File: owlinearprojection.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (477 lines) | stat: -rw-r--r-- 18,671 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
"""
Linear Projection widget
------------------------
"""

from itertools import islice, permutations, chain, combinations
from math import factorial, comb

import numpy as np

from sklearn.neighbors import NearestNeighbors
from sklearn.metrics import r2_score

from AnyQt.QtGui import QPalette
from AnyQt.QtCore import QRectF, QLineF

import pyqtgraph as pg

from Orange.data import Table, Domain, IsDefined
from Orange.preprocess import Normalize
from Orange.preprocess.score import ReliefF, RReliefF
from Orange.projection import PCA, LDA, LinearProjector
from Orange.util import Enum
from Orange.widgets import gui, report
from Orange.widgets.settings import Setting, ContextSetting, SettingProvider
from Orange.widgets.utils.localization import pl
from Orange.widgets.utils.plot import variables_selection
from Orange.widgets.utils.plot.owplotgui import VariableSelectionModel
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.utils import vizrank
from Orange.widgets.visualize.utils.vizrank import VizRankDialogNAttrs, \
    VizRankMixin
from Orange.widgets.visualize.utils.component import OWGraphWithAnchors
from Orange.widgets.visualize.utils.plotutils import AnchorItem
from Orange.widgets.visualize.utils.widget import OWAnchorProjectionWidget
from Orange.widgets.widget import Msg


MAX_LABEL_LEN = 20


class LinearProjectionVizRank(VizRankDialogNAttrs):
    minK = 10
    show_bars = False

    def score_attributes(self):
        def normalized(a):
            span = np.max(a, axis=0) - np.min(a, axis=0)
            span[span == 0] = 1
            return (a - np.mean(a, axis=0)) / span

        domain = Domain(
            attributes=[v for v in self.attrs if v is not self.attr_color],
            class_vars=self.attr_color
        )
        data = self.data.transform(domain).copy()
        with data.unlocked():
            data.X = normalized(data.X)
        relief = ReliefF if self.attr_color.is_discrete else RReliefF
        weights = relief(n_iterations=100, k_nearest=self.minK)(data)
        results = sorted(zip(weights, domain.attributes),
                         key=lambda x: (-x[0], x[1].name))
        return [attr for _, attr in results]

    def state_count(self):
        n_all_attrs = self.max_attrs()
        if not n_all_attrs:
            return 0
        return comb(n_all_attrs, self.n_attrs) * factorial(self.n_attrs - 1) // 2

    def state_generator(self):
        return (
            (c[0], *p)
            for c in combinations(list(range(len(self.attr_order))), self.n_attrs)
            for p in islice(permutations(c[1:]), factorial(len(c) - 1) // 2)
        )

    def compute_score(self, state):
        domain = Domain([self.attr_order[i] for i in state], [self.attr_color])
        reduced = IsDefined()(self.data.transform(domain))
        if len(reduced) < self.minK:  # cancel early if not enough data
            return None
        projection = self.parent().projector(reduced)
        ec = projection(reduced).X
        if ec.shape[0] < self.minK:  # projection preprocessors can remove data(?)
            return None
        n_neighbors = min(self.minK, len(ec) - 1)
        knn = NearestNeighbors(n_neighbors=n_neighbors).fit(ec)
        ind = knn.kneighbors(return_distance=False)
        y = reduced.get_column(self.attr_color)
        if self.attr_color.is_discrete:
            score = -np.sum(y[ind] == y.reshape(-1, 1)) / n_neighbors
        else:
            score = -r2_score(y, np.mean(y[ind], axis=1))
        # treat missing data as misclassified
        return score * len(reduced) / len(self.data)


class OWLinProjGraph(OWGraphWithAnchors):
    hide_radius = Setting(0)

    @property
    def always_show_axes(self):
        return self.master.placement == Placement.Circular

    @property
    def scaled_radius(self):
        return self.hide_radius / 100 + 1e-5

    def update_radius(self):
        self.update_circle()
        self.update_anchors()

    def set_view_box_range(self):
        def min_max(a, b):
            return (min(np.amin(a), np.amin(b), -1.05),
                    max(np.amax(a), np.amax(b), 1.05))

        points, _ = self.master.get_anchors()
        coords = self.master.get_coordinates_data()
        if points is None or coords is None:
            return

        min_x, max_x = min_max(points[:, 0], coords[0])
        min_y, max_y = min_max(points[:, 1], coords[1])
        rect = QRectF(min_x, min_y, max_x - min_x, max_y - min_y)
        self.view_box.setRange(rect, padding=0.025)

    def update_anchors(self):
        points, labels = self.master.get_anchors()
        if points is None:
            return
        r = self.scaled_radius * np.max(np.linalg.norm(points, axis=1))
        if self.anchor_items is None:
            self.anchor_items = []
            for point, label in zip(points, labels):
                anchor = AnchorItem(line=QLineF(0, 0, *point))
                anchor._label.setToolTip(f"<b>{label}</b>")
                label = label[:MAX_LABEL_LEN - 3] + "..." if len(label) > MAX_LABEL_LEN else label
                anchor.setText(label)
                anchor.setFont(self.parameter_setter.anchor_font)

                visible = self.always_show_axes or np.linalg.norm(point) > r
                anchor.setVisible(bool(visible))
                anchor.setPen(pg.mkPen((100, 100, 100)))
                self.plot_widget.addItem(anchor)
                self.anchor_items.append(anchor)
        else:
            for anchor, point, label in zip(self.anchor_items, points, labels):
                anchor.setLine(QLineF(0, 0, *point))
                visible = self.always_show_axes or np.linalg.norm(point) > r
                anchor.setVisible(bool(visible))
                anchor.setFont(self.parameter_setter.anchor_font)

    def update_circle(self):
        super().update_circle()

        if self.always_show_axes:
            self.plot_widget.removeItem(self.circle_item)
            self.circle_item = None

        if self.circle_item is not None:
            points, _ = self.master.get_anchors()
            if points is None:
                return

            r = self.scaled_radius * np.max(np.linalg.norm(points, axis=1))
            self.circle_item.setRect(QRectF(-r, -r, 2 * r, 2 * r))
            color = self.plot_widget.palette().color(QPalette.Disabled, QPalette.Text)
            pen = pg.mkPen(color, width=1, cosmetic=True)
            self.circle_item.setPen(pen)


Placement = Enum("Placement", dict(Circular=0, LDA=1, PCA=2), type=int,
                 qualname="Placement")


class OWLinearProjection(OWAnchorProjectionWidget,
                         VizRankMixin(LinearProjectionVizRank)):
    name = "Linear Projection"
    description = "A multi-axis projection of data onto " \
                  "a two-dimensional plane."
    icon = "icons/LinearProjection.svg"
    priority = 240
    keywords = "linear projection"

    Projection_name = {Placement.Circular: "Circular Placement",
                       Placement.LDA: "Linear Discriminant Analysis",
                       Placement.PCA: "Principal Component Analysis"}

    settings_version = 6

    placement = Setting(Placement.Circular)
    selected_vars = ContextSetting([])
    GRAPH_CLASS = OWLinProjGraph
    graph = SettingProvider(OWLinProjGraph)
    n_attrs_vizrank = Setting(3)

    class Error(OWAnchorProjectionWidget.Error):
        no_cont_features = Msg("Plotting requires numeric features")

    class Information(OWAnchorProjectionWidget.Information):
        no_lda = Msg("LDA placement is disabled due to unsuitable target.\n{}")

    def _add_controls(self):
        box = gui.vBox(self.controlArea, box="Features")
        self._add_controls_variables(box)
        self._add_controls_placement(box)
        super()._add_controls()
        self.gui.add_control(
            self._effects_box, gui.hSlider, "Hide radius:", master=self.graph,
            value="hide_radius", minValue=0, maxValue=100, step=10,
            createLabel=False, callback=self.__radius_slider_changed
        )

    def _add_controls_variables(self, box):
        self.model_selected = VariableSelectionModel(self.selected_vars)
        variables_selection(box, self, self.model_selected)
        self.model_selected.selection_changed.connect(
            self.__model_selected_changed)
        self.btn_vizrank = self.vizrank_button("Suggest Features")
        self.vizrankSelectionChanged.connect(self.vizrank_set_attrs)
        self.vizrankRunStateChanged.connect(self.store_vizrank_n_attrs)
        box.layout().addWidget(self.btn_vizrank)

    def _add_controls_placement(self, box):
        self.radio_placement = gui.radioButtonsInBox(
            box, self, "placement",
            btnLabels=[self.Projection_name[x] for x in Placement],
            callback=self.__placement_radio_changed
        )

    def _add_buttons(self):
        self.gui.box_zoom_select(self.buttonsArea)
        gui.auto_send(self.buttonsArea, self, "auto_commit")

    @property
    def continuous_variables(self):
        if self.data is None or self.data.domain is None:
            return []
        dom = self.data.domain
        return [v for v in chain(dom.variables, dom.metas) if v.is_continuous]

    @property
    def effective_variables(self):
        return self.selected_vars

    @property
    def effective_data(self):
        cvs = None
        if self.placement == Placement.LDA:
            cvs = self.data.domain.class_vars
        return self.data.transform(Domain(self.effective_variables, cvs))

    def vizrank_set_attrs(self, attrs):
        if not attrs:
            return
        # False positive, pylint: disable=unsupported-assignment-operation
        self.selected_vars[:] = attrs
        # Ugly, but the alternative is to have yet another signal to which
        # the view will have to connect
        self.model_selected.selection_changed.emit()

    def store_vizrank_n_attrs(self, state, data):
        if state == vizrank.RunState.Running:
            self.n_attrs_vizrank = data["n_attrs"]

    def __model_selected_changed(self):
        self.projection = None
        self._check_options()
        self.init_projection()
        self.setup_plot()
        self.commit.deferred()

    def __placement_radio_changed(self):
        self.controls.graph.hide_radius.setEnabled(
            self.placement != Placement.Circular)
        self.projection = self.projector = None
        self.init_vizrank()
        self.init_projection()
        self.setup_plot()
        self.commit.deferred()

    def __radius_slider_changed(self):
        self.graph.update_radius()

    def colors_changed(self):
        super().colors_changed()
        self.init_vizrank()

    @OWAnchorProjectionWidget.Inputs.data
    def set_data(self, data):
        super().set_data(data)
        self._check_options()
        self.init_vizrank()
        self.init_projection()

    def _check_options(self):
        buttons = self.radio_placement.buttons
        for btn in buttons:
            btn.setEnabled(True)

        problem = None
        if self.data is not None:
            if (class_var := self.data.domain.class_var) is None:
                problem = "Current data has no target variable"
            elif not class_var.is_discrete:
                problem = f"{class_var.name} is not categorical"
            elif (nclasses := len(distinct := np.unique(self.data.Y))) == 0:
                problem = f"Data has no defined values for {class_var.name}"
            elif nclasses < 3:
                vals = " and ".join(f"'{class_var.values[int(i)]}'" for i in distinct)
                problem = \
                    f"Data contains just {['one', 'two'][nclasses - 1]} distinct " \
                    f"{pl(nclasses, 'value')} ({vals}) for '{class_var.name}'; " \
                    "at least three are required."
        if problem is None:
            self.Information.no_lda.clear()
        else:
            self.Information.no_lda(problem)
            buttons[Placement.LDA].setEnabled(False)
            if self.placement == Placement.LDA:
                self.placement = Placement.Circular

        self.controls.graph.hide_radius.setEnabled(
            self.placement != Placement.Circular)

    def init_vizrank(self):
        msg = ""
        if self.data is None:
            msg = "There is no data."
        elif self.attr_color is None:
            msg = "Color variable has to be selected"
        elif self.attr_color.is_continuous and \
                self.placement == Placement.LDA:
            msg = "Suggest Features does not work for Linear " \
                  "Discriminant Analysis Projection when " \
                  "continuous color variable is selected."
        elif len([v for v in self.continuous_variables
                  if v is not self.attr_color]) < 3:
            msg = "Not enough available continuous variables"
        elif np.sum(np.all(np.isfinite(self.data.X), axis=1)) < 2:
            msg = "Not enough valid data instances"
        if not msg:
            super().init_vizrank(
                self.data, self.continuous_variables, self.attr_color,
                self.n_attrs_vizrank)
        else:
            self.disable_vizrank(msg)

    def check_data(self):
        def error(err):
            err()
            self.data = None

        super().check_data()
        if self.data is not None:
            if not len(self.continuous_variables):
                error(self.Error.no_cont_features)

    def init_attr_values(self):
        super().init_attr_values()
        self.selected_vars[:] = self.continuous_variables[:3]
        self.model_selected[:] = self.continuous_variables

    def init_projection(self):
        if self.placement == Placement.Circular:
            self.projector = CircularPlacement()
        elif self.placement == Placement.LDA:
            self.projector = LDA(solver="eigen", n_components=2)
        elif self.placement == Placement.PCA:
            self.projector = PCA(n_components=2)
            self.projector.component = 2
            self.projector.preprocessors = PCA.preprocessors + [Normalize()]

        super().init_projection()

    def get_coordinates_data(self):
        def normalized(a):
            span = np.max(a, axis=0) - np.min(a, axis=0)
            span[span == 0] = 1
            return (a - np.mean(a, axis=0)) / span

        embedding = self.get_embedding()
        if embedding is None:
            return None, None
        norm_emb = normalized(embedding[self.valid_data])
        return (norm_emb.ravel(), np.zeros(len(norm_emb), dtype=float)) \
            if embedding.shape[1] == 1 else norm_emb.T

    def _get_send_report_caption(self):
        def projection_name():
            return self.Projection_name[self.placement]

        return report.render_items_vert((
            ("Projection", projection_name()),
            ("Color", self._get_caption_var_name(self.attr_color)),
            ("Label", self._get_caption_var_name(self.attr_label)),
            ("Shape", self._get_caption_var_name(self.attr_shape)),
            ("Size", self._get_caption_var_name(self.attr_size)),
            ("Jittering", self.graph.jitter_size != 0 and
             "{} %".format(self.graph.jitter_size))))

    @classmethod
    def migrate_settings(cls, settings_, version):
        if version < 2:
            settings_["point_width"] = settings_["point_size"]
        if version < 3:
            settings_graph = {}
            settings_graph["jitter_size"] = settings_["jitter_value"]
            settings_graph["point_width"] = settings_["point_width"]
            settings_graph["alpha_value"] = settings_["alpha_value"]
            settings_graph["class_density"] = settings_["class_density"]
            settings_["graph"] = settings_graph
        if version < 4:
            if "radius" in settings_:
                settings_["graph"]["hide_radius"] = settings_["radius"]
            if "selection_indices" in settings_ and \
                    settings_["selection_indices"] is not None:
                selection = settings_["selection_indices"]
                settings_["selection"] = [(i, 1) for i, selected in
                                          enumerate(selection) if selected]
        if version < 5:
            if "placement" in settings_ and \
                    settings_["placement"] not in Placement:
                settings_["placement"] = Placement.Circular

    @classmethod
    def migrate_context(cls, context, version):
        values = context.values
        if version < 2:
            domain = context.ordered_domain
            c_domain = [t for t in context.ordered_domain if t[1] == 2]
            d_domain = [t for t in context.ordered_domain if t[1] == 1]
            for d, old_val, new_val in ((domain, "color_index", "attr_color"),
                                        (d_domain, "shape_index", "attr_shape"),
                                        (c_domain, "size_index", "attr_size")):
                index = context.values[old_val][0] - 1
                values[new_val] = (d[index][0], d[index][1] + 100) \
                    if 0 <= index < len(d) else None
        if version < 3:
            values["graph"] = {
                "attr_color": values["attr_color"],
                "attr_shape": values["attr_shape"],
                "attr_size": values["attr_size"]
            }
        if version == 3:
            values["attr_color"] = values["graph"]["attr_color"]
            values["attr_size"] = values["graph"]["attr_size"]
            values["attr_shape"] = values["graph"]["attr_shape"]
            values["attr_label"] = values["graph"]["attr_label"]
        if version < 6 and "selected_vars" in values:
            values["selected_vars"] = (values["selected_vars"], -3)

    # for backward compatibility with settings < 6, pull the enum from global
    # namespace into class
    Placement = Placement


class CircularPlacement(LinearProjector):
    def get_components(self, X, Y):
        # Return circular axes for linear projection
        n_axes = X.shape[1]
        if n_axes == 1:
            axes_angle = [0]
        elif n_axes == 2:
            axes_angle = [0, np.pi / 2]
        else:
            axes_angle = np.linspace(0, 2 * np.pi, n_axes,
                                     endpoint=False)
        return np.vstack((np.cos(axes_angle), np.sin(axes_angle)))


if __name__ == "__main__":  # pragma: no cover
    iris = Table("iris")
    WidgetPreview(OWLinearProjection).run(set_data=iris,
                                          set_subset_data=iris[::10])