1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
from copy import deepcopy
from AnyQt.QtCore import QTimer, Qt
from Orange.data import Table
from Orange.modelling import Fitter, Learner, Model
from Orange.preprocess.preprocess import Preprocess
from Orange.statistics import util as ut
from Orange.widgets import gui
from Orange.widgets.settings import Setting
from Orange.widgets.utils import getmembers
from Orange.widgets.utils.signals import Output, Input
from Orange.widgets.utils.sql import check_sql_input
from Orange.widgets.widget import OWWidget, WidgetMetaClass, Msg
class OWBaseLearnerMeta(WidgetMetaClass):
""" Meta class for learner widgets
OWBaseLearner declares two outputs, learner and model with
generic type (Learner and Model).
This metaclass ensures that each of the subclasses gets
its own Outputs class with output that match the corresponding
learner.
"""
def __new__(cls, name, bases, attributes, **kwargs):
def abstract_widget():
return not attributes.get("name")
def copy_outputs(template):
result = type("Outputs", (), {})
for name, signal in getmembers(template, Output):
setattr(result, name, deepcopy(signal))
return result
obj = super().__new__(cls, name, bases, attributes, **kwargs)
if abstract_widget():
return obj
learner = attributes.get("LEARNER")
if not learner:
raise AttributeError(
"'{}' must declare attribute LEARNER".format(name))
outputs = obj.Outputs = copy_outputs(obj.Outputs)
outputs.learner.type = learner
outputs.model.type = learner.__returns__
return obj
class OWBaseLearner(OWWidget, metaclass=OWBaseLearnerMeta, openclass=True):
"""Abstract widget for classification/regression learners.
Notes
-----
All learner widgets should define learner class LEARNER.
LEARNER should have __returns__ attribute.
Overwrite `create_learner`, `add_main_layout` and `get_learner_parameters`
in case LEARNER has extra parameters.
"""
LEARNER = None
supports_sparse = True
learner_name = Setting("", schema_only=True)
want_main_area = False
resizing_enabled = False
auto_apply = Setting(True)
class Error(OWWidget.Error):
data_error = Msg("{}")
fitting_failed = Msg("Fitting failed.\n{}")
sparse_not_supported = Msg("Sparse data is not supported.")
out_of_memory = Msg("Out of memory.")
class Warning(OWWidget.Warning):
outdated_learner = Msg("Press Apply to submit changes.")
class Information(OWWidget.Information):
ignored_preprocessors = Msg(
"Ignoring default preprocessing.\n"
"Default preprocessing, such as scaling, one-hot encoding and "
"treatment of missing data, has been replaced with user-specified "
"preprocessors. Problems may occur if these are inadequate "
"for the given data.")
class Inputs:
data = Input("Data", Table)
preprocessor = Input("Preprocessor", Preprocess)
class Outputs:
learner = Output("Learner", Learner, dynamic=False)
model = Output("Model", Model, dynamic=False,
replaces=["Classifier", "Predictor"])
OUTPUT_MODEL_NAME = Outputs.model.name # Attr for backcompat w/ self.send() code
_SEND, _SOFT, _UPDATE = range(3)
def __init__(self, preprocessors=None):
super().__init__()
self.__default_learner_name = ""
self.data = None
self.valid_data = False
self.learner = None
self.model = None
self.preprocessors = preprocessors
self.outdated_settings = False
self.__apply_level = []
self.setup_layout()
QTimer.singleShot(0, getattr(self, "unconditional_apply", self.apply))
def create_learner(self):
"""Creates a learner with current configuration.
Returns:
Learner: an instance of Orange.base.learner subclass.
"""
return self.LEARNER(preprocessors=self.preprocessors)
def get_learner_parameters(self):
"""Creates an `OrderedDict` or a sequence of pairs with current model
configuration.
Returns:
OrderedDict or List: (option, value) pairs or dict
"""
return []
def default_learner_name(self) -> str:
"""
Return the default learner name.
By default this is the same as the widget's name.
"""
return self.__default_learner_name or self.captionTitle
def set_default_learner_name(self, name: str) -> None:
"""
Set the default learner name if not otherwise specified by the user.
"""
changed = name != self.__default_learner_name
if name:
self.name_line_edit.setPlaceholderText(name)
else:
self.name_line_edit.setPlaceholderText(self.captionTitle)
self.__default_learner_name = name
if not self.learner_name and changed:
self.learner_name_changed()
@Inputs.preprocessor
def set_preprocessor(self, preprocessor):
self.preprocessors = preprocessor
# invalidate learner and model, so handleNewSignals will renew them
self.learner = self.model = None
@Inputs.data
@check_sql_input
def set_data(self, data):
"""Set the input train dataset."""
self.Error.data_error.clear()
self.data = data
if data is not None and data.domain.class_var is None:
if data.domain.class_vars:
self.Error.data_error(
"Data contains multiple target variables.\n"
"Select a single one with the Select Columns widget.")
else:
self.Error.data_error(
"Data has no target variable.\n"
"Select one with the Select Columns widget.")
self.data = None
# invalidate the model so that handleNewSignals will update it
self.model = None
def apply(self):
level, self.__apply_level = max(self.__apply_level, default=self._UPDATE), []
"""Applies learner and sends new model."""
if level == self._SEND:
self._send_learner()
self._send_model()
elif level == self._UPDATE:
self.update_learner()
self.update_model()
else:
self.learner or self.update_learner()
self.model or self.update_model()
def apply_as(self, level, unconditional=False):
self.__apply_level.append(level)
if unconditional:
self.unconditional_apply()
else:
self.apply()
def update_learner(self):
self.learner = self.create_learner()
if self.learner and issubclass(self.LEARNER, Fitter):
self.learner.use_default_preprocessors = True
if self.learner is not None:
self.learner.name = self.effective_learner_name()
self._send_learner()
def _send_learner(self):
self.Outputs.learner.send(self.learner)
self.outdated_settings = False
self.Warning.outdated_learner.clear()
def handleNewSignals(self):
self.apply_as(self._SOFT, True)
self.Information.ignored_preprocessors(
shown=not getattr(self.learner, "use_default_preprocessors", False)
and getattr(self.LEARNER, "preprocessors", False)
and self.preprocessors is not None)
def show_fitting_failed(self, exc):
"""Show error when fitting fails.
Derived widgets can override this to show more specific messages."""
self.Error.fitting_failed(str(exc), shown=exc is not None)
def update_model(self):
self.show_fitting_failed(None)
self.model = None
if self.check_data():
try:
self.model = self.learner(self.data)
except BaseException as exc:
self.show_fitting_failed(exc)
else:
self.model.name = self.effective_learner_name()
self.model.instances = self.data
self._send_model()
def _send_model(self):
self.Outputs.model.send(self.model)
def check_data(self):
self.valid_data = False
self.Error.sparse_not_supported.clear()
if self.data is not None and self.learner is not None:
self.Error.data_error.clear()
reason = self.learner.incompatibility_reason(self.data.domain)
if reason is not None:
self.Error.data_error(reason)
elif not len(self.data):
self.Error.data_error("Dataset is empty.")
elif len(ut.unique(self.data.Y)) < 2:
self.Error.data_error("Data contains a single target value.")
elif self.data.X.size == 0:
self.Error.data_error("Data has no features to learn from.")
elif self.data.is_sparse() and not self.supports_sparse:
self.Error.sparse_not_supported()
else:
self.valid_data = True
return self.valid_data
def settings_changed(self, *args, **kwargs):
self.outdated_settings = True
self.Warning.outdated_learner(shown=not self.auto_apply)
self.apply()
def learner_name_changed(self):
if self.model is not None:
self.model.name = self.effective_learner_name()
if self.learner is not None:
self.learner.name = self.effective_learner_name()
self.apply_as(self._SEND)
def effective_learner_name(self):
"""Return the effective learner name."""
return self.learner_name or self.name_line_edit.placeholderText()
def send_report(self):
self.report_items((("Name", self.effective_learner_name()),))
model_parameters = self.get_learner_parameters()
if model_parameters:
self.report_items("Model parameters", model_parameters)
if self.data:
self.report_data("Data", self.data)
# GUI
def setup_layout(self):
self.add_learner_name_widget()
self.add_main_layout()
# Options specific to target variable type, if supported
if issubclass(self.LEARNER, Fitter):
# Only add a classification section if the method is overridden
if type(self).add_classification_layout is not \
OWBaseLearner.add_classification_layout:
classification_box = gui.widgetBox(
self.controlArea, 'Classification')
self.add_classification_layout(classification_box)
# Only add a regression section if the method is overridden
if type(self).add_regression_layout is not \
OWBaseLearner.add_regression_layout:
regression_box = gui.widgetBox(self.controlArea, 'Regression')
self.add_regression_layout(regression_box)
self.add_bottom_buttons()
def add_main_layout(self):
"""Creates layout with the learner configuration widgets.
Override this method for laying out any learner-specific parameter controls.
See setup_layout() method for execution order.
"""
def add_classification_layout(self, box):
"""Creates layout for classification specific options.
If a widget outputs a learner dispatcher, sometimes the classification
and regression learners require different options.
See `setup_layout()` method for execution order.
"""
def add_regression_layout(self, box):
"""Creates layout for regression specific options.
If a widget outputs a learner dispatcher, sometimes the classification
and regression learners require different options.
See `setup_layout()` method for execution order.
"""
def add_learner_name_widget(self):
self.name_line_edit = gui.lineEdit(
self.controlArea, self, 'learner_name', box='Name',
placeholderText=self.captionTitle,
tooltip='The name will identify this model in other widgets',
orientation=Qt.Horizontal, callback=self.learner_name_changed)
def setCaption(self, caption):
super().setCaption(caption)
if not self.__default_learner_name:
self.name_line_edit.setPlaceholderText(caption)
if not self.learner_name:
self.learner_name_changed()
def add_bottom_buttons(self):
self.apply_button = gui.auto_apply(self.buttonsArea, self, commit=self.apply)
def send(self, signalName, value, id=None):
# A subclass might still use the old syntax to send outputs
# defined on this class
for _, output in getmembers(self.Outputs, Output):
if output.name == signalName or signalName in output.replaces:
output.send(value, id=id)
return
super().send(signalName, value, id)
@classmethod
def get_widget_description(cls):
# When a subclass defines defines old-style signals, those override
# the new-style ones, so we add them manually
desc = super().get_widget_description()
if cls.outputs:
desc["outputs"].extend(cls.get_signals("outputs", True))
if cls.inputs:
desc["inputs"].extend(cls.get_signals("inputs", True))
return desc
|