1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
"""
Linear Projection widget
------------------------
"""
from itertools import islice, permutations, chain, combinations
from math import factorial, comb
import numpy as np
from sklearn.neighbors import NearestNeighbors
from sklearn.metrics import r2_score
from AnyQt.QtGui import QPalette
from AnyQt.QtCore import QRectF, QLineF
import pyqtgraph as pg
from Orange.data import Table, Domain, IsDefined
from Orange.preprocess import Normalize
from Orange.preprocess.score import ReliefF, RReliefF
from Orange.projection import PCA, LDA, LinearProjector
from Orange.util import Enum
from Orange.widgets import gui, report
from Orange.widgets.settings import Setting, ContextSetting, SettingProvider
from Orange.widgets.utils.localization import pl
from Orange.widgets.utils.plot import variables_selection
from Orange.widgets.utils.plot.owplotgui import VariableSelectionModel
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.utils import vizrank
from Orange.widgets.visualize.utils.vizrank import VizRankDialogNAttrs, \
VizRankMixin
from Orange.widgets.visualize.utils.component import OWGraphWithAnchors
from Orange.widgets.visualize.utils.plotutils import AnchorItem
from Orange.widgets.visualize.utils.widget import OWAnchorProjectionWidget
from Orange.widgets.widget import Msg
MAX_LABEL_LEN = 20
class LinearProjectionVizRank(VizRankDialogNAttrs):
minK = 10
show_bars = False
def score_attributes(self):
def normalized(a):
span = np.max(a, axis=0) - np.min(a, axis=0)
span[span == 0] = 1
return (a - np.mean(a, axis=0)) / span
domain = Domain(
attributes=[v for v in self.attrs if v is not self.attr_color],
class_vars=self.attr_color
)
data = self.data.transform(domain).copy()
with data.unlocked():
data.X = normalized(data.X)
relief = ReliefF if self.attr_color.is_discrete else RReliefF
weights = relief(n_iterations=100, k_nearest=self.minK)(data)
results = sorted(zip(weights, domain.attributes),
key=lambda x: (-x[0], x[1].name))
return [attr for _, attr in results]
def state_count(self):
n_all_attrs = self.max_attrs()
if not n_all_attrs:
return 0
return comb(n_all_attrs, self.n_attrs) * factorial(self.n_attrs - 1) // 2
def state_generator(self):
return (
(c[0], *p)
for c in combinations(list(range(len(self.attr_order))), self.n_attrs)
for p in islice(permutations(c[1:]), factorial(len(c) - 1) // 2)
)
def compute_score(self, state):
domain = Domain([self.attr_order[i] for i in state], [self.attr_color])
reduced = IsDefined()(self.data.transform(domain))
if len(reduced) < self.minK: # cancel early if not enough data
return None
projection = self.parent().projector(reduced)
ec = projection(reduced).X
if ec.shape[0] < self.minK: # projection preprocessors can remove data(?)
return None
n_neighbors = min(self.minK, len(ec) - 1)
knn = NearestNeighbors(n_neighbors=n_neighbors).fit(ec)
ind = knn.kneighbors(return_distance=False)
y = reduced.get_column(self.attr_color)
if self.attr_color.is_discrete:
score = -np.sum(y[ind] == y.reshape(-1, 1)) / n_neighbors
else:
score = -r2_score(y, np.mean(y[ind], axis=1))
# treat missing data as misclassified
return score * len(reduced) / len(self.data)
class OWLinProjGraph(OWGraphWithAnchors):
hide_radius = Setting(0)
@property
def always_show_axes(self):
return self.master.placement == Placement.Circular
@property
def scaled_radius(self):
return self.hide_radius / 100 + 1e-5
def update_radius(self):
self.update_circle()
self.update_anchors()
def set_view_box_range(self):
def min_max(a, b):
return (min(np.amin(a), np.amin(b), -1.05),
max(np.amax(a), np.amax(b), 1.05))
points, _ = self.master.get_anchors()
coords = self.master.get_coordinates_data()
if points is None or coords is None:
return
min_x, max_x = min_max(points[:, 0], coords[0])
min_y, max_y = min_max(points[:, 1], coords[1])
rect = QRectF(min_x, min_y, max_x - min_x, max_y - min_y)
self.view_box.setRange(rect, padding=0.025)
def update_anchors(self):
points, labels = self.master.get_anchors()
if points is None:
return
r = self.scaled_radius * np.max(np.linalg.norm(points, axis=1))
if self.anchor_items is None:
self.anchor_items = []
for point, label in zip(points, labels):
anchor = AnchorItem(line=QLineF(0, 0, *point))
anchor._label.setToolTip(f"<b>{label}</b>")
label = label[:MAX_LABEL_LEN - 3] + "..." if len(label) > MAX_LABEL_LEN else label
anchor.setText(label)
anchor.setFont(self.parameter_setter.anchor_font)
visible = self.always_show_axes or np.linalg.norm(point) > r
anchor.setVisible(bool(visible))
anchor.setPen(pg.mkPen((100, 100, 100)))
self.plot_widget.addItem(anchor)
self.anchor_items.append(anchor)
else:
for anchor, point, label in zip(self.anchor_items, points, labels):
anchor.setLine(QLineF(0, 0, *point))
visible = self.always_show_axes or np.linalg.norm(point) > r
anchor.setVisible(bool(visible))
anchor.setFont(self.parameter_setter.anchor_font)
def update_circle(self):
super().update_circle()
if self.always_show_axes:
self.plot_widget.removeItem(self.circle_item)
self.circle_item = None
if self.circle_item is not None:
points, _ = self.master.get_anchors()
if points is None:
return
r = self.scaled_radius * np.max(np.linalg.norm(points, axis=1))
self.circle_item.setRect(QRectF(-r, -r, 2 * r, 2 * r))
color = self.plot_widget.palette().color(QPalette.Disabled, QPalette.Text)
pen = pg.mkPen(color, width=1, cosmetic=True)
self.circle_item.setPen(pen)
Placement = Enum("Placement", dict(Circular=0, LDA=1, PCA=2), type=int,
qualname="Placement")
class OWLinearProjection(OWAnchorProjectionWidget,
VizRankMixin(LinearProjectionVizRank)):
name = "Linear Projection"
description = "A multi-axis projection of data onto " \
"a two-dimensional plane."
icon = "icons/LinearProjection.svg"
priority = 240
keywords = "linear projection"
Projection_name = {Placement.Circular: "Circular Placement",
Placement.LDA: "Linear Discriminant Analysis",
Placement.PCA: "Principal Component Analysis"}
settings_version = 6
placement = Setting(Placement.Circular)
selected_vars = ContextSetting([])
GRAPH_CLASS = OWLinProjGraph
graph = SettingProvider(OWLinProjGraph)
n_attrs_vizrank = Setting(3)
class Error(OWAnchorProjectionWidget.Error):
no_cont_features = Msg("Plotting requires numeric features")
class Information(OWAnchorProjectionWidget.Information):
no_lda = Msg("LDA placement is disabled due to unsuitable target.\n{}")
def _add_controls(self):
box = gui.vBox(self.controlArea, box="Features")
self._add_controls_variables(box)
self._add_controls_placement(box)
super()._add_controls()
self.gui.add_control(
self._effects_box, gui.hSlider, "Hide radius:", master=self.graph,
value="hide_radius", minValue=0, maxValue=100, step=10,
createLabel=False, callback=self.__radius_slider_changed
)
def _add_controls_variables(self, box):
self.model_selected = VariableSelectionModel(self.selected_vars)
variables_selection(box, self, self.model_selected)
self.model_selected.selection_changed.connect(
self.__model_selected_changed)
self.btn_vizrank = self.vizrank_button("Suggest Features")
self.vizrankSelectionChanged.connect(self.vizrank_set_attrs)
self.vizrankRunStateChanged.connect(self.store_vizrank_n_attrs)
box.layout().addWidget(self.btn_vizrank)
def _add_controls_placement(self, box):
self.radio_placement = gui.radioButtonsInBox(
box, self, "placement",
btnLabels=[self.Projection_name[x] for x in Placement],
callback=self.__placement_radio_changed
)
def _add_buttons(self):
self.gui.box_zoom_select(self.buttonsArea)
gui.auto_send(self.buttonsArea, self, "auto_commit")
@property
def continuous_variables(self):
if self.data is None or self.data.domain is None:
return []
dom = self.data.domain
return [v for v in chain(dom.variables, dom.metas) if v.is_continuous]
@property
def effective_variables(self):
return self.selected_vars
@property
def effective_data(self):
cvs = None
if self.placement == Placement.LDA:
cvs = self.data.domain.class_vars
return self.data.transform(Domain(self.effective_variables, cvs))
def vizrank_set_attrs(self, attrs):
if not attrs:
return
# False positive, pylint: disable=unsupported-assignment-operation
self.selected_vars[:] = attrs
# Ugly, but the alternative is to have yet another signal to which
# the view will have to connect
self.model_selected.selection_changed.emit()
def store_vizrank_n_attrs(self, state, data):
if state == vizrank.RunState.Running:
self.n_attrs_vizrank = data["n_attrs"]
def __model_selected_changed(self):
self.projection = None
self._check_options()
self.init_projection()
self.setup_plot()
self.commit.deferred()
def __placement_radio_changed(self):
self.controls.graph.hide_radius.setEnabled(
self.placement != Placement.Circular)
self.projection = self.projector = None
self.init_vizrank()
self.init_projection()
self.setup_plot()
self.commit.deferred()
def __radius_slider_changed(self):
self.graph.update_radius()
def colors_changed(self):
super().colors_changed()
self.init_vizrank()
@OWAnchorProjectionWidget.Inputs.data
def set_data(self, data):
super().set_data(data)
self._check_options()
self.init_vizrank()
self.init_projection()
def _check_options(self):
buttons = self.radio_placement.buttons
for btn in buttons:
btn.setEnabled(True)
problem = None
if self.data is not None:
if (class_var := self.data.domain.class_var) is None:
problem = "Current data has no target variable"
elif not class_var.is_discrete:
problem = f"{class_var.name} is not categorical"
elif (nclasses := len(distinct := np.unique(self.data.Y))) == 0:
problem = f"Data has no defined values for {class_var.name}"
elif nclasses < 3:
vals = " and ".join(f"'{class_var.values[int(i)]}'" for i in distinct)
problem = \
f"Data contains just {['one', 'two'][nclasses - 1]} distinct " \
f"{pl(nclasses, 'value')} ({vals}) for '{class_var.name}'; " \
"at least three are required."
if problem is None:
self.Information.no_lda.clear()
else:
self.Information.no_lda(problem)
buttons[Placement.LDA].setEnabled(False)
if self.placement == Placement.LDA:
self.placement = Placement.Circular
self.controls.graph.hide_radius.setEnabled(
self.placement != Placement.Circular)
def init_vizrank(self):
msg = ""
if self.data is None:
msg = "There is no data."
elif self.attr_color is None:
msg = "Color variable has to be selected"
elif self.attr_color.is_continuous and \
self.placement == Placement.LDA:
msg = "Suggest Features does not work for Linear " \
"Discriminant Analysis Projection when " \
"continuous color variable is selected."
elif len([v for v in self.continuous_variables
if v is not self.attr_color]) < 3:
msg = "Not enough available continuous variables"
elif np.sum(np.all(np.isfinite(self.data.X), axis=1)) < 2:
msg = "Not enough valid data instances"
if not msg:
super().init_vizrank(
self.data, self.continuous_variables, self.attr_color,
self.n_attrs_vizrank)
else:
self.disable_vizrank(msg)
def check_data(self):
def error(err):
err()
self.data = None
super().check_data()
if self.data is not None:
if not len(self.continuous_variables):
error(self.Error.no_cont_features)
def init_attr_values(self):
super().init_attr_values()
self.selected_vars[:] = self.continuous_variables[:3]
self.model_selected[:] = self.continuous_variables
def init_projection(self):
if self.placement == Placement.Circular:
self.projector = CircularPlacement()
elif self.placement == Placement.LDA:
self.projector = LDA(solver="eigen", n_components=2)
elif self.placement == Placement.PCA:
self.projector = PCA(n_components=2)
self.projector.component = 2
self.projector.preprocessors = PCA.preprocessors + [Normalize()]
super().init_projection()
def get_coordinates_data(self):
def normalized(a):
span = np.max(a, axis=0) - np.min(a, axis=0)
span[span == 0] = 1
return (a - np.mean(a, axis=0)) / span
embedding = self.get_embedding()
if embedding is None:
return None, None
norm_emb = normalized(embedding[self.valid_data])
return (norm_emb.ravel(), np.zeros(len(norm_emb), dtype=float)) \
if embedding.shape[1] == 1 else norm_emb.T
def _get_send_report_caption(self):
def projection_name():
return self.Projection_name[self.placement]
return report.render_items_vert((
("Projection", projection_name()),
("Color", self._get_caption_var_name(self.attr_color)),
("Label", self._get_caption_var_name(self.attr_label)),
("Shape", self._get_caption_var_name(self.attr_shape)),
("Size", self._get_caption_var_name(self.attr_size)),
("Jittering", self.graph.jitter_size != 0 and
"{} %".format(self.graph.jitter_size))))
@classmethod
def migrate_settings(cls, settings_, version):
if version < 2:
settings_["point_width"] = settings_["point_size"]
if version < 3:
settings_graph = {}
settings_graph["jitter_size"] = settings_["jitter_value"]
settings_graph["point_width"] = settings_["point_width"]
settings_graph["alpha_value"] = settings_["alpha_value"]
settings_graph["class_density"] = settings_["class_density"]
settings_["graph"] = settings_graph
if version < 4:
if "radius" in settings_:
settings_["graph"]["hide_radius"] = settings_["radius"]
if "selection_indices" in settings_ and \
settings_["selection_indices"] is not None:
selection = settings_["selection_indices"]
settings_["selection"] = [(i, 1) for i, selected in
enumerate(selection) if selected]
if version < 5:
if "placement" in settings_ and \
settings_["placement"] not in Placement:
settings_["placement"] = Placement.Circular
@classmethod
def migrate_context(cls, context, version):
values = context.values
if version < 2:
domain = context.ordered_domain
c_domain = [t for t in context.ordered_domain if t[1] == 2]
d_domain = [t for t in context.ordered_domain if t[1] == 1]
for d, old_val, new_val in ((domain, "color_index", "attr_color"),
(d_domain, "shape_index", "attr_shape"),
(c_domain, "size_index", "attr_size")):
index = context.values[old_val][0] - 1
values[new_val] = (d[index][0], d[index][1] + 100) \
if 0 <= index < len(d) else None
if version < 3:
values["graph"] = {
"attr_color": values["attr_color"],
"attr_shape": values["attr_shape"],
"attr_size": values["attr_size"]
}
if version == 3:
values["attr_color"] = values["graph"]["attr_color"]
values["attr_size"] = values["graph"]["attr_size"]
values["attr_shape"] = values["graph"]["attr_shape"]
values["attr_label"] = values["graph"]["attr_label"]
if version < 6 and "selected_vars" in values:
values["selected_vars"] = (values["selected_vars"], -3)
# for backward compatibility with settings < 6, pull the enum from global
# namespace into class
Placement = Placement
class CircularPlacement(LinearProjector):
def get_components(self, X, Y):
# Return circular axes for linear projection
n_axes = X.shape[1]
if n_axes == 1:
axes_angle = [0]
elif n_axes == 2:
axes_angle = [0, np.pi / 2]
else:
axes_angle = np.linspace(0, 2 * np.pi, n_axes,
endpoint=False)
return np.vstack((np.cos(axes_angle), np.sin(axes_angle)))
if __name__ == "__main__": # pragma: no cover
iris = Table("iris")
WidgetPreview(OWLinearProjection).run(set_data=iris,
set_subset_data=iris[::10])
|