File: test_owlearnerwidget.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (291 lines) | stat: -rw-r--r-- 10,208 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from unittest.mock import Mock, patch

import scipy.sparse as sp

# pylint: disable=missing-docstring, protected-access
from Orange.base import Learner, Model
from Orange.classification import KNNLearner
from Orange.data import Table, Domain
from Orange.modelling import TreeLearner, Fitter
from Orange.preprocess import continuize
from Orange.regression import MeanLearner, LinearRegressionLearner
from Orange.widgets.utils.owlearnerwidget import OWBaseLearner
from Orange.widgets.tests.base import WidgetTest
from Orange.widgets.utils.signals import Output


class TestOWBaseLearner(WidgetTest):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.iris = Table("iris")

    def test_error_on_learning(self):
        """Check that widget shows error message when learner fails"""

        class FailingLearner(Learner):
            """A learner that fails when given data"""
            __returns__ = Model

            def __call__(self, data, *_):
                if data is not None:
                    raise ValueError("boom")
                return Model(Domain([]))

        class OWFailingLearner(OWBaseLearner):
            """Widget for the above learner"""
            name = learner_name = "foo"
            LEARNER = FailingLearner
            auto_apply = True

        self.widget = self.create_widget(OWFailingLearner)
        self.send_signal(self.widget.Inputs.data, self.iris)
        self.assertTrue(self.widget.Error.fitting_failed.is_shown())
        self.send_signal(self.widget.Inputs.data, None)
        self.assertFalse(self.widget.Error.fitting_failed.is_shown())

    def test_subclasses_do_not_share_outputs(self):
        class WidgetA(OWBaseLearner, openclass=True):
            name = "A"
            LEARNER = KNNLearner

        class WidgetB(OWBaseLearner):
            name = "B"
            LEARNER = MeanLearner

        self.assertEqual(WidgetA.Outputs.learner.type, KNNLearner)
        self.assertEqual(WidgetB.Outputs.learner.type, MeanLearner)

        class WidgetC(WidgetA):
            name = "C"
            LEARNER = TreeLearner

            class Outputs(WidgetA.Outputs):
                test = Output("test", str)

        self.assertEqual(WidgetC.Outputs.learner.type, TreeLearner)
        self.assertEqual(WidgetC.Outputs.test.name, "test")
        self.assertEqual(WidgetA.Outputs.learner.type, KNNLearner)
        self.assertFalse(hasattr(WidgetA.Outputs, "test"))

    @WidgetTest.skipNonEnglish
    def test_send_backward_compatibility(self):
        class WidgetA(OWBaseLearner):
            name = "A"
            LEARNER = KNNLearner

        w = self.create_widget(WidgetA)
        w.send(w.OUTPUT_MODEL_NAME, "Foo")
        self.assertEqual(self.get_output(w.OUTPUT_MODEL_NAME, w), "Foo")

        # Old old signal name
        w.send("Predictor", "Bar")
        self.assertEqual(self.get_output(w.OUTPUT_MODEL_NAME, w), "Bar")

    def test_old_style_signals_on_subclass_backward_compatibility(self):
        class WidgetA(OWBaseLearner):
            name = "A"
            LEARNER = KNNLearner

            inputs = [("A", None, "set_data")]
            outputs = [("A", None)]

        desc = WidgetA.get_widget_description()
        inputs = [i.name for i in desc["inputs"]]
        outputs = [o.name for o in desc["outputs"]]

        self.assertIn(WidgetA.Outputs.learner.name, outputs)
        self.assertIn(WidgetA.Outputs.model.name, outputs)
        self.assertIn("A", outputs)

        self.assertIn(WidgetA.Inputs.data.name, inputs)
        self.assertIn(WidgetA.Inputs.preprocessor.name, inputs)
        self.assertIn("A", inputs)

    def test_persists_learner_name_in_settings(self):
        class WidgetA(OWBaseLearner):
            name = "A"
            LEARNER = KNNLearner

        w1 = self.create_widget(WidgetA)
        w1.learner_name = "MyWidget"

        settings = w1.settingsHandler.pack_data(w1)
        w2 = self.create_widget(WidgetA, settings)
        self.assertEqual(w2.learner_name, w1.learner_name)

    def test_converts_sparse_targets_to_dense(self):
        class WidgetLR(OWBaseLearner):
            name = "lr"
            LEARNER = LinearRegressionLearner

        w = self.create_widget(WidgetLR)

        # Orange will want do do one-hot encoding when continuizing discrete variable
        pp = continuize.DomainContinuizer(
            multinomial_treatment=continuize.Continuize.AsOrdinal,
            transform_class=True,
        )
        data = self.iris.transform(pp(self.iris)).copy()
        with data.unlocked():
            data.Y = sp.csr_matrix(data.Y)

        self.send_signal(w.Inputs.data, data, widget=w)
        self.assertFalse(any(w.Error.active))

        model = self.get_output(w.Outputs.model, widget=w)
        self.assertIsNotNone(model)

    def test_invalid_number_of_targets(self):
        class MockLearner(Fitter):
            name = 'mock'
            __fits__ = {'classification': Mock()}
            __returns__ = Mock()

        class WidgetLR(OWBaseLearner):
            name = "lr"
            LEARNER = MockLearner

        w = self.create_widget(WidgetLR)
        error = w.Error.data_error
        heart = Table("heart_disease")
        domain = heart.domain

        no_target = heart.transform(
            Domain(domain.attributes,
                   []))
        two_targets = heart.transform(
            Domain([domain["age"]],
                   [domain["gender"], domain["chest pain"]]))

        self.send_signal(w.Inputs.data, heart)
        self.assertFalse(error.is_shown())
        self.assertIs(w.data, heart)

        self.send_signal(w.Inputs.data, no_target)
        self.assertTrue(error.is_shown())
        self.assertIsNone(w.data)
        err_no_target = str(error)
        self.assertIn("target", err_no_target)

        self.send_signal(w.Inputs.data, two_targets)
        self.assertTrue(error.is_shown())
        self.assertIsNone(w.data)
        err_two_targets = str(error)
        self.assertIn("target", err_no_target)
        self.assertNotEqual(err_no_target, err_two_targets)

        self.send_signal(w.Inputs.data, None)
        self.assertIsNone(w.data)
        self.assertFalse(error.is_shown())

        self.send_signal(w.Inputs.data, two_targets)
        self.assertTrue(error.is_shown())

        self.send_signal(w.Inputs.data, None)
        self.assertFalse(error.is_shown())

    def test_default_name(self):
        class TestLearner(Fitter):
            name = "Test"
            __returns__ = Mock()

        class TestWidget(OWBaseLearner):
            name = "Test"
            LEARNER = TestLearner

        def check_name(name):
            self.assertEqual(name, w.effective_learner_name())
            self.assertEqual(name, self.get_output(w.Outputs.learner, widget=w).name)

        w = self.create_widget(TestWidget)

        check_name("Test")
        w.setCaption("Foo")
        check_name("Foo")
        w.set_default_learner_name("Bar")
        check_name("Bar")
        w.setCaption("Frob")
        check_name("Bar")
        w.learner_name = "This is not a test"
        w.learner_name_changed()
        check_name("This is not a test")
        w.set_default_learner_name("Bar")
        check_name("This is not a test")
        w.setCaption("Blarg")
        check_name("This is not a test")
        w.learner_name = ""
        w.learner_name_changed()
        check_name("Bar")
        w.set_default_learner_name("")
        check_name("Blarg")

    def test_preprocessor_warning(self):
        class TestLearnerNoPreprocess(Learner):
            name = "Test"
            __returns__ = Mock()

        class TestWidgetNoPreprocess(OWBaseLearner):
            name = "Test"
            LEARNER = TestLearnerNoPreprocess

        class TestLearnerPreprocess(Learner):
            name = "Test"
            preprocessors = [Mock()]
            __returns__ = Mock()

        class TestWidgetPreprocess(OWBaseLearner):
            name = "Test"
            LEARNER = TestLearnerPreprocess

        class TestFitterPreprocess(Fitter):
            name = "Test"
            preprocessors = [Mock()]
            __returns__ = Mock()

        class TestWidgetPreprocessFit(OWBaseLearner):
            name = "Test"
            LEARNER = TestFitterPreprocess

        wno = self.create_widget(TestWidgetNoPreprocess)
        wyes = self.create_widget(TestWidgetPreprocess)
        wfit = self.create_widget(TestWidgetPreprocessFit)

        self.assertFalse(wno.Information.ignored_preprocessors.is_shown())
        self.assertFalse(wyes.Information.ignored_preprocessors.is_shown())
        self.assertFalse(wfit.Information.ignored_preprocessors.is_shown())

        pp = continuize.Continuize()
        self.send_signal(wno.Inputs.preprocessor, pp)
        self.send_signal(wyes.Inputs.preprocessor, pp)
        self.send_signal(wfit.Inputs.preprocessor, pp)

        self.assertFalse(wno.Information.ignored_preprocessors.is_shown())
        self.assertTrue(wyes.Information.ignored_preprocessors.is_shown())
        self.assertFalse(wfit.Information.ignored_preprocessors.is_shown())

        self.send_signal(wno.Inputs.preprocessor, None)
        self.send_signal(wyes.Inputs.preprocessor, None)
        self.send_signal(wfit.Inputs.preprocessor, None)

        self.assertFalse(wno.Information.ignored_preprocessors.is_shown())
        self.assertFalse(wyes.Information.ignored_preprocessors.is_shown())
        self.assertFalse(wfit.Information.ignored_preprocessors.is_shown())

    def test_multiple_sends(self):
        class TestLearner(Learner):
            name = "Test"
            __returns__ = Mock()

        class TestWidget(OWBaseLearner):
            name = "Test"
            LEARNER = TestLearner

        widget = self.create_widget(TestWidget)
        pp = continuize.Continuize()
        with patch.object(widget.Outputs.learner, "send") as model_send, \
                patch.object(widget.Outputs.model, "send") as learner_send:
            self.send_signals([(widget.Inputs.data, self.iris),
                               (widget.Inputs.preprocessor, pp)])
            learner_send.assert_called_once()
            model_send.assert_called_once()