File: owboxplot.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (1341 lines) | stat: -rw-r--r-- 50,973 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
import math
from collections import namedtuple
from itertools import chain, count

import numpy as np

from AnyQt.QtWidgets import (
    QGraphicsView, QGraphicsScene, QGraphicsItem, QGraphicsSimpleTextItem,
    QGraphicsTextItem, QGraphicsItemGroup, QGraphicsLineItem,
    QGraphicsPathItem, QGraphicsRectItem, QSizePolicy
)
from AnyQt.QtGui import QPen, QColor, QBrush, QPainterPath, QPainter, QFont
from AnyQt.QtCore import Qt, QEvent, QRectF, QSize, QSortFilterProxyModel
from orangewidget.utils.listview import ListViewSearch

import scipy.special
from scipy.stats import f_oneway, chi2_contingency

import Orange.data
from Orange.data.filter import FilterDiscrete, FilterContinuous, Values, \
    IsDefined
from Orange.statistics import contingency, distribution

from Orange.widgets import widget, gui
from Orange.widgets.settings import (Setting, DomainContextHandler,
                                     ContextSetting)
from Orange.widgets.utils.itemmodels import VariableListModel
from Orange.widgets.utils.annotated_data import (create_annotated_table,
                                                 ANNOTATED_DATA_SIGNAL_NAME)
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.widget import Input, Output


def compute_scale(min_, max_):
    if min_ == max_:
        return math.floor(min_), 1
    magnitude = int(3 * math.log10(abs(max_ - min_)) + 1)
    if magnitude % 3 == 0:
        first_place = 1
    elif magnitude % 3 == 1:
        first_place = 2
    else:
        first_place = 5
    magnitude = magnitude // 3 - 1
    step = first_place * pow(10, magnitude)
    first_val = math.ceil(min_ / step) * step
    return first_val, step


ContDataRange = namedtuple("ContDataRange", ["low", "high", "group_value"])
DiscDataRange = namedtuple("DiscDataRange", ["value", "group_value"])


class BoxData:
    def __init__(self, col, group_val=None):
        self.n = len(col) - np.sum(np.isnan(col))
        if self.n == 0:
            return
        self.a_min = np.nanmin(col)
        self.a_max = np.nanmax(col)
        self.mean = np.nanmean(col)
        self.var = np.nanvar(col)
        self.dev = np.sqrt(self.var)
        self.q25, self.median, self.q75 = \
            np.nanquantile(col, [0.25, 0.5, 0.75], interpolation="midpoint")
        self.data_range = ContDataRange(self.q25, self.q75, group_val)
        if self.q25 == self.median:
            self.q25 = None
        if self.q75 == self.median:
            self.q75 = None


class FilterGraphicsRectItem(QGraphicsRectItem):
    def __init__(self, data_range, *args, add_lpad=True, add_rpad=True):
        super().__init__(*args)
        self.data_range = data_range
        self.__add_lpad = add_lpad
        self.__add_rpad = add_rpad
        self.__is_hovered = False
        self.setFlag(QGraphicsItem.ItemIsSelectable)
        self.setAcceptHoverEvents(True)

    def set_right_padding(self, add_rpad: bool):
        self.__add_rpad = add_rpad

    def hoverEnterEvent(self, _) -> None:
        self.__is_hovered = True
        self.update()

    def hoverLeaveEvent(self, _) -> None:
        self.__is_hovered = False
        self.update()

    def boundingRect(self) -> QRectF:
        br = super().boundingRect()
        d = 7
        return br.adjusted(-d if self.__add_lpad else 0, -d,
                           d if self.__add_rpad else 0, d)

    def shape(self) -> QPainterPath:
        sh = QPainterPath()
        sh.addRect(self.boundingRect())
        return sh

    def paint(self, painter: QPainter, *_, **__) -> None:
        if self.__is_hovered:
            painter.save()
            brush = self.brush()
            color = brush.color()
            color.setAlpha(100)
            brush.setColor(color)
            painter.setBrush(brush)
            painter.setPen(Qt.NoPen)
            painter.drawRoundedRect(self.boundingRect(), 2, 2)
            painter.restore()

        painter.save()
        painter.setBrush(self.brush())
        painter.setPen(self.pen())
        painter.drawRect(self.rect())
        painter.restore()

        if self.isSelected():
            painter.save()
            pen = QPen(Qt.black)
            pen.setStyle(Qt.DashLine)
            pen.setWidth(2)
            painter.setPen(pen)
            painter.drawRect(self.rect())
            painter.restore()


class SortProxyModel(QSortFilterProxyModel):
    def lessThan(self, left, right):
        role = self.sortRole()
        l_score = left.data(role)
        r_score = right.data(role)
        return r_score is not None and (l_score is None or bool(l_score < r_score))


class OWBoxPlot(widget.OWWidget):
    name = "Box Plot"
    description = "Visualize the distribution of feature values in a box plot."
    icon = "icons/BoxPlot.svg"
    priority = 100
    keywords = "box plot, whisker"

    class Inputs:
        data = Input("Data", Orange.data.Table)

    class Outputs:
        selected_data = Output("Selected Data", Orange.data.Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table)

    class Warning(widget.OWWidget.Warning):
        no_vars = widget.Msg(
            "Data contains no categorical or numeric variables")

    buttons_area_orientation = None

    #: Comparison types for continuous variables
    CompareNone, CompareMedians, CompareMeans = 0, 1, 2

    settingsHandler = DomainContextHandler()
    # If this was a list, context handler would try to match its elements to
    # variable names!
    selection = ContextSetting((), schema_only=True)

    attribute = ContextSetting(None)
    order_by_importance = Setting(False)
    order_grouping_by_importance = Setting(False)
    group_var = ContextSetting(None)
    show_annotations = Setting(True)
    compare = Setting(CompareMeans)
    stattest = Setting(0)
    sig_threshold = Setting(0.05)
    stretched = Setting(True)
    show_labels = Setting(True)
    sort_freqs = Setting(False)

    _sorting_criteria_attrs = {
        CompareNone: "", CompareMedians: "median", CompareMeans: "mean"
    }

    _pen_axis_tick = QPen(Qt.white, 5)
    _pen_axis = QPen(Qt.darkGray, 3)
    _pen_median = QPen(QBrush(QColor(0xff, 0xff, 0x00)), 2)
    _pen_paramet = QPen(QBrush(QColor(0x33, 0x00, 0xff)), 2)
    _pen_dotted = QPen(QBrush(QColor(0x33, 0x00, 0xff)), 1)
    _pen_dotted.setStyle(Qt.DotLine)
    _post_line_pen = QPen(Qt.lightGray, 2)
    _post_grp_pen = QPen(Qt.lightGray, 4)
    for pen in (_pen_paramet, _pen_median, _pen_dotted,
                _pen_axis, _pen_axis_tick, _post_line_pen, _post_grp_pen):
        pen.setCosmetic(True)
        pen.setCapStyle(Qt.RoundCap)
        pen.setJoinStyle(Qt.RoundJoin)
    _pen_axis_tick.setCapStyle(Qt.FlatCap)

    _box_brush = QBrush(QColor(0x33, 0x88, 0xff, 0xc0))
    _attr_brush = QBrush(QColor(0x33, 0x00, 0xff))

    graph_name = "box_scene"  # QGraphicsScene

    def __init__(self):
        super().__init__()
        self._axis_font = QFont()
        self._axis_font.setPixelSize(12)
        self._label_font = QFont()
        self._label_font.setPixelSize(11)
        self.dataset = None
        self.stats = []
        self.dist = self.conts = None

        self.posthoc_lines = []

        self.label_txts = self.mean_labels = self.boxes = self.labels = \
            self.label_txts_all = self.attr_labels = self.order = []
        self.scale_x = 1
        self.scene_min_x = self.scene_max_x = self.scene_width = 0
        self.label_width = 0

        self.attrs = VariableListModel()
        sorted_model = SortProxyModel(sortRole=Qt.UserRole)
        sorted_model.setSourceModel(self.attrs)
        sorted_model.sort(0)
        box = gui.vBox(self.controlArea, "Variable")
        view = self.attr_list = ListViewSearch()
        view.setModel(sorted_model)
        view.setSelectionMode(view.SingleSelection)
        view.selectionModel().selectionChanged.connect(self.attr_changed)
        view.setMinimumSize(QSize(30, 30))
        # Any other policy than Ignored will let the QListBox's scrollbar
        # set the minimal height (see the penultimate paragraph of
        # http://doc.qt.io/qt-4.8/qabstractscrollarea.html#addScrollBarWidget)
        view.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Ignored)
        box.layout().addWidget(view)
        gui.checkBox(
            box, self, "order_by_importance",
            "Order by relevance to subgroups",
            tooltip="Order by 𝜒² or ANOVA over the subgroups",
            callback=self.apply_attr_sorting)

        self.group_vars = VariableListModel(placeholder="None")
        sorted_model = SortProxyModel(sortRole=Qt.UserRole)
        sorted_model.setSourceModel(self.group_vars)
        sorted_model.sort(0)

        box = gui.vBox(self.controlArea, "Subgroups")
        view = self.group_list = ListViewSearch()
        view.setModel(sorted_model)
        view.selectionModel().selectionChanged.connect(self.grouping_changed)
        view.setMinimumSize(QSize(30, 30))
        # See the comment above
        view.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Ignored)
        box.layout().addWidget(view)
        gui.checkBox(
            box, self, "order_grouping_by_importance",
            "Order by relevance to variable",
            tooltip="Order by 𝜒² or ANOVA over the variable values",
            callback=self.apply_group_sorting)

        # TODO: move Compare median/mean to grouping box
        # The vertical size policy is needed to let only the list views expand
        self.display_box = gui.vBox(
            self.controlArea, "Display",
            sizePolicy=(QSizePolicy.Minimum, QSizePolicy.Maximum))

        gui.checkBox(self.display_box, self, "show_annotations", "Annotate",
                     callback=self.update_graph)
        self.compare_rb = gui.radioButtonsInBox(
            self.display_box, self, 'compare',
            btnLabels=["No comparison", "Compare medians", "Compare means"],
            callback=self.update_graph)

        # The vertical size policy is needed to let only the list views expand
        self.stretching_box = box = gui.vBox(
            self.controlArea, box="Display",
            sizePolicy=(QSizePolicy.Minimum, QSizePolicy.Fixed))
        self.stretching_box.sizeHint = self.display_box.sizeHint
        gui.checkBox(
            box, self, 'stretched', "Stretch bars",
            callback=self.update_graph,
            stateWhenDisabled=False)
        gui.checkBox(
            box, self, 'show_labels', "Show box labels",
            callback=self.update_graph)
        self.sort_cb = gui.checkBox(
            box, self, 'sort_freqs', "Sort by subgroup frequencies",
            callback=self.update_graph,
            stateWhenDisabled=False)

        gui.vBox(self.mainArea)
        self.box_scene = QGraphicsScene(self)
        self.box_scene.selectionChanged.connect(self.on_selection_changed)
        self.box_view = QGraphicsView(self.box_scene)
        self.box_view.setRenderHints(QPainter.Antialiasing |
                                     QPainter.TextAntialiasing |
                                     QPainter.SmoothPixmapTransform)
        self.box_view.viewport().installEventFilter(self)

        self.mainArea.layout().addWidget(self.box_view)

        self.stat_test = ""
        self.mainArea.setMinimumWidth(300)
        self.update_box_visibilities()

    def sizeHint(self):
        return QSize(900, 500)

    def eventFilter(self, obj, event):
        if event.type() == QEvent.Resize and obj is self.box_view.viewport():
            self.update_graph()
        return super().eventFilter(obj, event)

    @property
    def show_stretched(self):
        return self.stretched and self.group_var is not self.attribute

    def reset_attrs(self):
        domain = self.dataset.domain
        self.attrs[:] = [
            var for var in chain(
                domain.class_vars, domain.metas, domain.attributes)
            if var.is_primitive() and not var.attributes.get("hidden", False)]

    def reset_groups(self):
        domain = self.dataset.domain
        self.group_vars[:] = [None] + [
            var for var in chain(
                domain.class_vars, domain.metas, domain.attributes)
            if var.is_discrete and not var.attributes.get("hidden", False)]

    @Inputs.data
    def set_data(self, dataset):
        self.closeContext()
        self._reset_all_data()
        if dataset and not (
                len(dataset.domain.variables)
                or any(var.is_primitive() for var in dataset.domain.metas)):
            self.Warning.no_vars()
            dataset = None

        self.dataset = dataset
        if dataset:
            self.reset_attrs()
            self.reset_groups()
            self._select_default_variables()
            self.openContext(self.dataset)
            self._set_list_view_selections()
            self.compute_box_data()
            self.apply_attr_sorting()
            self.apply_group_sorting()
            self.update_graph()
            self._scroll_to_top()
            self.select_box_items()

        self.update_box_visibilities()
        self.commit()

    def _reset_all_data(self):
        self.clear_scene()
        self.Warning.no_vars.clear()

        self.stats = []
        self.dist = self.conts = None
        self.group_var = None
        self.attribute = None
        self.stat_test = ""
        self.attrs[:] = []
        self.group_vars[:] = [None]
        self.selection = ()

    def _select_default_variables(self):
        # visualize first non-class variable, group by class (if present)
        domain = self.dataset.domain
        if len(self.attrs) > len(domain.class_vars):
            self.attribute = self.attrs[len(domain.class_vars)]
        elif self.attrs:
            self.attribute = self.attrs[0]

        if domain.class_var and domain.class_var.is_discrete:
            self.group_var = domain.class_var

    def _set_list_view_selections(self):
        for view, var, callback in (
                (self.attr_list, self.attribute, self.attr_changed),
                (self.group_list, self.group_var, self.grouping_changed)):
            src_model = view.model().sourceModel()
            if var not in src_model:
                continue
            sel_model = view.selectionModel()
            sel_model.selectionChanged.disconnect(callback)
            row = src_model.indexOf(var)
            index = view.model().index(row, 0)
            sel_model.select(index, sel_model.ClearAndSelect)
            self._ensure_selection_visible(view)
            sel_model.selectionChanged.connect(callback)

    def apply_attr_sorting(self):
        def compute_score(attr):
            # This function and the one in apply_group_sorting are similar, but
            # different in too many details, so they are kept as separate
            # functions.
            # If you discover a bug in this function, check the other one, too.
            if attr is group_var:
                return 3
            if attr.is_continuous:
                # One-way ANOVA
                col = data.get_column(attr)
                groups = (col[group_col == i] for i in range(n_groups))
                groups = (col[~np.isnan(col)] for col in groups)
                groups = [group for group in groups if len(group) > 1]
                p = f_oneway(*groups)[1] if len(groups) > 1 else 2
            else:
                p = self._chi_square(group_var, attr)[1]
            if math.isnan(p):
                return 2
            return p

        data = self.dataset
        if data is None:
            return
        domain = data.domain
        group_var = self.group_var
        if self.order_by_importance and group_var is not None:
            n_groups = len(group_var.values)
            group_col = data.get_column(group_var) \
                if domain.has_continuous_attributes(
                    include_class=True, include_metas=True) else None
            self._sort_list(self.attrs, self.attr_list, compute_score)
        else:
            self._sort_list(self.attrs, self.attr_list, None)

    def apply_group_sorting(self):
        def compute_stat(group):
            # This function and the one in apply_attr_sorting are similar, but
            # different in too many details, so they are kept as separate
            # functions.
            # If you discover a bug in this function, check the other one, too.
            if group is attr:
                return 3
            if group is None:
                return -1
            if attr.is_continuous:
                groups = self._group_cols(data, group, attr_col)
                groups = [group for group in groups if len(group) > 1]
                p = f_oneway(*groups)[1] if len(groups) > 1 else 2
            else:
                p = self._chi_square(group, attr)[1]
            if math.isnan(p):
                return 2
            return p

        data = self.dataset
        if data is None:
            return
        attr = self.attribute
        if self.order_grouping_by_importance:
            if attr.is_continuous:
                attr_col = data.get_column(attr)
            self._sort_list(self.group_vars, self.group_list, compute_stat)
        else:
            self._sort_list(self.group_vars, self.group_list, None)

    def _sort_list(self, source_model, view, key=None):
        if key is None:
            c = count()
            def key(_):  # pylint: disable=function-redefined
                return next(c)

        for i, attr in enumerate(source_model):
            source_model.setData(source_model.index(i), key(attr), Qt.UserRole)
        self._ensure_selection_visible(view)

    @staticmethod
    def _ensure_selection_visible(view):
        selection = view.selectedIndexes()
        if len(selection) == 1:
            view.scrollTo(selection[0])

    def _chi_square(self, group_var, attr):
        # Chi-square with the given distribution into groups
        if not attr.values or not group_var.values:
            return 0, 2, 0
        observed = np.array(
            contingency.get_contingency(self.dataset, group_var, attr))
        observed = observed[observed.sum(axis=1) != 0, :]
        observed = observed[:, observed.sum(axis=0) != 0]
        if min(observed.shape) < 2:
            return 0, 2, 0
        return chi2_contingency(observed)[:3]

    def grouping_changed(self, selected):
        if not selected:
            return  # should never come here
        self.group_var = selected.indexes()[0].data(gui.TableVariable)
        self._variables_changed(self.apply_attr_sorting)
        self._scroll_to_top()

    def attr_changed(self, selected):
        if not selected:
            return  # should never come here
        self.attribute = selected.indexes()[0].data(gui.TableVariable)
        self._variables_changed(self.apply_group_sorting)

    def _variables_changed(self, sorting):
        self.selection = ()
        self.compute_box_data()
        sorting()
        self.update_graph()
        self.update_box_visibilities()
        self.commit()

    def _scroll_to_top(self):
        scrollbar = self.box_view.verticalScrollBar()
        scrollbar.setValue(scrollbar.minimum())

    def update_graph(self):
        pending_selection = self.selection
        self.box_scene.selectionChanged.disconnect(self.on_selection_changed)
        try:  # not for exceptions, just to reconnect after all possible paths
            self.clear_scene()

            if self.dataset is None or self.attribute is None:
                return

            if self.attribute.is_continuous:
                self._display_changed_cont()
            else:
                self._display_changed_disc()
            self.selection = pending_selection
            self.draw_stat()
            self.select_box_items()
        finally:
            self.box_scene.selectionChanged.connect(self.on_selection_changed)

    def select_box_items(self):
        selection = set(self.selection)
        for box in self.box_scene.items():
            if isinstance(box, FilterGraphicsRectItem):
                box.setSelected(box.data_range in selection)

    def _group_cols(self, data, group, attr):
        if isinstance(attr, np.ndarray):
            attr_col = attr
        else:
            attr_col = data.get_column(group)
        group_col = data.get_column(group)
        groups = [attr_col[group_col == i] for i in range(len(group.values))]
        groups = [col[~np.isnan(col)] for col in groups]
        return groups

    def compute_box_data(self):
        attr = self.attribute
        if not attr:
            return
        dataset = self.dataset
        if dataset is None \
                or not attr.is_continuous and not attr.values \
                or self.group_var and not self.group_var.values:
            self.stats = []
            self.dist = self.conts = None
            return
        if self.group_var:
            self.dist = None
            missing_val_str = f"missing '{self.group_var.name}'"
            group_var_labels = self.group_var.values + ("",)
            if self.attribute.is_continuous:
                stats, label_texts = [], []
                attr_col = dataset.get_column(attr)
                for group, value in \
                        zip(self._group_cols(dataset, self.group_var, attr_col),
                            group_var_labels):
                    if group.size:
                        stats.append(BoxData(group, value))
                        label_texts.append(value or missing_val_str)
                self.stats = stats
                self.label_txts_all = label_texts
            else:
                self.conts = contingency.get_contingency(
                    dataset, attr, self.group_var)
                self.label_txts_all = [
                    v or missing_val_str for v, c in zip(
                        group_var_labels, self.conts.array_with_unknowns)
                    if np.sum(c) > 0]
        else:
            self.conts = None
            if self.attribute.is_continuous:
                attr_col = dataset.get_column(attr)
                self.stats = [BoxData(attr_col)]
            else:
                self.dist = distribution.get_distribution(dataset, attr)
            self.label_txts_all = [""]
        self.label_txts = [txts for stat, txts in zip(self.stats,
                                                      self.label_txts_all)
                           if stat.n > 0]
        self.stats = [stat for stat in self.stats if stat.n > 0]

    def update_box_visibilities(self):
        self.controls.stretched.setDisabled(self.group_var is self.attribute)

        if not self.attribute:
            self.stretching_box.hide()
            self.display_box.hide()
        elif self.attribute.is_continuous:
            self.stretching_box.hide()
            self.display_box.show()
            self.compare_rb.setEnabled(self.group_var is not None)
        else:
            self.stretching_box.show()
            self.display_box.hide()
            self.sort_cb.setEnabled(self.group_var is not None)

    def clear_scene(self):
        self.box_scene.clear()
        self.box_view.viewport().update()
        self.attr_labels = []
        self.labels = []
        self.boxes = []
        self.mean_labels = []
        self.posthoc_lines = []

    def _display_changed_cont(self):
        self.mean_labels = [self.mean_label(stat, self.attribute, lab)
                            for stat, lab in zip(self.stats, self.label_txts)]
        self.draw_axis()
        self.boxes = [self.box_group(stat) for stat in self.stats]
        self.labels = [self.label_group(stat, self.attribute, mean_lab)
                       for stat, mean_lab in zip(self.stats, self.mean_labels)]
        self.attr_labels = [QGraphicsSimpleTextItem(lab)
                            for lab in self.label_txts]
        for it in chain(self.labels, self.attr_labels):
            self.box_scene.addItem(it)

        self.order = list(range(len(self.stats)))
        criterion = self._sorting_criteria_attrs[self.compare]
        if criterion:
            vals = [getattr(stat, criterion) for stat in self.stats]
            overmax = max((val for val in vals if val is not None), default=0) \
                      + 1
            vals = [val if val is not None else overmax for val in vals]
            self.order = sorted(self.order, key=vals.__getitem__)

        heights = 90 if self.show_annotations else 60

        for row, box_index in enumerate(self.order):
            y = (-len(self.stats) + row) * heights + 10
            for item in self.boxes[box_index]:
                self.box_scene.addItem(item)
                item.setY(y)
            labels = self.labels[box_index]

            if self.show_annotations:
                labels.show()
                labels.setY(y)
            else:
                labels.hide()

            label = self.attr_labels[box_index]
            label.setY(y - 15 - label.boundingRect().height())
            if self.show_annotations:
                label.hide()
            else:
                stat = self.stats[box_index]

                if self.compare == OWBoxPlot.CompareMedians and \
                        stat.median is not None:
                    pos = stat.median + 5 / self.scale_x
                elif self.compare == OWBoxPlot.CompareMeans or stat.q25 is None:
                    pos = stat.mean + 5 / self.scale_x
                else:
                    pos = stat.q25
                label.setX(pos * self.scale_x)
                label.show()

        r = QRectF(self.scene_min_x, -30 - len(self.stats) * heights,
                   self.scene_width, len(self.stats) * heights + 90 +
                   self._axis_font.pixelSize() * 4)
        self.box_scene.setSceneRect(r)

        self._compute_tests_cont()
        self._show_posthoc()

    def _display_changed_disc(self):
        self.clear_scene()

        if self.group_var and self.conts is None or \
                not self.group_var and self.dist is None:  # readability counts
            # This happens if the attribute or group attribute don't have any
            # values. See the condition in compute_box_data. This tests can't
            # be moved to input data handler because it's user-choice specific.
            self.stat_test = ""
            return

        self.attr_labels = [QGraphicsSimpleTextItem(lab)
                            for lab in self.label_txts_all]

        if not self.show_stretched:
            if self.group_var:
                self.labels = [
                    QGraphicsTextItem(f"{int(sum(cont))}")
                    for cont in self.conts.array_with_unknowns
                    if np.sum(cont) > 0]
            else:
                self.labels = [
                    QGraphicsTextItem(str(int(sum(self.dist))))]

        self.order = list(range(len(self.attr_labels)))

        self.draw_axis_disc()
        if self.group_var:
            conts = self.conts.array_with_unknowns
            self.boxes = [
                self.strudel(cont, val)
                for cont, val in zip(conts, self.group_var.values + ("", ))
                if np.sum(cont) > 0
            ]
            sums_ = np.sum(conts, axis=1)
            sums_ = sums_[sums_ > 0]  # only bars with sum > 0 are shown

            if self.sort_freqs:
                # pylint: disable=invalid-unary-operand-type
                self.order = sorted(self.order, key=(-sums_).__getitem__)
        else:
            conts = self.dist.array_with_unknowns
            self.boxes = [self.strudel(conts)]
            sums_ = [np.sum(conts)]

        for row, box_index in enumerate(self.order):
            y = (-len(self.boxes) + row) * 40 + 10
            box = self.boxes[box_index]
            bars, labels = box[::2], box[1::2]

            self.__draw_group_labels(y, box_index)
            if not self.show_stretched:
                self.__draw_row_counts(
                    y, self.labels[box_index], sums_[box_index]
                )
            if self.show_labels and self.attribute is not self.group_var:
                self.__draw_bar_labels(y, bars, labels)
            self.__draw_bars(y, bars)

        self.box_scene.setSceneRect(-self.label_width - 5,
                                    -30 - len(self.boxes) * 40,
                                    self.scene_width, len(self.boxes * 40) +
                                    90 + self._axis_font.pixelSize() * 4)
        self._compute_tests_disc()

    def __draw_group_labels(self, y, row):
        """Draw group labels

        Parameters
        ----------
        y: int
            vertical offset of bars
        row: int
            row index
        """
        label = self.attr_labels[row]
        b = label.boundingRect()
        label.setPos(-b.width() - 10, y - b.height() / 2)
        self.box_scene.addItem(label)

    def __draw_row_counts(self, y, label, row_sum_):
        """Draw row counts

        Parameters
        ----------
        y: int
            vertical offset of bars
        label: QGraphicsSimpleTextItem
            Label for group
        row_sum_: int
            Sum for the group
        """
        assert not self.attribute.is_continuous
        b = label.boundingRect()
        right = self.scale_x * row_sum_
        label.setPos(right + 10, y - b.height() / 2)
        self.box_scene.addItem(label)

    def __draw_bar_labels(self, y, bars, labels):
        """Draw bar labels

        Parameters
        ----------
        y: int
            vertical offset of bars
        bars: List[FilterGraphicsRectItem]
            list of bars being drawn
        labels: List[QGraphicsTextItem]
            list of labels for corresponding bars
        """
        for text_item, bar_part in zip(labels, bars):
            label = self.Label(
                text_item.toPlainText())
            label.setPos(bar_part.boundingRect().x(),
                         y - label.boundingRect().height() - 8)
            label.setMaxWidth(bar_part.boundingRect().width())
            self.box_scene.addItem(label)

    def __draw_bars(self, y, bars):
        """Draw bars

        Parameters
        ----------
        y: int
            vertical offset of bars

        bars: List[FilterGraphicsRectItem]
            list of bars to draw
        """
        for item in bars:
            item.setPos(0, y)
            self.box_scene.addItem(item)

    # noinspection PyPep8Naming
    def _compute_tests_cont(self):
        # The t-test and ANOVA are implemented here since they efficiently use
        # the widget-specific data in self.stats.
        # The non-parametric tests can't do this, so we use statistics.tests

        # pylint: disable=comparison-with-itself
        def stat_ttest():
            d1, d2 = self.stats
            if d1.n < 2 or d2.n < 2:
                return np.nan, np.nan
            pooled_var = d1.var / d1.n + d2.var / d2.n
            # pylint: disable=comparison-with-itself
            if pooled_var == 0 or np.isnan(pooled_var):
                return np.nan, np.nan
            df = pooled_var ** 2 / \
                ((d1.var / d1.n) ** 2 / (d1.n - 1) +
                 (d2.var / d2.n) ** 2 / (d2.n - 1))
            t = abs(d1.mean - d2.mean) / math.sqrt(pooled_var)
            p = 2 * (1 - scipy.special.stdtr(df, t))
            return t, p

        # TODO: Check this function
        # noinspection PyPep8Naming
        def stat_ANOVA():
            if any(stat.n == 0 for stat in self.stats):
                return np.nan, np.nan
            n = sum(stat.n for stat in self.stats)
            grand_avg = sum(stat.n * stat.mean for stat in self.stats) / n
            var_between = sum(stat.n * (stat.mean - grand_avg) ** 2
                              for stat in self.stats)
            df_between = len(self.stats) - 1

            var_within = sum(stat.n * stat.var for stat in self.stats)
            df_within = n - len(self.stats)
            if var_within == 0 or df_within == 0 or df_between == 0:
                return np.nan, np.nan
            F = (var_between / df_between) / (var_within / df_within)
            p = 1 - scipy.special.fdtr(df_between, df_within, F)
            return F, p

        n = len(self.dataset)
        if self.compare == OWBoxPlot.CompareNone or len(self.stats) < 2:
            t = ""
        elif any(s.n <= 1 for s in self.stats):
            t = "At least one group has just one instance, " \
                "cannot compute significance"
        elif len(self.stats) == 2:
            if self.compare == OWBoxPlot.CompareMedians:
                t = ""
                # z, p = tests.wilcoxon_rank_sum(
                #    self.stats[0].dist, self.stats[1].dist)
                # t = "Mann-Whitney's z: %.1f (p=%.3f)" % (z, p)
            else:
                t, p = stat_ttest()
                t = "" if np.isnan(t) else f"Student's t: {t:.3f} (p={p:.3f}, N={n})"
        else:
            if self.compare == OWBoxPlot.CompareMedians:
                t = ""
                # U, p = -1, -1
                # t = "Kruskal Wallis's U: %.1f (p=%.3f)" % (U, p)
            else:
                F, p = stat_ANOVA()
                t = "" if np.isnan(F) else f"ANOVA: {F:.3f} (p={p:.3f}, N={n})"
        self.stat_test = t

    def _compute_tests_disc(self):
        if self.group_var is None or self.attribute is None:
            self.stat_test = ""
        else:
            chi, p, dof = self._chi_square(self.group_var, self.attribute)
            if np.isnan(p):
                self.stat_test = ""
            else:
                self.stat_test = f"χ²: {chi:.2f} (p={p:.3f}, dof={dof})"

    def mean_label(self, stat, attr, val_name):
        label = QGraphicsItemGroup()
        t = QGraphicsSimpleTextItem(attr.str_val(stat.mean), label)
        t.setFont(self._label_font)
        bbox = t.boundingRect()
        w2, h = bbox.width() / 2, bbox.height()
        t.setPos(-w2, -h)
        tpm = QGraphicsSimpleTextItem(
            " \u00b1 " + "%.*f" % (attr.number_of_decimals + 1, stat.dev),
            label)
        tpm.setFont(self._label_font)
        tpm.setPos(w2, -h)
        if val_name:
            vnm = QGraphicsSimpleTextItem(val_name + ": ", label)
            vnm.setFont(self._label_font)
            vnm.setBrush(self._attr_brush)
            vb = vnm.boundingRect()
            label.min_x = -w2 - vb.width()
            vnm.setPos(label.min_x, -h)
        else:
            label.min_x = -w2
        return label

    def draw_axis(self):
        """Draw the horizontal axis and sets self.scale_x"""
        missing_stats = not self.stats
        stats = self.stats or [BoxData(np.array([0.]), self.attribute)]
        mean_labels = self.mean_labels or [self.mean_label(stats[0], self.attribute, "")]
        bottom = min(stat.a_min for stat in stats)
        top = max(stat.a_max for stat in stats)

        first_val, step = compute_scale(bottom, top)
        while bottom <= first_val:
            first_val -= step
        bottom = first_val
        no_ticks = math.ceil((top - first_val) / step) + 1
        top = max(top, first_val + no_ticks * step)

        gbottom = min(bottom, min(stat.mean - stat.dev for stat in stats))
        gtop = max(top, max(stat.mean + stat.dev for stat in stats))

        bv = self.box_view
        viewrect = bv.viewport().rect().adjusted(15, 15, -15, -30)
        self.scale_x = scale_x = viewrect.width() / (gtop - gbottom)

        # In principle, we should repeat this until convergence since the new
        # scaling is too conservative. (No chance am I doing this.)
        mlb = min(stat.mean + mean_lab.min_x / scale_x
                  for stat, mean_lab in zip(stats, mean_labels))
        if mlb < gbottom:
            gbottom = mlb
            self.scale_x = scale_x = viewrect.width() / (gtop - gbottom)

        self.scene_min_x = gbottom * scale_x
        self.scene_max_x = gtop * scale_x
        self.scene_width = self.scene_max_x - self.scene_min_x

        val = first_val
        last_text = self.scene_min_x
        while True:
            l = self.box_scene.addLine(val * scale_x, -1, val * scale_x, 1,
                                       self._pen_axis_tick)
            l.setZValue(100)
            t = QGraphicsSimpleTextItem(
                self.attribute.str_val(val) if not missing_stats else "?")
            t.setFont(self._axis_font)
            t.setFlag(QGraphicsItem.ItemIgnoresTransformations)
            r = t.boundingRect()
            x_start = val * scale_x - r.width() / 2
            x_finish = x_start + r.width()
            if x_start > last_text + 10 and x_finish < self.scene_max_x:
                t.setPos(x_start, 8)
                self.box_scene.addItem(t)
                last_text = x_finish
            if val >= top:
                break
            val += step
        self.box_scene.addLine(
            bottom * scale_x - 4, 0, top * scale_x + 4, 0, self._pen_axis)

        t = QGraphicsSimpleTextItem(self.attribute.name)
        t.setFont(self._axis_font)
        t.setFlag(QGraphicsItem.ItemIgnoresTransformations)
        t.setPos(
            self.scene_min_x + (self.scene_width - t.boundingRect().width()) / 2,
            8 + 1.5 * self._axis_font.pixelSize())
        self.box_scene.addItem(t)

    def draw_stat(self):
        if self.stat_test:
            label = QGraphicsSimpleTextItem(self.stat_test)
            brect = self.box_scene.sceneRect()
            label.setPos(brect.x(),
                         32 + self._axis_font.pixelSize() * 3.6)
            label.setFlag(QGraphicsItem.ItemIgnoresTransformations)
            label.setFont(self._axis_font)
            self.box_scene.addItem(label)

    def draw_axis_disc(self):
        """
        Draw the horizontal axis and sets self.scale_x for discrete attributes
        """
        assert not self.attribute.is_continuous
        if self.show_stretched:
            if not self.attr_labels:
                return
            step = steps = 10
        else:
            if self.group_var:
                assert self.conts is not None, "the callee must ensure this!"
                max_box = max(float(np.sum(dist))
                              for dist in self.conts.array_with_unknowns)
            else:
                assert self.dist is not None, "the callee must ensure this!"
                max_box = float(np.sum(self.dist.array_with_unknowns))
            if max_box == 0:
                self.scale_x = 1
                return
            _, step = compute_scale(0, max_box)
            step = int(step) if step > 1 else 1
            steps = int(math.ceil(max_box / step))
        max_box = step * steps

        bv = self.box_view
        viewrect = bv.viewport().rect().adjusted(15, 15, -15, -30)
        self.scene_width = viewrect.width()

        lab_width = max(lab.boundingRect().width() for lab in self.attr_labels)
        lab_width = max(lab_width, 40)
        lab_width = min(lab_width, self.scene_width / 3)
        self.label_width = lab_width

        right_offset = 0  # offset for the right label
        if not self.show_stretched and self.labels:
            if self.group_var:
                rows = list(zip(self.conts.array_with_unknowns, self.labels))
            else:
                rows = [(self.dist, self.labels[0])]
            # available space left of the 'group labels'
            available = self.scene_width - lab_width - 10
            scale_x = (available - right_offset) / max_box
            max_right = max(sum(dist) * scale_x + 10 +
                            lbl.boundingRect().width()
                            for dist, lbl in rows)
            right_offset = max(0, max_right - max_box * scale_x)

        self.scale_x = scale_x = \
            (self.scene_width - lab_width - 10 - right_offset) / max_box

        self.box_scene.addLine(0, 0, max_box * scale_x, 0, self._pen_axis)
        for val in range(0, step * steps + 1, step):
            l = self.box_scene.addLine(val * scale_x, -1, val * scale_x, 1,
                                       self._pen_axis_tick)
            l.setZValue(100)
            t = self.box_scene.addSimpleText(str(val), self._axis_font)
            t.setPos(val * scale_x - t.boundingRect().width() / 2, 8)
        if self.show_stretched:
            self.scale_x *= 100

    def label_group(self, stat, attr, mean_lab):
        def centered_text(val, pos):
            t = QGraphicsSimpleTextItem(attr.str_val(val), labels)
            t.setFont(self._label_font)
            bbox = t.boundingRect()
            t.setPos(pos - bbox.width() / 2, 22)
            return t

        def line(x, down=1):
            QGraphicsLineItem(x, 12 * down, x, 20 * down, labels)

        def move_label(label, frm, to):
            label.setX(to)
            to += t_box.width() / 2
            path = QPainterPath()
            path.lineTo(0, 4)
            path.lineTo(to - frm, 4)
            path.lineTo(to - frm, 8)
            p = QGraphicsPathItem(path)
            p.setPos(frm, 12)
            labels.addToGroup(p)

        labels = QGraphicsItemGroup()

        labels.addToGroup(mean_lab)
        m = stat.mean * self.scale_x
        mean_lab.setPos(m, -22)
        line(m, -1)

        if stat.median is not None:
            msc = stat.median * self.scale_x
            med_t = centered_text(stat.median, msc)
            med_box_width2 = med_t.boundingRect().width() / 2
            line(msc)

        if stat.q25 is not None:
            x = stat.q25 * self.scale_x
            t = centered_text(stat.q25, x)
            t_box = t.boundingRect()
            med_left = msc - med_box_width2
            if x + t_box.width() / 2 >= med_left - 5:
                move_label(t, x, med_left - t_box.width() - 5)
            else:
                line(x)

        if stat.q75 is not None:
            x = stat.q75 * self.scale_x
            t = centered_text(stat.q75, x)
            t_box = t.boundingRect()
            med_right = msc + med_box_width2
            if x - t_box.width() / 2 <= med_right + 5:
                move_label(t, x, med_right + 5)
            else:
                line(x)

        return labels

    def box_group(self, stat, height=20):
        def line(x0, y0, x1, y1, *args):
            return QGraphicsLineItem(x0 * scale_x, y0, x1 * scale_x, y1, *args)

        scale_x = self.scale_x
        box = []
        whisker1 = line(stat.a_min, -1.5, stat.a_min, 1.5)
        whisker2 = line(stat.a_max, -1.5, stat.a_max, 1.5)
        vert_line = line(stat.a_min, 0, stat.a_max, 0)
        mean_line = line(stat.mean, -height / 3, stat.mean, height / 3)
        for it in (whisker1, whisker2, mean_line):
            it.setPen(self._pen_paramet)
        vert_line.setPen(self._pen_dotted)
        var_line = line(stat.mean - stat.dev, 0, stat.mean + stat.dev, 0)
        var_line.setPen(self._pen_paramet)
        box.extend([whisker1, whisker2, vert_line, mean_line, var_line])
        if stat.q25 is not None or stat.q75 is not None:
            # if any of them is None it means that its value is equal to median
            box_from = stat.median if stat.q25 is None else stat.q25
            box_to = stat.median if stat.q75 is None else stat.q75
            mbox = FilterGraphicsRectItem(
                stat.data_range, box_from * scale_x, -height / 2,
                (box_to - box_from) * scale_x, height)
            mbox.setBrush(self._box_brush)
            mbox.setPen(QPen(Qt.NoPen))
            mbox.setZValue(-200)
            box.append(mbox)

        if stat.median is not None:
            median_line = line(stat.median, -height / 2,
                               stat.median, height / 2)
            median_line.setPen(self._pen_median)
            median_line.setZValue(-150)
            box.append(median_line)

        return box

    def strudel(self, dist, group_val=None):
        attr = self.attribute
        ss = np.sum(dist)
        box = []
        if ss < 1e-6:
            cond = DiscDataRange(None, group_val)
            box.append(FilterGraphicsRectItem(cond, 0, -10, 1, 10))
        cum = 0
        missing_val_str = f"missing '{attr.name}'"
        values = attr.values + ("",)
        colors = attr.palette.qcolors_w_nan
        total = sum(dist)
        rect = None
        for freq, value, color in zip(dist, values, colors):
            if freq < 1e-6:
                continue
            v = freq
            if self.show_stretched:
                v /= ss
            v *= self.scale_x
            cond = DiscDataRange(value, group_val)
            kw = {"add_lpad": rect is None, "add_rpad": False}
            rect = FilterGraphicsRectItem(cond, cum + 1, -6, v - 2, 12, **kw)
            rect.setBrush(QBrush(color))
            rect.setPen(QPen(Qt.NoPen))
            value = value or missing_val_str
            if self.show_stretched:
                tooltip = f"{value}: {100 * freq / total:.2f}%"
            else:
                tooltip = f"{value}: ({int(freq)})"
            rect.setToolTip(tooltip)
            text = QGraphicsTextItem(value)
            box.append(rect)
            box.append(text)
            cum += v
        if rect is not None:
            rect.set_right_padding(True)
        return box

    def on_selection_changed(self):
        self.selection = tuple(item.data_range
                               for item in self.box_scene.selectedItems()
                               if item.data_range)
        self.commit()

    def commit(self):
        conditions = self._gather_conditions()
        if conditions:
            selected = Values(conditions, conjunction=False)(self.dataset)
            selection = np.isin(
                self.dataset.ids, selected.ids, assume_unique=True).nonzero()[0]
        else:
            selected, selection = None, []
        self.Outputs.selected_data.send(selected)
        self.Outputs.annotated_data.send(
            create_annotated_table(self.dataset, selection))

    def _gather_conditions(self):
        conditions = []
        attr = self.attribute
        group_attr = self.group_var
        for data_range in self.selection:
            if attr.is_discrete:
                # If some value was removed from the data (in case settings are
                # loaded from a scheme), do not include the corresponding
                # filter; this is appropriate since data with such value does
                # not exist anyway
                if not data_range.value:
                    condition = IsDefined([attr], negate=True)
                elif data_range.value not in attr.values:
                    continue
                else:
                    condition = FilterDiscrete(attr, [data_range.value])
            else:
                condition = FilterContinuous(attr, FilterContinuous.Between,
                                             data_range.low, data_range.high)
            if data_range.group_value:
                if not data_range.group_value:
                    grp_filter = IsDefined([group_attr], negate=True)
                elif data_range.group_value not in group_attr.values:
                    continue
                else:
                    grp_filter = FilterDiscrete(group_attr, [data_range.group_value])
                condition = Values([condition, grp_filter], conjunction=True)
            conditions.append(condition)
        return conditions

    def _show_posthoc(self):
        def line(y0, y1):
            it = self.box_scene.addLine(x, y0, x, y1, self._post_line_pen)
            it.setZValue(-100)
            self.posthoc_lines.append(it)

        while self.posthoc_lines:
            self.box_scene.removeItem(self.posthoc_lines.pop())

        if self.compare == OWBoxPlot.CompareNone or len(self.stats) < 2:
            return

        if self.compare == OWBoxPlot.CompareMedians:
            crit_line = "median"
        else:
            crit_line = "mean"

        xs = []

        height = 90 if self.show_annotations else 60

        y_up = -len(self.stats) * height + 10
        for pos, box_index in enumerate(self.order):
            stat = self.stats[box_index]
            x = getattr(stat, crit_line)
            if x is None:
                continue
            x *= self.scale_x
            xs.append(x * self.scale_x)
            by = y_up + pos * height
            line(by + 12, 0)

        used_to = []
        last_to = to = 0
        for frm, frm_x in enumerate(xs[:-1]):
            for to in range(frm + 1, len(xs)):
                if xs[to] - frm_x > 1.5:
                    to -= 1
                    break
            if to in (last_to, frm):
                continue
            for rowi, used in enumerate(used_to):
                if used < frm:
                    used_to[rowi] = to
                    break
            else:
                rowi = len(used_to)
                used_to.append(to)
            y = - 6 - rowi * 6
            it = self.box_scene.addLine(frm_x - 2, y, xs[to] + 2, y,
                                        self._post_grp_pen)
            self.posthoc_lines.append(it)
            last_to = to

    def get_widget_name_extension(self):
        return self.attribute.name if self.attribute else None

    def send_report(self):
        self.report_plot()
        text = ""
        if self.attribute:
            text += f"Box plot for attribute '{self.attribute.name}' "
        if self.group_var:
            text += f"grouped by '{self.group_var.name}'"
        if text:
            self.report_caption(text)

    class Label(QGraphicsSimpleTextItem):
        """Boxplot Label with settable maxWidth"""
        # Minimum width to display label text
        MIN_LABEL_WIDTH = 25

        # padding bellow the text
        PADDING = 3

        __max_width = None

        def maxWidth(self):
            return self.__max_width

        def setMaxWidth(self, max_width):
            self.__max_width = max_width

        def paint(self, painter, option, widget):
            """Overrides QGraphicsSimpleTextItem.paint

            If label text is too long, it is elided
            to fit into the allowed region
            """
            if self.__max_width is None:
                width = option.rect.width()
            else:
                width = self.__max_width

            if width < self.MIN_LABEL_WIDTH:
                # if space is too narrow, no label
                return

            fm = painter.fontMetrics()
            text = fm.elidedText(self.text(), Qt.ElideRight, int(width))
            painter.drawText(
                int(option.rect.x()),
                int(option.rect.y() + self.boundingRect().height() - self.PADDING),
                text)


if __name__ == "__main__":  # pragma: no cover
    WidgetPreview(OWBoxPlot).run(Orange.data.Table("heart_disease.tab"))