1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
|
import math
from collections import namedtuple
from itertools import chain, count
import numpy as np
from AnyQt.QtWidgets import (
QGraphicsView, QGraphicsScene, QGraphicsItem, QGraphicsSimpleTextItem,
QGraphicsTextItem, QGraphicsItemGroup, QGraphicsLineItem,
QGraphicsPathItem, QGraphicsRectItem, QSizePolicy
)
from AnyQt.QtGui import QPen, QColor, QBrush, QPainterPath, QPainter, QFont
from AnyQt.QtCore import Qt, QEvent, QRectF, QSize, QSortFilterProxyModel
from orangewidget.utils.listview import ListViewSearch
import scipy.special
from scipy.stats import f_oneway, chi2_contingency
import Orange.data
from Orange.data.filter import FilterDiscrete, FilterContinuous, Values, \
IsDefined
from Orange.statistics import contingency, distribution
from Orange.widgets import widget, gui
from Orange.widgets.settings import (Setting, DomainContextHandler,
ContextSetting)
from Orange.widgets.utils.itemmodels import VariableListModel
from Orange.widgets.utils.annotated_data import (create_annotated_table,
ANNOTATED_DATA_SIGNAL_NAME)
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.widget import Input, Output
def compute_scale(min_, max_):
if min_ == max_:
return math.floor(min_), 1
magnitude = int(3 * math.log10(abs(max_ - min_)) + 1)
if magnitude % 3 == 0:
first_place = 1
elif magnitude % 3 == 1:
first_place = 2
else:
first_place = 5
magnitude = magnitude // 3 - 1
step = first_place * pow(10, magnitude)
first_val = math.ceil(min_ / step) * step
return first_val, step
ContDataRange = namedtuple("ContDataRange", ["low", "high", "group_value"])
DiscDataRange = namedtuple("DiscDataRange", ["value", "group_value"])
class BoxData:
def __init__(self, col, group_val=None):
self.n = len(col) - np.sum(np.isnan(col))
if self.n == 0:
return
self.a_min = np.nanmin(col)
self.a_max = np.nanmax(col)
self.mean = np.nanmean(col)
self.var = np.nanvar(col)
self.dev = np.sqrt(self.var)
self.q25, self.median, self.q75 = \
np.nanquantile(col, [0.25, 0.5, 0.75], interpolation="midpoint")
self.data_range = ContDataRange(self.q25, self.q75, group_val)
if self.q25 == self.median:
self.q25 = None
if self.q75 == self.median:
self.q75 = None
class FilterGraphicsRectItem(QGraphicsRectItem):
def __init__(self, data_range, *args, add_lpad=True, add_rpad=True):
super().__init__(*args)
self.data_range = data_range
self.__add_lpad = add_lpad
self.__add_rpad = add_rpad
self.__is_hovered = False
self.setFlag(QGraphicsItem.ItemIsSelectable)
self.setAcceptHoverEvents(True)
def set_right_padding(self, add_rpad: bool):
self.__add_rpad = add_rpad
def hoverEnterEvent(self, _) -> None:
self.__is_hovered = True
self.update()
def hoverLeaveEvent(self, _) -> None:
self.__is_hovered = False
self.update()
def boundingRect(self) -> QRectF:
br = super().boundingRect()
d = 7
return br.adjusted(-d if self.__add_lpad else 0, -d,
d if self.__add_rpad else 0, d)
def shape(self) -> QPainterPath:
sh = QPainterPath()
sh.addRect(self.boundingRect())
return sh
def paint(self, painter: QPainter, *_, **__) -> None:
if self.__is_hovered:
painter.save()
brush = self.brush()
color = brush.color()
color.setAlpha(100)
brush.setColor(color)
painter.setBrush(brush)
painter.setPen(Qt.NoPen)
painter.drawRoundedRect(self.boundingRect(), 2, 2)
painter.restore()
painter.save()
painter.setBrush(self.brush())
painter.setPen(self.pen())
painter.drawRect(self.rect())
painter.restore()
if self.isSelected():
painter.save()
pen = QPen(Qt.black)
pen.setStyle(Qt.DashLine)
pen.setWidth(2)
painter.setPen(pen)
painter.drawRect(self.rect())
painter.restore()
class SortProxyModel(QSortFilterProxyModel):
def lessThan(self, left, right):
role = self.sortRole()
l_score = left.data(role)
r_score = right.data(role)
return r_score is not None and (l_score is None or bool(l_score < r_score))
class OWBoxPlot(widget.OWWidget):
name = "Box Plot"
description = "Visualize the distribution of feature values in a box plot."
icon = "icons/BoxPlot.svg"
priority = 100
keywords = "box plot, whisker"
class Inputs:
data = Input("Data", Orange.data.Table)
class Outputs:
selected_data = Output("Selected Data", Orange.data.Table, default=True)
annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Orange.data.Table)
class Warning(widget.OWWidget.Warning):
no_vars = widget.Msg(
"Data contains no categorical or numeric variables")
buttons_area_orientation = None
#: Comparison types for continuous variables
CompareNone, CompareMedians, CompareMeans = 0, 1, 2
settingsHandler = DomainContextHandler()
# If this was a list, context handler would try to match its elements to
# variable names!
selection = ContextSetting((), schema_only=True)
attribute = ContextSetting(None)
order_by_importance = Setting(False)
order_grouping_by_importance = Setting(False)
group_var = ContextSetting(None)
show_annotations = Setting(True)
compare = Setting(CompareMeans)
stattest = Setting(0)
sig_threshold = Setting(0.05)
stretched = Setting(True)
show_labels = Setting(True)
sort_freqs = Setting(False)
_sorting_criteria_attrs = {
CompareNone: "", CompareMedians: "median", CompareMeans: "mean"
}
_pen_axis_tick = QPen(Qt.white, 5)
_pen_axis = QPen(Qt.darkGray, 3)
_pen_median = QPen(QBrush(QColor(0xff, 0xff, 0x00)), 2)
_pen_paramet = QPen(QBrush(QColor(0x33, 0x00, 0xff)), 2)
_pen_dotted = QPen(QBrush(QColor(0x33, 0x00, 0xff)), 1)
_pen_dotted.setStyle(Qt.DotLine)
_post_line_pen = QPen(Qt.lightGray, 2)
_post_grp_pen = QPen(Qt.lightGray, 4)
for pen in (_pen_paramet, _pen_median, _pen_dotted,
_pen_axis, _pen_axis_tick, _post_line_pen, _post_grp_pen):
pen.setCosmetic(True)
pen.setCapStyle(Qt.RoundCap)
pen.setJoinStyle(Qt.RoundJoin)
_pen_axis_tick.setCapStyle(Qt.FlatCap)
_box_brush = QBrush(QColor(0x33, 0x88, 0xff, 0xc0))
_attr_brush = QBrush(QColor(0x33, 0x00, 0xff))
graph_name = "box_scene" # QGraphicsScene
def __init__(self):
super().__init__()
self._axis_font = QFont()
self._axis_font.setPixelSize(12)
self._label_font = QFont()
self._label_font.setPixelSize(11)
self.dataset = None
self.stats = []
self.dist = self.conts = None
self.posthoc_lines = []
self.label_txts = self.mean_labels = self.boxes = self.labels = \
self.label_txts_all = self.attr_labels = self.order = []
self.scale_x = 1
self.scene_min_x = self.scene_max_x = self.scene_width = 0
self.label_width = 0
self.attrs = VariableListModel()
sorted_model = SortProxyModel(sortRole=Qt.UserRole)
sorted_model.setSourceModel(self.attrs)
sorted_model.sort(0)
box = gui.vBox(self.controlArea, "Variable")
view = self.attr_list = ListViewSearch()
view.setModel(sorted_model)
view.setSelectionMode(view.SingleSelection)
view.selectionModel().selectionChanged.connect(self.attr_changed)
view.setMinimumSize(QSize(30, 30))
# Any other policy than Ignored will let the QListBox's scrollbar
# set the minimal height (see the penultimate paragraph of
# http://doc.qt.io/qt-4.8/qabstractscrollarea.html#addScrollBarWidget)
view.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Ignored)
box.layout().addWidget(view)
gui.checkBox(
box, self, "order_by_importance",
"Order by relevance to subgroups",
tooltip="Order by 𝜒² or ANOVA over the subgroups",
callback=self.apply_attr_sorting)
self.group_vars = VariableListModel(placeholder="None")
sorted_model = SortProxyModel(sortRole=Qt.UserRole)
sorted_model.setSourceModel(self.group_vars)
sorted_model.sort(0)
box = gui.vBox(self.controlArea, "Subgroups")
view = self.group_list = ListViewSearch()
view.setModel(sorted_model)
view.selectionModel().selectionChanged.connect(self.grouping_changed)
view.setMinimumSize(QSize(30, 30))
# See the comment above
view.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Ignored)
box.layout().addWidget(view)
gui.checkBox(
box, self, "order_grouping_by_importance",
"Order by relevance to variable",
tooltip="Order by 𝜒² or ANOVA over the variable values",
callback=self.apply_group_sorting)
# TODO: move Compare median/mean to grouping box
# The vertical size policy is needed to let only the list views expand
self.display_box = gui.vBox(
self.controlArea, "Display",
sizePolicy=(QSizePolicy.Minimum, QSizePolicy.Maximum))
gui.checkBox(self.display_box, self, "show_annotations", "Annotate",
callback=self.update_graph)
self.compare_rb = gui.radioButtonsInBox(
self.display_box, self, 'compare',
btnLabels=["No comparison", "Compare medians", "Compare means"],
callback=self.update_graph)
# The vertical size policy is needed to let only the list views expand
self.stretching_box = box = gui.vBox(
self.controlArea, box="Display",
sizePolicy=(QSizePolicy.Minimum, QSizePolicy.Fixed))
self.stretching_box.sizeHint = self.display_box.sizeHint
gui.checkBox(
box, self, 'stretched', "Stretch bars",
callback=self.update_graph,
stateWhenDisabled=False)
gui.checkBox(
box, self, 'show_labels', "Show box labels",
callback=self.update_graph)
self.sort_cb = gui.checkBox(
box, self, 'sort_freqs', "Sort by subgroup frequencies",
callback=self.update_graph,
stateWhenDisabled=False)
gui.vBox(self.mainArea)
self.box_scene = QGraphicsScene(self)
self.box_scene.selectionChanged.connect(self.on_selection_changed)
self.box_view = QGraphicsView(self.box_scene)
self.box_view.setRenderHints(QPainter.Antialiasing |
QPainter.TextAntialiasing |
QPainter.SmoothPixmapTransform)
self.box_view.viewport().installEventFilter(self)
self.mainArea.layout().addWidget(self.box_view)
self.stat_test = ""
self.mainArea.setMinimumWidth(300)
self.update_box_visibilities()
def sizeHint(self):
return QSize(900, 500)
def eventFilter(self, obj, event):
if event.type() == QEvent.Resize and obj is self.box_view.viewport():
self.update_graph()
return super().eventFilter(obj, event)
@property
def show_stretched(self):
return self.stretched and self.group_var is not self.attribute
def reset_attrs(self):
domain = self.dataset.domain
self.attrs[:] = [
var for var in chain(
domain.class_vars, domain.metas, domain.attributes)
if var.is_primitive() and not var.attributes.get("hidden", False)]
def reset_groups(self):
domain = self.dataset.domain
self.group_vars[:] = [None] + [
var for var in chain(
domain.class_vars, domain.metas, domain.attributes)
if var.is_discrete and not var.attributes.get("hidden", False)]
@Inputs.data
def set_data(self, dataset):
self.closeContext()
self._reset_all_data()
if dataset and not (
len(dataset.domain.variables)
or any(var.is_primitive() for var in dataset.domain.metas)):
self.Warning.no_vars()
dataset = None
self.dataset = dataset
if dataset:
self.reset_attrs()
self.reset_groups()
self._select_default_variables()
self.openContext(self.dataset)
self._set_list_view_selections()
self.compute_box_data()
self.apply_attr_sorting()
self.apply_group_sorting()
self.update_graph()
self._scroll_to_top()
self.select_box_items()
self.update_box_visibilities()
self.commit()
def _reset_all_data(self):
self.clear_scene()
self.Warning.no_vars.clear()
self.stats = []
self.dist = self.conts = None
self.group_var = None
self.attribute = None
self.stat_test = ""
self.attrs[:] = []
self.group_vars[:] = [None]
self.selection = ()
def _select_default_variables(self):
# visualize first non-class variable, group by class (if present)
domain = self.dataset.domain
if len(self.attrs) > len(domain.class_vars):
self.attribute = self.attrs[len(domain.class_vars)]
elif self.attrs:
self.attribute = self.attrs[0]
if domain.class_var and domain.class_var.is_discrete:
self.group_var = domain.class_var
def _set_list_view_selections(self):
for view, var, callback in (
(self.attr_list, self.attribute, self.attr_changed),
(self.group_list, self.group_var, self.grouping_changed)):
src_model = view.model().sourceModel()
if var not in src_model:
continue
sel_model = view.selectionModel()
sel_model.selectionChanged.disconnect(callback)
row = src_model.indexOf(var)
index = view.model().index(row, 0)
sel_model.select(index, sel_model.ClearAndSelect)
self._ensure_selection_visible(view)
sel_model.selectionChanged.connect(callback)
def apply_attr_sorting(self):
def compute_score(attr):
# This function and the one in apply_group_sorting are similar, but
# different in too many details, so they are kept as separate
# functions.
# If you discover a bug in this function, check the other one, too.
if attr is group_var:
return 3
if attr.is_continuous:
# One-way ANOVA
col = data.get_column(attr)
groups = (col[group_col == i] for i in range(n_groups))
groups = (col[~np.isnan(col)] for col in groups)
groups = [group for group in groups if len(group) > 1]
p = f_oneway(*groups)[1] if len(groups) > 1 else 2
else:
p = self._chi_square(group_var, attr)[1]
if math.isnan(p):
return 2
return p
data = self.dataset
if data is None:
return
domain = data.domain
group_var = self.group_var
if self.order_by_importance and group_var is not None:
n_groups = len(group_var.values)
group_col = data.get_column(group_var) \
if domain.has_continuous_attributes(
include_class=True, include_metas=True) else None
self._sort_list(self.attrs, self.attr_list, compute_score)
else:
self._sort_list(self.attrs, self.attr_list, None)
def apply_group_sorting(self):
def compute_stat(group):
# This function and the one in apply_attr_sorting are similar, but
# different in too many details, so they are kept as separate
# functions.
# If you discover a bug in this function, check the other one, too.
if group is attr:
return 3
if group is None:
return -1
if attr.is_continuous:
groups = self._group_cols(data, group, attr_col)
groups = [group for group in groups if len(group) > 1]
p = f_oneway(*groups)[1] if len(groups) > 1 else 2
else:
p = self._chi_square(group, attr)[1]
if math.isnan(p):
return 2
return p
data = self.dataset
if data is None:
return
attr = self.attribute
if self.order_grouping_by_importance:
if attr.is_continuous:
attr_col = data.get_column(attr)
self._sort_list(self.group_vars, self.group_list, compute_stat)
else:
self._sort_list(self.group_vars, self.group_list, None)
def _sort_list(self, source_model, view, key=None):
if key is None:
c = count()
def key(_): # pylint: disable=function-redefined
return next(c)
for i, attr in enumerate(source_model):
source_model.setData(source_model.index(i), key(attr), Qt.UserRole)
self._ensure_selection_visible(view)
@staticmethod
def _ensure_selection_visible(view):
selection = view.selectedIndexes()
if len(selection) == 1:
view.scrollTo(selection[0])
def _chi_square(self, group_var, attr):
# Chi-square with the given distribution into groups
if not attr.values or not group_var.values:
return 0, 2, 0
observed = np.array(
contingency.get_contingency(self.dataset, group_var, attr))
observed = observed[observed.sum(axis=1) != 0, :]
observed = observed[:, observed.sum(axis=0) != 0]
if min(observed.shape) < 2:
return 0, 2, 0
return chi2_contingency(observed)[:3]
def grouping_changed(self, selected):
if not selected:
return # should never come here
self.group_var = selected.indexes()[0].data(gui.TableVariable)
self._variables_changed(self.apply_attr_sorting)
self._scroll_to_top()
def attr_changed(self, selected):
if not selected:
return # should never come here
self.attribute = selected.indexes()[0].data(gui.TableVariable)
self._variables_changed(self.apply_group_sorting)
def _variables_changed(self, sorting):
self.selection = ()
self.compute_box_data()
sorting()
self.update_graph()
self.update_box_visibilities()
self.commit()
def _scroll_to_top(self):
scrollbar = self.box_view.verticalScrollBar()
scrollbar.setValue(scrollbar.minimum())
def update_graph(self):
pending_selection = self.selection
self.box_scene.selectionChanged.disconnect(self.on_selection_changed)
try: # not for exceptions, just to reconnect after all possible paths
self.clear_scene()
if self.dataset is None or self.attribute is None:
return
if self.attribute.is_continuous:
self._display_changed_cont()
else:
self._display_changed_disc()
self.selection = pending_selection
self.draw_stat()
self.select_box_items()
finally:
self.box_scene.selectionChanged.connect(self.on_selection_changed)
def select_box_items(self):
selection = set(self.selection)
for box in self.box_scene.items():
if isinstance(box, FilterGraphicsRectItem):
box.setSelected(box.data_range in selection)
def _group_cols(self, data, group, attr):
if isinstance(attr, np.ndarray):
attr_col = attr
else:
attr_col = data.get_column(group)
group_col = data.get_column(group)
groups = [attr_col[group_col == i] for i in range(len(group.values))]
groups = [col[~np.isnan(col)] for col in groups]
return groups
def compute_box_data(self):
attr = self.attribute
if not attr:
return
dataset = self.dataset
if dataset is None \
or not attr.is_continuous and not attr.values \
or self.group_var and not self.group_var.values:
self.stats = []
self.dist = self.conts = None
return
if self.group_var:
self.dist = None
missing_val_str = f"missing '{self.group_var.name}'"
group_var_labels = self.group_var.values + ("",)
if self.attribute.is_continuous:
stats, label_texts = [], []
attr_col = dataset.get_column(attr)
for group, value in \
zip(self._group_cols(dataset, self.group_var, attr_col),
group_var_labels):
if group.size:
stats.append(BoxData(group, value))
label_texts.append(value or missing_val_str)
self.stats = stats
self.label_txts_all = label_texts
else:
self.conts = contingency.get_contingency(
dataset, attr, self.group_var)
self.label_txts_all = [
v or missing_val_str for v, c in zip(
group_var_labels, self.conts.array_with_unknowns)
if np.sum(c) > 0]
else:
self.conts = None
if self.attribute.is_continuous:
attr_col = dataset.get_column(attr)
self.stats = [BoxData(attr_col)]
else:
self.dist = distribution.get_distribution(dataset, attr)
self.label_txts_all = [""]
self.label_txts = [txts for stat, txts in zip(self.stats,
self.label_txts_all)
if stat.n > 0]
self.stats = [stat for stat in self.stats if stat.n > 0]
def update_box_visibilities(self):
self.controls.stretched.setDisabled(self.group_var is self.attribute)
if not self.attribute:
self.stretching_box.hide()
self.display_box.hide()
elif self.attribute.is_continuous:
self.stretching_box.hide()
self.display_box.show()
self.compare_rb.setEnabled(self.group_var is not None)
else:
self.stretching_box.show()
self.display_box.hide()
self.sort_cb.setEnabled(self.group_var is not None)
def clear_scene(self):
self.box_scene.clear()
self.box_view.viewport().update()
self.attr_labels = []
self.labels = []
self.boxes = []
self.mean_labels = []
self.posthoc_lines = []
def _display_changed_cont(self):
self.mean_labels = [self.mean_label(stat, self.attribute, lab)
for stat, lab in zip(self.stats, self.label_txts)]
self.draw_axis()
self.boxes = [self.box_group(stat) for stat in self.stats]
self.labels = [self.label_group(stat, self.attribute, mean_lab)
for stat, mean_lab in zip(self.stats, self.mean_labels)]
self.attr_labels = [QGraphicsSimpleTextItem(lab)
for lab in self.label_txts]
for it in chain(self.labels, self.attr_labels):
self.box_scene.addItem(it)
self.order = list(range(len(self.stats)))
criterion = self._sorting_criteria_attrs[self.compare]
if criterion:
vals = [getattr(stat, criterion) for stat in self.stats]
overmax = max((val for val in vals if val is not None), default=0) \
+ 1
vals = [val if val is not None else overmax for val in vals]
self.order = sorted(self.order, key=vals.__getitem__)
heights = 90 if self.show_annotations else 60
for row, box_index in enumerate(self.order):
y = (-len(self.stats) + row) * heights + 10
for item in self.boxes[box_index]:
self.box_scene.addItem(item)
item.setY(y)
labels = self.labels[box_index]
if self.show_annotations:
labels.show()
labels.setY(y)
else:
labels.hide()
label = self.attr_labels[box_index]
label.setY(y - 15 - label.boundingRect().height())
if self.show_annotations:
label.hide()
else:
stat = self.stats[box_index]
if self.compare == OWBoxPlot.CompareMedians and \
stat.median is not None:
pos = stat.median + 5 / self.scale_x
elif self.compare == OWBoxPlot.CompareMeans or stat.q25 is None:
pos = stat.mean + 5 / self.scale_x
else:
pos = stat.q25
label.setX(pos * self.scale_x)
label.show()
r = QRectF(self.scene_min_x, -30 - len(self.stats) * heights,
self.scene_width, len(self.stats) * heights + 90 +
self._axis_font.pixelSize() * 4)
self.box_scene.setSceneRect(r)
self._compute_tests_cont()
self._show_posthoc()
def _display_changed_disc(self):
self.clear_scene()
if self.group_var and self.conts is None or \
not self.group_var and self.dist is None: # readability counts
# This happens if the attribute or group attribute don't have any
# values. See the condition in compute_box_data. This tests can't
# be moved to input data handler because it's user-choice specific.
self.stat_test = ""
return
self.attr_labels = [QGraphicsSimpleTextItem(lab)
for lab in self.label_txts_all]
if not self.show_stretched:
if self.group_var:
self.labels = [
QGraphicsTextItem(f"{int(sum(cont))}")
for cont in self.conts.array_with_unknowns
if np.sum(cont) > 0]
else:
self.labels = [
QGraphicsTextItem(str(int(sum(self.dist))))]
self.order = list(range(len(self.attr_labels)))
self.draw_axis_disc()
if self.group_var:
conts = self.conts.array_with_unknowns
self.boxes = [
self.strudel(cont, val)
for cont, val in zip(conts, self.group_var.values + ("", ))
if np.sum(cont) > 0
]
sums_ = np.sum(conts, axis=1)
sums_ = sums_[sums_ > 0] # only bars with sum > 0 are shown
if self.sort_freqs:
# pylint: disable=invalid-unary-operand-type
self.order = sorted(self.order, key=(-sums_).__getitem__)
else:
conts = self.dist.array_with_unknowns
self.boxes = [self.strudel(conts)]
sums_ = [np.sum(conts)]
for row, box_index in enumerate(self.order):
y = (-len(self.boxes) + row) * 40 + 10
box = self.boxes[box_index]
bars, labels = box[::2], box[1::2]
self.__draw_group_labels(y, box_index)
if not self.show_stretched:
self.__draw_row_counts(
y, self.labels[box_index], sums_[box_index]
)
if self.show_labels and self.attribute is not self.group_var:
self.__draw_bar_labels(y, bars, labels)
self.__draw_bars(y, bars)
self.box_scene.setSceneRect(-self.label_width - 5,
-30 - len(self.boxes) * 40,
self.scene_width, len(self.boxes * 40) +
90 + self._axis_font.pixelSize() * 4)
self._compute_tests_disc()
def __draw_group_labels(self, y, row):
"""Draw group labels
Parameters
----------
y: int
vertical offset of bars
row: int
row index
"""
label = self.attr_labels[row]
b = label.boundingRect()
label.setPos(-b.width() - 10, y - b.height() / 2)
self.box_scene.addItem(label)
def __draw_row_counts(self, y, label, row_sum_):
"""Draw row counts
Parameters
----------
y: int
vertical offset of bars
label: QGraphicsSimpleTextItem
Label for group
row_sum_: int
Sum for the group
"""
assert not self.attribute.is_continuous
b = label.boundingRect()
right = self.scale_x * row_sum_
label.setPos(right + 10, y - b.height() / 2)
self.box_scene.addItem(label)
def __draw_bar_labels(self, y, bars, labels):
"""Draw bar labels
Parameters
----------
y: int
vertical offset of bars
bars: List[FilterGraphicsRectItem]
list of bars being drawn
labels: List[QGraphicsTextItem]
list of labels for corresponding bars
"""
for text_item, bar_part in zip(labels, bars):
label = self.Label(
text_item.toPlainText())
label.setPos(bar_part.boundingRect().x(),
y - label.boundingRect().height() - 8)
label.setMaxWidth(bar_part.boundingRect().width())
self.box_scene.addItem(label)
def __draw_bars(self, y, bars):
"""Draw bars
Parameters
----------
y: int
vertical offset of bars
bars: List[FilterGraphicsRectItem]
list of bars to draw
"""
for item in bars:
item.setPos(0, y)
self.box_scene.addItem(item)
# noinspection PyPep8Naming
def _compute_tests_cont(self):
# The t-test and ANOVA are implemented here since they efficiently use
# the widget-specific data in self.stats.
# The non-parametric tests can't do this, so we use statistics.tests
# pylint: disable=comparison-with-itself
def stat_ttest():
d1, d2 = self.stats
if d1.n < 2 or d2.n < 2:
return np.nan, np.nan
pooled_var = d1.var / d1.n + d2.var / d2.n
# pylint: disable=comparison-with-itself
if pooled_var == 0 or np.isnan(pooled_var):
return np.nan, np.nan
df = pooled_var ** 2 / \
((d1.var / d1.n) ** 2 / (d1.n - 1) +
(d2.var / d2.n) ** 2 / (d2.n - 1))
t = abs(d1.mean - d2.mean) / math.sqrt(pooled_var)
p = 2 * (1 - scipy.special.stdtr(df, t))
return t, p
# TODO: Check this function
# noinspection PyPep8Naming
def stat_ANOVA():
if any(stat.n == 0 for stat in self.stats):
return np.nan, np.nan
n = sum(stat.n for stat in self.stats)
grand_avg = sum(stat.n * stat.mean for stat in self.stats) / n
var_between = sum(stat.n * (stat.mean - grand_avg) ** 2
for stat in self.stats)
df_between = len(self.stats) - 1
var_within = sum(stat.n * stat.var for stat in self.stats)
df_within = n - len(self.stats)
if var_within == 0 or df_within == 0 or df_between == 0:
return np.nan, np.nan
F = (var_between / df_between) / (var_within / df_within)
p = 1 - scipy.special.fdtr(df_between, df_within, F)
return F, p
n = len(self.dataset)
if self.compare == OWBoxPlot.CompareNone or len(self.stats) < 2:
t = ""
elif any(s.n <= 1 for s in self.stats):
t = "At least one group has just one instance, " \
"cannot compute significance"
elif len(self.stats) == 2:
if self.compare == OWBoxPlot.CompareMedians:
t = ""
# z, p = tests.wilcoxon_rank_sum(
# self.stats[0].dist, self.stats[1].dist)
# t = "Mann-Whitney's z: %.1f (p=%.3f)" % (z, p)
else:
t, p = stat_ttest()
t = "" if np.isnan(t) else f"Student's t: {t:.3f} (p={p:.3f}, N={n})"
else:
if self.compare == OWBoxPlot.CompareMedians:
t = ""
# U, p = -1, -1
# t = "Kruskal Wallis's U: %.1f (p=%.3f)" % (U, p)
else:
F, p = stat_ANOVA()
t = "" if np.isnan(F) else f"ANOVA: {F:.3f} (p={p:.3f}, N={n})"
self.stat_test = t
def _compute_tests_disc(self):
if self.group_var is None or self.attribute is None:
self.stat_test = ""
else:
chi, p, dof = self._chi_square(self.group_var, self.attribute)
if np.isnan(p):
self.stat_test = ""
else:
self.stat_test = f"χ²: {chi:.2f} (p={p:.3f}, dof={dof})"
def mean_label(self, stat, attr, val_name):
label = QGraphicsItemGroup()
t = QGraphicsSimpleTextItem(attr.str_val(stat.mean), label)
t.setFont(self._label_font)
bbox = t.boundingRect()
w2, h = bbox.width() / 2, bbox.height()
t.setPos(-w2, -h)
tpm = QGraphicsSimpleTextItem(
" \u00b1 " + "%.*f" % (attr.number_of_decimals + 1, stat.dev),
label)
tpm.setFont(self._label_font)
tpm.setPos(w2, -h)
if val_name:
vnm = QGraphicsSimpleTextItem(val_name + ": ", label)
vnm.setFont(self._label_font)
vnm.setBrush(self._attr_brush)
vb = vnm.boundingRect()
label.min_x = -w2 - vb.width()
vnm.setPos(label.min_x, -h)
else:
label.min_x = -w2
return label
def draw_axis(self):
"""Draw the horizontal axis and sets self.scale_x"""
missing_stats = not self.stats
stats = self.stats or [BoxData(np.array([0.]), self.attribute)]
mean_labels = self.mean_labels or [self.mean_label(stats[0], self.attribute, "")]
bottom = min(stat.a_min for stat in stats)
top = max(stat.a_max for stat in stats)
first_val, step = compute_scale(bottom, top)
while bottom <= first_val:
first_val -= step
bottom = first_val
no_ticks = math.ceil((top - first_val) / step) + 1
top = max(top, first_val + no_ticks * step)
gbottom = min(bottom, min(stat.mean - stat.dev for stat in stats))
gtop = max(top, max(stat.mean + stat.dev for stat in stats))
bv = self.box_view
viewrect = bv.viewport().rect().adjusted(15, 15, -15, -30)
self.scale_x = scale_x = viewrect.width() / (gtop - gbottom)
# In principle, we should repeat this until convergence since the new
# scaling is too conservative. (No chance am I doing this.)
mlb = min(stat.mean + mean_lab.min_x / scale_x
for stat, mean_lab in zip(stats, mean_labels))
if mlb < gbottom:
gbottom = mlb
self.scale_x = scale_x = viewrect.width() / (gtop - gbottom)
self.scene_min_x = gbottom * scale_x
self.scene_max_x = gtop * scale_x
self.scene_width = self.scene_max_x - self.scene_min_x
val = first_val
last_text = self.scene_min_x
while True:
l = self.box_scene.addLine(val * scale_x, -1, val * scale_x, 1,
self._pen_axis_tick)
l.setZValue(100)
t = QGraphicsSimpleTextItem(
self.attribute.str_val(val) if not missing_stats else "?")
t.setFont(self._axis_font)
t.setFlag(QGraphicsItem.ItemIgnoresTransformations)
r = t.boundingRect()
x_start = val * scale_x - r.width() / 2
x_finish = x_start + r.width()
if x_start > last_text + 10 and x_finish < self.scene_max_x:
t.setPos(x_start, 8)
self.box_scene.addItem(t)
last_text = x_finish
if val >= top:
break
val += step
self.box_scene.addLine(
bottom * scale_x - 4, 0, top * scale_x + 4, 0, self._pen_axis)
t = QGraphicsSimpleTextItem(self.attribute.name)
t.setFont(self._axis_font)
t.setFlag(QGraphicsItem.ItemIgnoresTransformations)
t.setPos(
self.scene_min_x + (self.scene_width - t.boundingRect().width()) / 2,
8 + 1.5 * self._axis_font.pixelSize())
self.box_scene.addItem(t)
def draw_stat(self):
if self.stat_test:
label = QGraphicsSimpleTextItem(self.stat_test)
brect = self.box_scene.sceneRect()
label.setPos(brect.x(),
32 + self._axis_font.pixelSize() * 3.6)
label.setFlag(QGraphicsItem.ItemIgnoresTransformations)
label.setFont(self._axis_font)
self.box_scene.addItem(label)
def draw_axis_disc(self):
"""
Draw the horizontal axis and sets self.scale_x for discrete attributes
"""
assert not self.attribute.is_continuous
if self.show_stretched:
if not self.attr_labels:
return
step = steps = 10
else:
if self.group_var:
assert self.conts is not None, "the callee must ensure this!"
max_box = max(float(np.sum(dist))
for dist in self.conts.array_with_unknowns)
else:
assert self.dist is not None, "the callee must ensure this!"
max_box = float(np.sum(self.dist.array_with_unknowns))
if max_box == 0:
self.scale_x = 1
return
_, step = compute_scale(0, max_box)
step = int(step) if step > 1 else 1
steps = int(math.ceil(max_box / step))
max_box = step * steps
bv = self.box_view
viewrect = bv.viewport().rect().adjusted(15, 15, -15, -30)
self.scene_width = viewrect.width()
lab_width = max(lab.boundingRect().width() for lab in self.attr_labels)
lab_width = max(lab_width, 40)
lab_width = min(lab_width, self.scene_width / 3)
self.label_width = lab_width
right_offset = 0 # offset for the right label
if not self.show_stretched and self.labels:
if self.group_var:
rows = list(zip(self.conts.array_with_unknowns, self.labels))
else:
rows = [(self.dist, self.labels[0])]
# available space left of the 'group labels'
available = self.scene_width - lab_width - 10
scale_x = (available - right_offset) / max_box
max_right = max(sum(dist) * scale_x + 10 +
lbl.boundingRect().width()
for dist, lbl in rows)
right_offset = max(0, max_right - max_box * scale_x)
self.scale_x = scale_x = \
(self.scene_width - lab_width - 10 - right_offset) / max_box
self.box_scene.addLine(0, 0, max_box * scale_x, 0, self._pen_axis)
for val in range(0, step * steps + 1, step):
l = self.box_scene.addLine(val * scale_x, -1, val * scale_x, 1,
self._pen_axis_tick)
l.setZValue(100)
t = self.box_scene.addSimpleText(str(val), self._axis_font)
t.setPos(val * scale_x - t.boundingRect().width() / 2, 8)
if self.show_stretched:
self.scale_x *= 100
def label_group(self, stat, attr, mean_lab):
def centered_text(val, pos):
t = QGraphicsSimpleTextItem(attr.str_val(val), labels)
t.setFont(self._label_font)
bbox = t.boundingRect()
t.setPos(pos - bbox.width() / 2, 22)
return t
def line(x, down=1):
QGraphicsLineItem(x, 12 * down, x, 20 * down, labels)
def move_label(label, frm, to):
label.setX(to)
to += t_box.width() / 2
path = QPainterPath()
path.lineTo(0, 4)
path.lineTo(to - frm, 4)
path.lineTo(to - frm, 8)
p = QGraphicsPathItem(path)
p.setPos(frm, 12)
labels.addToGroup(p)
labels = QGraphicsItemGroup()
labels.addToGroup(mean_lab)
m = stat.mean * self.scale_x
mean_lab.setPos(m, -22)
line(m, -1)
if stat.median is not None:
msc = stat.median * self.scale_x
med_t = centered_text(stat.median, msc)
med_box_width2 = med_t.boundingRect().width() / 2
line(msc)
if stat.q25 is not None:
x = stat.q25 * self.scale_x
t = centered_text(stat.q25, x)
t_box = t.boundingRect()
med_left = msc - med_box_width2
if x + t_box.width() / 2 >= med_left - 5:
move_label(t, x, med_left - t_box.width() - 5)
else:
line(x)
if stat.q75 is not None:
x = stat.q75 * self.scale_x
t = centered_text(stat.q75, x)
t_box = t.boundingRect()
med_right = msc + med_box_width2
if x - t_box.width() / 2 <= med_right + 5:
move_label(t, x, med_right + 5)
else:
line(x)
return labels
def box_group(self, stat, height=20):
def line(x0, y0, x1, y1, *args):
return QGraphicsLineItem(x0 * scale_x, y0, x1 * scale_x, y1, *args)
scale_x = self.scale_x
box = []
whisker1 = line(stat.a_min, -1.5, stat.a_min, 1.5)
whisker2 = line(stat.a_max, -1.5, stat.a_max, 1.5)
vert_line = line(stat.a_min, 0, stat.a_max, 0)
mean_line = line(stat.mean, -height / 3, stat.mean, height / 3)
for it in (whisker1, whisker2, mean_line):
it.setPen(self._pen_paramet)
vert_line.setPen(self._pen_dotted)
var_line = line(stat.mean - stat.dev, 0, stat.mean + stat.dev, 0)
var_line.setPen(self._pen_paramet)
box.extend([whisker1, whisker2, vert_line, mean_line, var_line])
if stat.q25 is not None or stat.q75 is not None:
# if any of them is None it means that its value is equal to median
box_from = stat.median if stat.q25 is None else stat.q25
box_to = stat.median if stat.q75 is None else stat.q75
mbox = FilterGraphicsRectItem(
stat.data_range, box_from * scale_x, -height / 2,
(box_to - box_from) * scale_x, height)
mbox.setBrush(self._box_brush)
mbox.setPen(QPen(Qt.NoPen))
mbox.setZValue(-200)
box.append(mbox)
if stat.median is not None:
median_line = line(stat.median, -height / 2,
stat.median, height / 2)
median_line.setPen(self._pen_median)
median_line.setZValue(-150)
box.append(median_line)
return box
def strudel(self, dist, group_val=None):
attr = self.attribute
ss = np.sum(dist)
box = []
if ss < 1e-6:
cond = DiscDataRange(None, group_val)
box.append(FilterGraphicsRectItem(cond, 0, -10, 1, 10))
cum = 0
missing_val_str = f"missing '{attr.name}'"
values = attr.values + ("",)
colors = attr.palette.qcolors_w_nan
total = sum(dist)
rect = None
for freq, value, color in zip(dist, values, colors):
if freq < 1e-6:
continue
v = freq
if self.show_stretched:
v /= ss
v *= self.scale_x
cond = DiscDataRange(value, group_val)
kw = {"add_lpad": rect is None, "add_rpad": False}
rect = FilterGraphicsRectItem(cond, cum + 1, -6, v - 2, 12, **kw)
rect.setBrush(QBrush(color))
rect.setPen(QPen(Qt.NoPen))
value = value or missing_val_str
if self.show_stretched:
tooltip = f"{value}: {100 * freq / total:.2f}%"
else:
tooltip = f"{value}: ({int(freq)})"
rect.setToolTip(tooltip)
text = QGraphicsTextItem(value)
box.append(rect)
box.append(text)
cum += v
if rect is not None:
rect.set_right_padding(True)
return box
def on_selection_changed(self):
self.selection = tuple(item.data_range
for item in self.box_scene.selectedItems()
if item.data_range)
self.commit()
def commit(self):
conditions = self._gather_conditions()
if conditions:
selected = Values(conditions, conjunction=False)(self.dataset)
selection = np.isin(
self.dataset.ids, selected.ids, assume_unique=True).nonzero()[0]
else:
selected, selection = None, []
self.Outputs.selected_data.send(selected)
self.Outputs.annotated_data.send(
create_annotated_table(self.dataset, selection))
def _gather_conditions(self):
conditions = []
attr = self.attribute
group_attr = self.group_var
for data_range in self.selection:
if attr.is_discrete:
# If some value was removed from the data (in case settings are
# loaded from a scheme), do not include the corresponding
# filter; this is appropriate since data with such value does
# not exist anyway
if not data_range.value:
condition = IsDefined([attr], negate=True)
elif data_range.value not in attr.values:
continue
else:
condition = FilterDiscrete(attr, [data_range.value])
else:
condition = FilterContinuous(attr, FilterContinuous.Between,
data_range.low, data_range.high)
if data_range.group_value:
if not data_range.group_value:
grp_filter = IsDefined([group_attr], negate=True)
elif data_range.group_value not in group_attr.values:
continue
else:
grp_filter = FilterDiscrete(group_attr, [data_range.group_value])
condition = Values([condition, grp_filter], conjunction=True)
conditions.append(condition)
return conditions
def _show_posthoc(self):
def line(y0, y1):
it = self.box_scene.addLine(x, y0, x, y1, self._post_line_pen)
it.setZValue(-100)
self.posthoc_lines.append(it)
while self.posthoc_lines:
self.box_scene.removeItem(self.posthoc_lines.pop())
if self.compare == OWBoxPlot.CompareNone or len(self.stats) < 2:
return
if self.compare == OWBoxPlot.CompareMedians:
crit_line = "median"
else:
crit_line = "mean"
xs = []
height = 90 if self.show_annotations else 60
y_up = -len(self.stats) * height + 10
for pos, box_index in enumerate(self.order):
stat = self.stats[box_index]
x = getattr(stat, crit_line)
if x is None:
continue
x *= self.scale_x
xs.append(x * self.scale_x)
by = y_up + pos * height
line(by + 12, 0)
used_to = []
last_to = to = 0
for frm, frm_x in enumerate(xs[:-1]):
for to in range(frm + 1, len(xs)):
if xs[to] - frm_x > 1.5:
to -= 1
break
if to in (last_to, frm):
continue
for rowi, used in enumerate(used_to):
if used < frm:
used_to[rowi] = to
break
else:
rowi = len(used_to)
used_to.append(to)
y = - 6 - rowi * 6
it = self.box_scene.addLine(frm_x - 2, y, xs[to] + 2, y,
self._post_grp_pen)
self.posthoc_lines.append(it)
last_to = to
def get_widget_name_extension(self):
return self.attribute.name if self.attribute else None
def send_report(self):
self.report_plot()
text = ""
if self.attribute:
text += f"Box plot for attribute '{self.attribute.name}' "
if self.group_var:
text += f"grouped by '{self.group_var.name}'"
if text:
self.report_caption(text)
class Label(QGraphicsSimpleTextItem):
"""Boxplot Label with settable maxWidth"""
# Minimum width to display label text
MIN_LABEL_WIDTH = 25
# padding bellow the text
PADDING = 3
__max_width = None
def maxWidth(self):
return self.__max_width
def setMaxWidth(self, max_width):
self.__max_width = max_width
def paint(self, painter, option, widget):
"""Overrides QGraphicsSimpleTextItem.paint
If label text is too long, it is elided
to fit into the allowed region
"""
if self.__max_width is None:
width = option.rect.width()
else:
width = self.__max_width
if width < self.MIN_LABEL_WIDTH:
# if space is too narrow, no label
return
fm = painter.fontMetrics()
text = fm.elidedText(self.text(), Qt.ElideRight, int(width))
painter.drawText(
int(option.rect.x()),
int(option.rect.y() + self.boundingRect().height() - self.PADDING),
text)
if __name__ == "__main__": # pragma: no cover
WidgetPreview(OWBoxPlot).run(Orange.data.Table("heart_disease.tab"))
|