):
            return lambda: values[gui_element.currentIndex()]
        else:
            raise TypeError("{} is not supported".format(gui_element))

    @staticmethod
    def _default_set_value(gui_element, values):
        if isinstance(gui_element, (QSpinBox, QDoubleSpinBox, QSlider)):
            return lambda val: gui_element.setValue(val)
        elif isinstance(gui_element, QComboBox):
            def fun(val):
                value = values.index(val)
                gui_element.setCurrentIndex(value)
                gui_element.activated.emit(value)

            return fun
        else:
            raise TypeError("{} is not supported".format(gui_element))


class WidgetLearnerTestMixin:
    """Base class for widget learner tests.

    Contains init method to set up testing parameters and test methods.

    All widget learner tests should extend it (beside extending WidgetTest
    class as well). Learners with extra parameters, which can be set on the
    widget, should override self.parameters list in the setUp method. The
    list should contain mapping: learner parameter - gui component.
    """

    widget = None  # type: OWBaseLearner

    def init(self):
        cls_ds = Table(datasets.path("testing_dataset_cls"))
        reg_ds = Table(datasets.path("testing_dataset_reg"))

        if issubclass(self.widget.LEARNER, Fitter):
            self.data = cls_ds
            self.valid_datasets = (cls_ds, reg_ds)
            self.inadequate_dataset = ()
            self.learner_class = Fitter
            self.model_class = Model
            self.model_name = 'Model'
        elif issubclass(self.widget.LEARNER, LearnerClassification):
            self.data = cls_ds
            self.valid_datasets = (cls_ds,)
            self.inadequate_dataset = (reg_ds,)
            self.learner_class = LearnerClassification
            self.model_class = ModelClassification
            self.model_name = 'Classifier'
        else:
            self.data = reg_ds
            self.valid_datasets = (reg_ds,)
            self.inadequate_dataset = (cls_ds,)
            self.learner_class = LearnerRegression
            self.model_class = ModelRegression
            self.model_name = 'Predictor'

        self.parameters = []

    def click_apply(self):
        self.widget.apply_button.button.clicked.emit()

    def test_has_unconditional_apply(self):
        self.assertTrue(hasattr(self.widget, "unconditional_apply"))

    def test_input_data(self):
        """Check widget's data with data on the input"""
        self.assertEqual(self.widget.data, None)
        self.send_signal(self.widget.Inputs.data, self.data)
        self.assertEqual(self.widget.data, self.data)
        self.wait_until_stop_blocking()

    def test_input_data_disconnect(self):
        """Check widget's data and model after disconnecting data from input"""
        self.send_signal(self.widget.Inputs.data, self.data)
        self.assertEqual(self.widget.data, self.data)
        self.click_apply()
        self.wait_until_stop_blocking()
        self.send_signal(self.widget.Inputs.data, None)
        self.wait_until_stop_blocking()
        self.assertEqual(self.widget.data, None)
        self.assertIsNone(self.get_output(self.widget.Outputs.model))

    def test_input_data_learner_adequacy(self):
        """Check if error message is shown with inadequate data on input"""
        for inadequate in self.inadequate_dataset:
            self.send_signal(self.widget.Inputs.data, inadequate)
            self.click_apply()
            self.wait_until_stop_blocking()
            self.assertTrue(self.widget.Error.data_error.is_shown())
        for valid in self.valid_datasets:
            self.send_signal(self.widget.Inputs.data, valid)
            self.wait_until_stop_blocking()
            self.assertFalse(self.widget.Error.data_error.is_shown())

    def test_input_preprocessor(self):
        """Check learner's preprocessors with an extra pp on input"""
        randomize = Randomize()
        self.send_signal(self.widget.Inputs.preprocessor, randomize)
        self.assertEqual(
            randomize, self.widget.preprocessors,
            'Preprocessor not added to widget preprocessors')
        self.click_apply()
        self.wait_until_stop_blocking()
        self.assertEqual(
            (randomize,), self.widget.learner.preprocessors,
            'Preprocessors were not passed to the learner')

    def test_input_preprocessors(self):
        """Check multiple preprocessors on input"""
        pp_list = PreprocessorList([Randomize(), RemoveNaNColumns()])
        self.send_signal(self.widget.Inputs.preprocessor, pp_list)
        self.click_apply()
        self.wait_until_stop_blocking()
        self.assertEqual(
            (pp_list,), self.widget.learner.preprocessors,
            '`PreprocessorList` was not added to preprocessors')

    def test_input_preprocessor_disconnect(self):
        """Check learner's preprocessors after disconnecting pp from input"""
        randomize = Randomize()
        self.send_signal(self.widget.Inputs.preprocessor, randomize)
        self.click_apply()
        self.wait_until_stop_blocking()
        self.assertEqual(randomize, self.widget.preprocessors)

        self.send_signal(self.widget.Inputs.preprocessor, None)
        self.click_apply()
        self.wait_until_stop_blocking()
        self.assertIsNone(self.widget.preprocessors,
                          'Preprocessors not removed on disconnect.')

    def test_output_learner(self):
        """Check if learner is on output after apply"""
        initial = self.get_output(self.widget.Outputs.learner)
        self.assertIsNotNone(initial, "Does not initialize the learner output")
        self.click_apply()
        newlearner = self.get_output(self.widget.Outputs.learner)
        self.assertIsNot(initial, newlearner,
                         "Does not send a new learner instance on `Apply`.")
        self.assertIsNotNone(newlearner)
        self.assertIsInstance(newlearner, self.widget.LEARNER)

    def test_output_model(self):
        """Check if model is on output after sending data and apply"""
        self.assertIsNone(self.get_output(self.widget.Outputs.model))
        self.click_apply()
        self.assertIsNone(self.get_output(self.widget.Outputs.model))
        self.send_signal(self.widget.Inputs.data, self.data)
        self.click_apply()
        self.wait_until_stop_blocking()
        model = self.get_output(self.widget.Outputs.model)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, self.widget.LEARNER.__returns__)
        self.assertIsInstance(model, self.model_class)

    def test_output_learner_name(self):
        """Check if learner's name properly changes"""
        new_name = "Learner Name"
        self.click_apply()
        self.assertEqual(self.widget.learner.name,
                         self.widget.effective_learner_name())
        self.assertEqual(self.widget.effective_learner_name(),
                         self.widget.name_line_edit.placeholderText())
        self.widget.name_line_edit.setText(new_name)
        self.click_apply()
        self.wait_until_stop_blocking()
        self.assertEqual(self.get_output(self.widget.Outputs.learner).name,
                         new_name)

    def test_output_model_name(self):
        """Check if model's name properly changes"""
        new_name = "Model Name"
        self.send_signal(self.widget.Inputs.data, self.data)
        self.click_apply()
        self.assertEqual(self.get_output(self.widget.Outputs.model).name,
                         self.widget.effective_learner_name())
        self.widget.name_line_edit.setText(new_name)
        self.click_apply()
        self.assertEqual(self.get_output(self.widget.Outputs.model).name,
                         new_name)

    def test_output_model_picklable(self):
        """Check if model can be pickled"""
        self.send_signal(self.widget.Inputs.data, self.data)
        self.click_apply()
        self.wait_until_stop_blocking()
        model = self.get_output(self.widget.Outputs.model)
        self.assertIsNotNone(model)
        pickle.dumps(model)

    @staticmethod
    def _get_param_value(learner, param):
        if isinstance(learner, Fitter):
            # Both is just a was to indicate to the tests, fitters don't
            # actually support this
            if param.problem_type == "both":
                problem_type = learner.CLASSIFICATION
            else:
                problem_type = param.problem_type
            return learner.get_params(problem_type).get(param.name)
        else:
            return learner.params.get(param.name)

    def test_parameters_default(self):
        """Check if learner's parameters are set to default (widget's) values
        """
        for dataset in self.valid_datasets:
            self.send_signal(self.widget.Inputs.data, dataset)
            self.click_apply()
            self.wait_until_stop_blocking()
            for parameter in self.parameters:
                # Skip if the param isn't used for the given data type
                if self._should_check_parameter(parameter, dataset):
                    self.assertEqual(
                        self._get_param_value(self.widget.learner, parameter),
                        parameter.get_value())

    def test_parameters(self):
        """Check learner and model for various values of all parameters"""
        # Test params on every valid dataset, since some attributes may apply
        # to only certain problem types
        for dataset in self.valid_datasets:
            self.send_signal(self.widget.Inputs.data, dataset)
            self.wait_until_stop_blocking()

            for parameter in self.parameters:
                # Skip if the param isn't used for the given data type
                if not self._should_check_parameter(parameter, dataset):
                    continue

                assert isinstance(parameter, BaseParameterMapping)

                for value in parameter.values:
                    parameter.set_value(value)
                    self.click_apply()
                    self.wait_until_stop_blocking()
                    param = self._get_param_value(self.widget.learner, parameter)
                    self.assertEqual(
                        param, parameter.get_value(),
                        "Mismatching setting for parameter '%s'" % parameter)
                    self.assertEqual(
                        param, value,
                        "Mismatching setting for parameter '%s'" % parameter)
                    param = self._get_param_value(
                        self.get_output(self.widget.Outputs.learner),
                        parameter)
                    self.assertEqual(
                        param, value,
                        "Mismatching setting for parameter '%s'" % parameter)

                    if issubclass(self.widget.LEARNER, SklModel):
                        model = self.get_output(self.widget.Outputs.model)
                        if model is not None:
                            self.assertEqual(self._get_param_value(model, parameter), value)
                            self.assertFalse(self.widget.Error.active)
                        else:
                            self.assertTrue(self.widget.Error.active)

    def test_params_trigger_settings_changed(self):
        """Check that the learner gets updated whenever a param is changed."""
        for dataset in self.valid_datasets:
            self.send_signal(self.widget.Inputs.data, dataset)
            self.wait_until_stop_blocking()

            for parameter in self.parameters:
                # Skip if the param isn't used for the given data type
                if not self._should_check_parameter(parameter, dataset):
                    continue

                assert isinstance(parameter, BaseParameterMapping)
                # Set the mock here so we can include the param name in the
                # error message, so if any test fails, we see where
                # We mock `apply` and not `settings_changed` since that's
                # sometimes connected with Qt signals, which are not directly
                # called
                self.widget.apply = Mock(name="apply(%s)" % parameter)
                # Since the settings only get updated when the value actually
                # changes, find a value that isn't the same as the current
                # value and try with that
                new_value = [x for x in parameter.values
                             if x != parameter.get_value()][0]
                parameter.set_value(new_value)
                # wait for asynchronous calls
                self.process_events(lambda: self.widget.apply.call_args is not None)
                self.widget.apply.assert_called_once()

    @staticmethod
    def _should_check_parameter(parameter, data):
        """Should the param be passed into the learner given the data"""
        return ((parameter.problem_type == "classification" and
                 data.domain.has_discrete_class) or
                (parameter.problem_type == "regression" and
                 data.domain.has_continuous_class) or
                (parameter.problem_type == "both"))

    def test_send_report(self, timeout=DEFAULT_TIMEOUT):
        """Test report"""
        self.send_signal(self.widget.Inputs.data, self.data)
        self.widget.report_button.click()
        self.wait_until_finished(timeout=timeout)
        self.send_signal(self.widget.Inputs.data, None)
        self.widget.report_button.click()


class WidgetOutputsTestMixin:
    """Class for widget's outputs testing.

    Contains init method to set up testing parameters and a test method, which
    checks Selected Data and (Annotated) Data outputs.

    Since widgets have different ways of selecting data instances, _select_data
    method should be implemented when subclassed. The method should assign
    value to selected_indices parameter.

    If output's expected domain differs from input's domain, parameter
    same_input_output_domain should be set to False.

    If Selected Data and Data domains differ, override method
    _compare_selected_annotated_domains.
    """

    def init(self, same_table_attributes=True, output_all_on_no_selection=False):
        self.data = Table("iris")
        self.same_input_output_domain = True
        self.same_table_attributes = same_table_attributes
        self.output_all_on_no_selection = output_all_on_no_selection

    def test_outputs(self, timeout=DEFAULT_TIMEOUT):
        self.widget.linkage = 1
        self.send_signal(self.signal_name, self.signal_data)

        self.wait_until_finished(timeout=timeout)

        # check selected data output
        output = self.get_output(self.widget.Outputs.selected_data)
        if self.output_all_on_no_selection:
            self.assertEqual(output, self.signal_data)
        else:
            self.assertIsNone(output)

        # check annotated data output
        feature_name = ANNOTATED_DATA_FEATURE_NAME
        annotated = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        self.assertEqual(0, np.sum([i[feature_name] for i in annotated]))

        # select data instances
        selected_indices = self._select_data()

        # check selected data output
        selected = self.get_output(self.widget.Outputs.selected_data)
        n_sel, n_attr = len(selected), len(self.data.domain.attributes)
        self.assertGreater(n_sel, 0)
        self.assertEqual(selected.domain == self.data.domain,
                         self.same_input_output_domain)
        np.testing.assert_array_equal(selected.X[:, :n_attr],
                                      self.data.X[selected_indices])
        if self.same_table_attributes:
            self.assertEqual(selected.attributes, self.data.attributes)

        # check annotated data output
        annotated = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        self.assertEqual(n_sel, np.sum([i[feature_name] for i in annotated]))
        if self.same_table_attributes:
            self.assertEqual(annotated.attributes, self.data.attributes)

        # compare selected and annotated data domains
        self._compare_selected_annotated_domains(selected, annotated)

        # check output when data is removed
        self.send_signal(self.signal_name, None)
        self.assertIsNone(self.get_output(self.widget.Outputs.selected_data))
        self.assertIsNone(self.get_output(ANNOTATED_DATA_SIGNAL_NAME))

    def _select_data(self):
        raise NotImplementedError("Subclasses should implement select_data")

    def _compare_selected_annotated_domains(self, selected, annotated):
        selected_vars = selected.domain.variables + selected.domain.metas
        annotated_vars = annotated.domain.variables + annotated.domain.metas
        self.assertLess(set(selected_vars), set(annotated_vars))


class ProjectionWidgetTestMixin:
    """Class for projection widget testing"""

    def init(self):
        self.data = Table("iris")

    def _select_data(self):
        rect = QRectF(QPointF(-20, -20), QPointF(20, 20))
        self.widget.graph.select_by_rectangle(rect)
        return self.widget.graph.get_selection()

    def _compare_selected_annotated_domains(self, selected, annotated):
        selected_vars = selected.domain.variables
        annotated_vars = annotated.domain.variables
        self.assertLessEqual(set(selected_vars), set(annotated_vars))

    def test_setup_graph(self, timeout=DEFAULT_TIMEOUT):
        """Plot should exist after data has been sent in order to be
        properly set/updated"""
        self.send_signal(self.widget.Inputs.data, self.data)

        self.assertTrue(
            self.signal_manager.wait_for_finished(self.widget, timeout),
            f"Did not finish in the specified {timeout}ms timeout"
        )

        self.assertIsNotNone(self.widget.graph.scatterplot_item)

    def test_default_attrs(self, timeout=DEFAULT_TIMEOUT):
        """Check default values for 'Color', 'Shape', 'Size' and 'Label'"""
        self.send_signal(self.widget.Inputs.data, self.data)
        self.assertIs(self.widget.attr_color, self.data.domain.class_var)
        self.assertIsNone(self.widget.attr_label)
        self.assertIsNone(self.widget.attr_shape)
        self.assertIsNone(self.widget.attr_size)
        self.wait_until_finished(timeout=timeout)
        self.send_signal(self.widget.Inputs.data, None)
        self.assertIsNone(self.widget.attr_color)

    def test_attr_models(self):
        """Check possible values for 'Color', 'Shape', 'Size' and 'Label'"""
        self.send_signal(self.widget.Inputs.data, self.data)
        controls = self.widget.controls
        self.assertEqual(len(controls.attr_color.model()), 8)
        self.assertEqual(len(controls.attr_shape.model()), 3)
        self.assertTrue(5 < len(controls.attr_size.model()) < 8)
        self.assertEqual(len(controls.attr_label.model()), 8)

        # color and label should contain all variables
        # size should contain only continuous variables
        # shape should contain only discrete variables
        for var in self.data.domain.variables + self.data.domain.metas:
            self.assertIn(var, controls.attr_color.model())
            self.assertIn(var, controls.attr_label.model())
            if var.is_continuous:
                self.assertIn(var, controls.attr_size.model())
                self.assertNotIn(var, controls.attr_shape.model())
            if var.is_discrete:
                self.assertNotIn(var, controls.attr_size.model())
                self.assertIn(var, controls.attr_shape.model())

    def test_attr_label_metas(self, timeout=DEFAULT_TIMEOUT):
        """Set 'Label' from string meta attribute"""
        cont = Continuize(multinomial_treatment=Continuize.AsOrdinal)
        data = cont(Table("zoo"))
        self.send_signal(self.widget.Inputs.data, data)
        self.wait_until_finished(timeout=timeout)
        simulate.combobox_activate_item(self.widget.controls.attr_label,
                                        data.domain[-1].name)

    def test_handle_primitive_metas(self):
        """Set 'Color' from continuous meta attribute"""
        d, attrs = self.data.domain, self.data.domain.attributes
        data = self.data.transform(Domain(attrs[:2], d.class_vars, attrs[2:]))
        self.send_signal(self.widget.Inputs.data, data)
        simulate.combobox_activate_item(self.widget.controls.attr_color,
                                        data.domain.metas[0].name)

    def test_datasets(self, timeout=DEFAULT_TIMEOUT):
        """Test widget for datasets with missing values and constant features"""
        for ds in datasets.datasets():
            self.send_signal(self.widget.Inputs.data, ds)
            self.wait_until_finished(timeout=timeout)

    def test_none_data(self):
        """Test widget for empty dataset"""
        self.send_signal(self.widget.Inputs.data, self.data[:0])

    def test_plot_once(self, timeout=DEFAULT_TIMEOUT):
        """Test if data is plotted only once but committed on every input change"""
        table = Table("heart_disease")
        self.widget.setup_plot = Mock()
        self.widget.commit.now = self.widget.commit.deferred = Mock()
        self.send_signal(self.widget.Inputs.data, table)
        self.widget.setup_plot.assert_called_once()
        self.widget.commit.now.assert_called_once()

        self.wait_until_finished(timeout=timeout)
        self.widget.setup_plot.assert_called_once()
        self.widget.commit.now.assert_called_once()

        self.widget.commit.now.reset_mock()
        self.send_signal(self.widget.Inputs.data_subset, table[::10])
        self.widget.setup_plot.assert_called_once()
        self.widget.commit.now.assert_called_once()

    def test_subset_data_color(self, timeout=DEFAULT_TIMEOUT):
        self.send_signal(self.widget.Inputs.data, self.data)
        self.assertTrue(
            self.signal_manager.wait_for_finished(self.widget, timeout),
            f"Did not finish in the specified {timeout}ms timeout"
        )
        self.send_signal(self.widget.Inputs.data_subset, self.data[:10])
        subset = [brush.color().name() == "#46befa" for brush in
                  self.widget.graph.scatterplot_item.data['brush'][:10]]
        other = [brush.color().name() == "#000000" for brush in
                 self.widget.graph.scatterplot_item.data['brush'][10:]]
        self.assertTrue(all(subset))
        self.assertTrue(all(other))

    def test_class_density(self, timeout=DEFAULT_TIMEOUT):
        """Check class density update"""
        self.send_signal(self.widget.Inputs.data, self.data)
        self.widget.cb_class_density.click()
        self.wait_until_finished(timeout=timeout)
        self.send_signal(self.widget.Inputs.data, None)
        self.widget.cb_class_density.click()

    def test_dragging_tooltip(self):
        """Dragging tooltip depends on data being jittered"""
        text = QTextDocumentFragment.fromHtml(
            self.widget.graph.tiptexts[Qt.NoModifier]).toPlainText()
        self.send_signal(self.widget.Inputs.data, Table("heart_disease"))
        self.assertEqual(self.widget.graph.tip_textitem.toPlainText(), text)

    def test_sparse_data(self, timeout=DEFAULT_TIMEOUT):
        """Test widget for sparse data"""
        table = Table("iris").to_sparse()
        self.assertTrue(sp.issparse(table.X))
        self.send_signal(self.widget.Inputs.data, table)
        self.wait_until_finished(timeout=timeout)
        self.send_signal(self.widget.Inputs.data_subset, table[::30])
        self.assertEqual(len(self.widget.subset_data), 5)

    def test_invalidated_embedding(self, timeout=DEFAULT_TIMEOUT):
        """Check if graph has been replotted when sending same data"""
        self.widget.graph.update_coordinates = Mock()
        self.widget.graph.update_point_props = Mock()
        self.send_signal(self.widget.Inputs.data, self.data)
        self.wait_until_finished(timeout=timeout)

        self.widget.graph.update_coordinates.assert_called()
        self.widget.graph.update_point_props.assert_called()

        self.widget.graph.update_coordinates.reset_mock()
        self.widget.graph.update_point_props.reset_mock()
        self.send_signal(self.widget.Inputs.data, self.data)
        self.wait_until_finished(timeout=timeout)

        self.widget.graph.update_coordinates.assert_not_called()
        self.widget.graph.update_point_props.assert_called_once()

    def test_saved_selection(self, timeout=DEFAULT_TIMEOUT):
        self.send_signal(self.widget.Inputs.data, self.data)
        self.assertTrue(
            self.signal_manager.wait_for_finished(self.widget, timeout),
            f"Did not finish in the specified {timeout}ms timeout"
        )

        self.widget.graph.select_by_indices(list(range(0, len(self.data), 10)))
        settings = self.widget.settingsHandler.pack_data(self.widget)
        w = self.create_widget(self.widget.__class__, stored_settings=settings)

        self.send_signal(self.widget.Inputs.data, self.data, widget=w)
        self.assertTrue(
            self.signal_manager.wait_for_finished(w, timeout),
            f"Did not finish in the specified {timeout}ms timeout"
        )

        self.assertEqual(np.sum(w.graph.selection), 15)
        np.testing.assert_equal(self.widget.graph.selection, w.graph.selection)

    def test_send_report(self, timeout=DEFAULT_TIMEOUT):
        """Test report """
        self.send_signal(self.widget.Inputs.data, self.data)
        self.widget.report_button.click()
        self.wait_until_finished(timeout=timeout)
        self.send_signal(self.widget.Inputs.data, None)
        self.widget.report_button.click()

    def test_hidden_effective_variables(self, timeout=DEFAULT_TIMEOUT):
        hidden_var1 = ContinuousVariable("c1")
        hidden_var1.attributes["hidden"] = True
        hidden_var2 = ContinuousVariable("c2")
        hidden_var2.attributes["hidden"] = True
        class_vars = [DiscreteVariable("cls", values=("a", "b"))]
        table = Table(Domain([hidden_var1, hidden_var2], class_vars),
                      np.array([[0., 1.], [2., 3.]]),
                      np.array([[0.], [1.]]))
        self.send_signal(self.widget.Inputs.data, table)
        self.wait_until_finished(timeout=timeout)
        self.send_signal(self.widget.Inputs.data, table)

    @WidgetTest.skipNonEnglish
    def test_visual_settings(self, timeout=DEFAULT_TIMEOUT):
        graph = self.widget.graph
        font = QFont()
        font.setItalic(True)
        font.setFamily("Helvetica")

        self.send_signal(self.widget.Inputs.data, self.data)
        self.wait_until_finished(timeout=timeout)

        key, value = ("Fonts", "Font family", "Font family"), "Helvetica"
        self.widget.set_visual_settings(key, value)

        key, value = ("Fonts", "Title", "Font size"), 20
        self.widget.set_visual_settings(key, value)
        key, value = ("Fonts", "Title", "Italic"), True
        self.widget.set_visual_settings(key, value)
        font.setPointSize(20)
        self.assertFontEqual(graph.parameter_setter.title_item.item.font(), font)

        key, value = ("Fonts", "Label", "Font size"), 10
        self.widget.set_visual_settings(key, value)
        key, value = ("Fonts", "Label", "Italic"), True
        self.widget.set_visual_settings(key, value)
        simulate.combobox_activate_item(self.widget.controls.attr_label,
                                        self.data.domain[0].name)
        font.setPointSize(10)
        self.assertFontEqual(graph.labels[0].textItem.font(), font)

        key, value = ("Fonts", "Categorical legend", "Font size"), 14
        self.widget.set_visual_settings(key, value)
        key, value = ("Fonts", "Categorical legend", "Italic"), True
        self.widget.set_visual_settings(key, value)
        font.setPointSize(14)
        legend_item = list(graph.parameter_setter.cat_legend_items)[0]
        self.assertFontEqual(legend_item[1].item.font(), font)

        key, value = ("Fonts", "Numerical legend", "Font size"), 12
        self.widget.set_visual_settings(key, value)
        key, value = ("Fonts", "Numerical legend", "Italic"), True
        self.widget.set_visual_settings(key, value)
        simulate.combobox_activate_item(self.widget.controls.attr_color,
                                        self.data.domain[0].name)
        variables = self.data.domain.variables + self.data.domain.metas
        discrete_var = next(
            (x for x in variables if isinstance(x, DiscreteVariable)), None
        )
        if discrete_var:
            # activate item only when discrete variable available
            simulate.combobox_activate_item(
                self.widget.controls.attr_shape, discrete_var.name
            )
        font.setPointSize(12)
        self.assertFontEqual(graph.parameter_setter.num_legend.items[0][0].font, font)

        key, value = ("Annotations", "Title", "Title"), "Foo"
        self.widget.set_visual_settings(key, value)
        self.assertEqual(graph.parameter_setter.title_item.item.toPlainText(), "Foo")
        self.assertEqual(graph.parameter_setter.title_item.text, "Foo")

    def assertFontEqual(self, font1, font2):
        self.assertEqual(font1.family(), font2.family())
        self.assertEqual(font1.pointSize(), font2.pointSize())
        self.assertEqual(font1.italic(), font2.italic())


class AnchorProjectionWidgetTestMixin(ProjectionWidgetTestMixin):
    def test_embedding_missing_values(self):
        table = Table("heart_disease")
        with table.unlocked():
            table.X[0] = np.nan
        self.send_signal(self.widget.Inputs.data, table)
        self.assertFalse(np.all(self.widget.valid_data))
        output = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        embedding_mask = np.all(np.isnan(output.metas[:, :2]), axis=1)
        np.testing.assert_array_equal(~embedding_mask, self.widget.valid_data)
        # reload
        self.send_signal(self.widget.Inputs.data, table)

    def test_sparse_data(self, timeout=DEFAULT_TIMEOUT):
        table = Table("iris")
        with table.unlocked():
            table.X = sp.csr_matrix(table.X)
        self.assertTrue(sp.issparse(table.X))
        self.send_signal(self.widget.Inputs.data, table)
        self.assertTrue(self.widget.Error.sparse_data.is_shown())
        self.send_signal(self.widget.Inputs.data_subset, table[::30])
        self.assertEqual(len(self.widget.subset_data), 5)
        self.send_signal(self.widget.Inputs.data, None)
        self.assertFalse(self.widget.Error.sparse_data.is_shown())

    def test_manual_move(self):
        data = self.data.copy()
        with data.unlocked():
            data[1, 0] = np.nan
        nvalid, nsample = len(self.data) - 1, self.widget.SAMPLE_SIZE
        self.send_signal(self.widget.Inputs.data, data)
        self.widget.graph.select_by_indices(list(range(0, len(data), 10)))

        # remember state
        selection = self.widget.graph.selection.copy()

        # simulate manual move
        self.widget._manual_move_start()
        self.widget._manual_move(0, 1, 1)
        self.assertEqual(len(self.widget.graph.scatterplot_item.data), nsample)
        self.widget._manual_move_finish(0, 1, 2)

        # check new state
        self.assertEqual(len(self.widget.graph.scatterplot_item.data), nvalid)
        np.testing.assert_equal(self.widget.graph.selection, selection)

    def test_visual_settings(self, timeout=DEFAULT_TIMEOUT):
        super().test_visual_settings(timeout)

        graph = self.widget.graph
        font = QFont()
        font.setItalic(True)
        font.setFamily("Helvetica")

        key, value = ("Fonts", "Anchor", "Font size"), 10
        self.widget.set_visual_settings(key, value)
        key, value = ("Fonts", "Anchor", "Italic"), True
        self.widget.set_visual_settings(key, value)
        font.setPointSize(10)
        for item in graph.anchor_items:
            if isinstance(item, AnchorItem):
                item = item._label
            self.assertFontEqual(item.textItem.font(), font)


class datasets:
    @staticmethod
    def path(filename):
        dirname = os.path.join(os.path.dirname(__file__), "datasets")
        return os.path.join(dirname, filename)

    @classmethod
    def missing_data_1(cls):
        """
        Dataset with 3 continuous features (X{1,2,3}) where all the columns
        and rows contain at least one NaN value.

        One discrete class D with NaN values
        Mixed continuous/discrete/string metas ({X,D,S}M)

        Returns
        -------
        data : Orange.data.Table
        """
        return Table(cls.path("missing_data_1.tab"))

    @classmethod
    def missing_data_2(cls):
        """
        Dataset with 3 continuous features (X{1,2,3}) where all the columns
        and rows contain at least one NaN value and X1, X2 are constant.

        One discrete constant class D with NaN values.
        Mixed continuous/discrete/string class metas ({X,D,S}M)

        Returns
        -------
        data : Orange.data.Table
        """
        return Table(cls.path("missing_data_2.tab"))

    @classmethod
    def missing_data_3(cls):
        """
        Dataset with 3 discrete features D{1,2,3} where all the columns and
        rows contain at least one NaN value

        One discrete class D with NaN values
        Mixes continuous/discrete/string metas ({X,D,S}M)

        Returns
        -------
        data : Orange.data.Table
        """
        return Table(cls.path("missing_data_3.tab"))

    @classmethod
    def data_one_column_vals(cls, value=np.nan):
        """
        Dataset with two continuous features and one discrete. One continuous
        columns has custom set values (default nan).

        Returns
        -------
        data : Orange.data.Table
        """
        table = Table.from_list(
            Domain(
                [ContinuousVariable("a"),
                 ContinuousVariable("b"),
                 DiscreteVariable("c", values=("y", "n"))]
            ),
            list(zip(
                [42.48, 16.84, 15.23, 23.8],
                ["", "", "", ""],
                "ynyn"
            )))
        with table.unlocked():
            table[:, 1] = value
        return table

    @classmethod
    def data_one_column_nans(cls):
        """
        Dataset with two continuous features and one discrete. One continuous
        columns has missing values (NaN).

        Returns
        -------
        data : Orange.data.Table
        """
        return cls.data_one_column_vals(value=np.nan)

    @classmethod
    def data_one_column_infs(cls):
        return cls.data_one_column_vals(value=np.inf)

    @classmethod
    def datasets(cls):
        """
        Yields multiple datasets.

        Returns
        -------
        data : Generator of Orange.data.Table
        """
        ds_cls = Table(cls.path("testing_dataset_cls"))
        ds_reg = Table(cls.path("testing_dataset_reg"))
        for ds in (ds_cls, ds_reg):
            d, a = ds.domain, ds.domain.attributes
            for i in range(0, len(a), 2):
                yield ds.transform(Domain(a[i: i + 2], d.class_vars, d.metas))
            yield ds.transform(Domain(a[:2] + a[8: 10], d.class_vars, d.metas))
        yield cls.missing_data_1()
        yield cls.missing_data_2()
        yield cls.missing_data_3()
        yield cls.data_one_column_nans()
        yield ds_cls
        yield ds_reg


@contextmanager
def open_widget_classes():
    with patch.object(OWWidget, "__init_subclass__"):
        yield