1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
from unittest.mock import Mock, patch
import scipy.sparse as sp
# pylint: disable=missing-docstring, protected-access
from Orange.base import Learner, Model
from Orange.classification import KNNLearner
from Orange.data import Table, Domain
from Orange.modelling import TreeLearner, Fitter
from Orange.preprocess import continuize
from Orange.regression import MeanLearner, LinearRegressionLearner
from Orange.widgets.utils.owlearnerwidget import OWBaseLearner
from Orange.widgets.tests.base import WidgetTest
from Orange.widgets.utils.signals import Output
class TestOWBaseLearner(WidgetTest):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.iris = Table("iris")
def test_error_on_learning(self):
"""Check that widget shows error message when learner fails"""
class FailingLearner(Learner):
"""A learner that fails when given data"""
__returns__ = Model
def __call__(self, data, *_):
if data is not None:
raise ValueError("boom")
return Model(Domain([]))
class OWFailingLearner(OWBaseLearner):
"""Widget for the above learner"""
name = learner_name = "foo"
LEARNER = FailingLearner
auto_apply = True
self.widget = self.create_widget(OWFailingLearner)
self.send_signal(self.widget.Inputs.data, self.iris)
self.assertTrue(self.widget.Error.fitting_failed.is_shown())
self.send_signal(self.widget.Inputs.data, None)
self.assertFalse(self.widget.Error.fitting_failed.is_shown())
def test_subclasses_do_not_share_outputs(self):
class WidgetA(OWBaseLearner, openclass=True):
name = "A"
LEARNER = KNNLearner
class WidgetB(OWBaseLearner):
name = "B"
LEARNER = MeanLearner
self.assertEqual(WidgetA.Outputs.learner.type, KNNLearner)
self.assertEqual(WidgetB.Outputs.learner.type, MeanLearner)
class WidgetC(WidgetA):
name = "C"
LEARNER = TreeLearner
class Outputs(WidgetA.Outputs):
test = Output("test", str)
self.assertEqual(WidgetC.Outputs.learner.type, TreeLearner)
self.assertEqual(WidgetC.Outputs.test.name, "test")
self.assertEqual(WidgetA.Outputs.learner.type, KNNLearner)
self.assertFalse(hasattr(WidgetA.Outputs, "test"))
@WidgetTest.skipNonEnglish
def test_send_backward_compatibility(self):
class WidgetA(OWBaseLearner):
name = "A"
LEARNER = KNNLearner
w = self.create_widget(WidgetA)
w.send(w.OUTPUT_MODEL_NAME, "Foo")
self.assertEqual(self.get_output(w.OUTPUT_MODEL_NAME, w), "Foo")
# Old old signal name
w.send("Predictor", "Bar")
self.assertEqual(self.get_output(w.OUTPUT_MODEL_NAME, w), "Bar")
def test_old_style_signals_on_subclass_backward_compatibility(self):
class WidgetA(OWBaseLearner):
name = "A"
LEARNER = KNNLearner
inputs = [("A", None, "set_data")]
outputs = [("A", None)]
desc = WidgetA.get_widget_description()
inputs = [i.name for i in desc["inputs"]]
outputs = [o.name for o in desc["outputs"]]
self.assertIn(WidgetA.Outputs.learner.name, outputs)
self.assertIn(WidgetA.Outputs.model.name, outputs)
self.assertIn("A", outputs)
self.assertIn(WidgetA.Inputs.data.name, inputs)
self.assertIn(WidgetA.Inputs.preprocessor.name, inputs)
self.assertIn("A", inputs)
def test_persists_learner_name_in_settings(self):
class WidgetA(OWBaseLearner):
name = "A"
LEARNER = KNNLearner
w1 = self.create_widget(WidgetA)
w1.learner_name = "MyWidget"
settings = w1.settingsHandler.pack_data(w1)
w2 = self.create_widget(WidgetA, settings)
self.assertEqual(w2.learner_name, w1.learner_name)
def test_converts_sparse_targets_to_dense(self):
class WidgetLR(OWBaseLearner):
name = "lr"
LEARNER = LinearRegressionLearner
w = self.create_widget(WidgetLR)
# Orange will want do do one-hot encoding when continuizing discrete variable
pp = continuize.DomainContinuizer(
multinomial_treatment=continuize.Continuize.AsOrdinal,
transform_class=True,
)
data = self.iris.transform(pp(self.iris)).copy()
with data.unlocked():
data.Y = sp.csr_matrix(data.Y)
self.send_signal(w.Inputs.data, data, widget=w)
self.assertFalse(any(w.Error.active))
model = self.get_output(w.Outputs.model, widget=w)
self.assertIsNotNone(model)
def test_invalid_number_of_targets(self):
class MockLearner(Fitter):
name = 'mock'
__fits__ = {'classification': Mock()}
__returns__ = Mock()
class WidgetLR(OWBaseLearner):
name = "lr"
LEARNER = MockLearner
w = self.create_widget(WidgetLR)
error = w.Error.data_error
heart = Table("heart_disease")
domain = heart.domain
no_target = heart.transform(
Domain(domain.attributes,
[]))
two_targets = heart.transform(
Domain([domain["age"]],
[domain["gender"], domain["chest pain"]]))
self.send_signal(w.Inputs.data, heart)
self.assertFalse(error.is_shown())
self.assertIs(w.data, heart)
self.send_signal(w.Inputs.data, no_target)
self.assertTrue(error.is_shown())
self.assertIsNone(w.data)
err_no_target = str(error)
self.assertIn("target", err_no_target)
self.send_signal(w.Inputs.data, two_targets)
self.assertTrue(error.is_shown())
self.assertIsNone(w.data)
err_two_targets = str(error)
self.assertIn("target", err_no_target)
self.assertNotEqual(err_no_target, err_two_targets)
self.send_signal(w.Inputs.data, None)
self.assertIsNone(w.data)
self.assertFalse(error.is_shown())
self.send_signal(w.Inputs.data, two_targets)
self.assertTrue(error.is_shown())
self.send_signal(w.Inputs.data, None)
self.assertFalse(error.is_shown())
def test_default_name(self):
class TestLearner(Fitter):
name = "Test"
__returns__ = Mock()
class TestWidget(OWBaseLearner):
name = "Test"
LEARNER = TestLearner
def check_name(name):
self.assertEqual(name, w.effective_learner_name())
self.assertEqual(name, self.get_output(w.Outputs.learner, widget=w).name)
w = self.create_widget(TestWidget)
check_name("Test")
w.setCaption("Foo")
check_name("Foo")
w.set_default_learner_name("Bar")
check_name("Bar")
w.setCaption("Frob")
check_name("Bar")
w.learner_name = "This is not a test"
w.learner_name_changed()
check_name("This is not a test")
w.set_default_learner_name("Bar")
check_name("This is not a test")
w.setCaption("Blarg")
check_name("This is not a test")
w.learner_name = ""
w.learner_name_changed()
check_name("Bar")
w.set_default_learner_name("")
check_name("Blarg")
def test_preprocessor_warning(self):
class TestLearnerNoPreprocess(Learner):
name = "Test"
__returns__ = Mock()
class TestWidgetNoPreprocess(OWBaseLearner):
name = "Test"
LEARNER = TestLearnerNoPreprocess
class TestLearnerPreprocess(Learner):
name = "Test"
preprocessors = [Mock()]
__returns__ = Mock()
class TestWidgetPreprocess(OWBaseLearner):
name = "Test"
LEARNER = TestLearnerPreprocess
class TestFitterPreprocess(Fitter):
name = "Test"
preprocessors = [Mock()]
__returns__ = Mock()
class TestWidgetPreprocessFit(OWBaseLearner):
name = "Test"
LEARNER = TestFitterPreprocess
wno = self.create_widget(TestWidgetNoPreprocess)
wyes = self.create_widget(TestWidgetPreprocess)
wfit = self.create_widget(TestWidgetPreprocessFit)
self.assertFalse(wno.Information.ignored_preprocessors.is_shown())
self.assertFalse(wyes.Information.ignored_preprocessors.is_shown())
self.assertFalse(wfit.Information.ignored_preprocessors.is_shown())
pp = continuize.Continuize()
self.send_signal(wno.Inputs.preprocessor, pp)
self.send_signal(wyes.Inputs.preprocessor, pp)
self.send_signal(wfit.Inputs.preprocessor, pp)
self.assertFalse(wno.Information.ignored_preprocessors.is_shown())
self.assertTrue(wyes.Information.ignored_preprocessors.is_shown())
self.assertFalse(wfit.Information.ignored_preprocessors.is_shown())
self.send_signal(wno.Inputs.preprocessor, None)
self.send_signal(wyes.Inputs.preprocessor, None)
self.send_signal(wfit.Inputs.preprocessor, None)
self.assertFalse(wno.Information.ignored_preprocessors.is_shown())
self.assertFalse(wyes.Information.ignored_preprocessors.is_shown())
self.assertFalse(wfit.Information.ignored_preprocessors.is_shown())
def test_multiple_sends(self):
class TestLearner(Learner):
name = "Test"
__returns__ = Mock()
class TestWidget(OWBaseLearner):
name = "Test"
LEARNER = TestLearner
widget = self.create_widget(TestWidget)
pp = continuize.Continuize()
with patch.object(widget.Outputs.learner, "send") as model_send, \
patch.object(widget.Outputs.model, "send") as learner_send:
self.send_signals([(widget.Inputs.data, self.iris),
(widget.Inputs.preprocessor, pp)])
learner_send.assert_called_once()
model_send.assert_called_once()
|