1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
|
import sys
import itertools
import warnings
from typing import Callable
from xml.sax.saxutils import escape
from datetime import datetime, timezone
import numpy as np
from AnyQt.QtCore import Qt, QRectF, QSize, QTimer, pyqtSignal as Signal, \
QObject, QEvent
from AnyQt.QtGui import QColor, QPen, QBrush, QPainterPath, QTransform, \
QPainter, QPalette
from AnyQt.QtWidgets import QApplication, QToolTip, QGraphicsTextItem, \
QGraphicsRectItem, QGraphicsItemGroup
import pyqtgraph as pg
from pyqtgraph.graphicsItems.ScatterPlotItem import Symbols
from pyqtgraph.graphicsItems.LegendItem import LegendItem as PgLegendItem
from pyqtgraph.graphicsItems.TextItem import TextItem
from Orange.preprocess.discretize import _time_binnings
from Orange.util import utc_from_timestamp
from Orange.widgets import gui
from Orange.widgets.settings import Setting
from Orange.widgets.utils import classdensity, colorpalettes
from Orange.widgets.visualize.utils.customizableplot import Updater, \
CommonParameterSetter
from Orange.widgets.visualize.utils.plotutils import (
HelpEventDelegate as EventDelegate, InteractiveViewBox as ViewBox,
PaletteItemSample, SymbolItemSample, AxisItem, PlotWidget, DiscretizedScale
)
SELECTION_WIDTH = 5
MAX_N_VALID_SIZE_ANIMATE = 1000
# maximum number of colors (including Other)
MAX_COLORS = 11
class LegendItem(PgLegendItem):
items = [] # Accessed in changeEvent after delete in tests??
def __init__(
self, size=None, offset=None, pen=None, brush=None,
):
super().__init__(size, offset)
self.items = []
self.layout.setContentsMargins(5, 5, 5, 5)
self.layout.setHorizontalSpacing(15)
self.layout.setColumnAlignment(1, Qt.AlignLeft | Qt.AlignVCenter)
if pen is not None:
pen = QPen(pen)
if brush is not None:
brush = QBrush(brush)
self.__pen = pen
self.__brush = brush
def restoreAnchor(self, anchors):
"""
Restore (parent) relative position from stored anchors.
The restored position is within the parent bounds.
"""
anchor, parentanchor = anchors
self.anchor(*bound_anchor_pos(anchor, parentanchor))
# pylint: disable=arguments-differ
def paint(self, painter, _option, _widget=None):
painter.setPen(self.pen())
painter.setBrush(self.brush())
rect = self.contentsRect()
painter.drawRoundedRect(rect, 2, 2)
def addItem(self, item, name):
super().addItem(item, name)
# Fix-up the label alignment, and color
color = self.palette().color(QPalette.Text)
_, label = self.items[-1]
label.setText(name, justify="left", color=color)
def clear(self):
"""
Clear all legend items.
"""
items = list(self.items)
self.items = []
for sample, label in items:
self.layout.removeItem(sample)
self.layout.removeItem(label)
sample.hide()
label.hide()
self.updateSize()
def pen(self):
if self.__pen is not None:
return QPen(self.__pen)
else:
color = self.palette().color(QPalette.Disabled, QPalette.Text)
color.setAlpha(100)
pen = QPen(color, 1)
pen.setCosmetic(True)
return pen
def brush(self):
if self.__brush is not None:
return QBrush(self.__brush)
else:
color = self.palette().color(QPalette.Window)
color.setAlpha(150)
return QBrush(color)
def changeEvent(self, event: QEvent):
if event.type() == QEvent.PaletteChange:
color = self.palette().color(QPalette.Text)
for _, label in self.items:
label.setText(label.text, color=color)
super().changeEvent(event)
def bound_anchor_pos(corner, parentpos):
corner = np.clip(corner, 0, 1)
parentpos = np.clip(parentpos, 0, 1)
irx, iry = corner
prx, pry = parentpos
if irx > 0.9 and prx < 0.1:
irx = prx = 0.0
if iry > 0.9 and pry < 0.1:
iry = pry = 0.0
if irx < 0.1 and prx > 0.9:
irx = prx = 1.0
if iry < 0.1 and pry > 0.9:
iry = pry = 1.0
return (irx, iry), (prx, pry)
class ScatterPlotItem(pg.ScatterPlotItem):
"""
Modifies the behaviour of ScatterPlotItem as follows:
- Add z-index. ScatterPlotItem paints points in order of appearance in
self.data. Plotting by z-index is achieved by sorting before calling
super().paint() and re-sorting afterwards. Re-sorting (instead of
storing the original data) is needed because the inherited paint
may modify the data.
- Prevent multiple calls to updateSpots. ScatterPlotItem calls updateSpots
at any change of sizes/colors/symbols, which then rebuilds the stored
pixmaps for each symbol. Orange calls set* functions in succession,
so we postpone updateSpots() to paint()."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._update_spots_in_paint = False
self._z_mapping = None
self._inv_mapping = None
def setZ(self, z):
"""
Set z values for all points.
Points with higher values are plotted on top of those with lower.
Args:
z (np.ndarray or None): a vector of z values
"""
if z is None:
self._z_mapping = self._inv_mapping = None
else:
assert len(z) == len(self.data)
self._z_mapping = np.argsort(z)
self._inv_mapping = np.argsort(self._z_mapping)
def setCoordinates(self, x, y):
"""
Change the coordinates of points while keeping other properties.
Asserts that the number of points stays the same.
Note. Pyqtgraph does not offer a method for this: setting coordinates
invalidates other data. We therefore retrieve the data to set it
together with the coordinates. Pyqtgraph also does not offer a
(documented) method for retrieving the data, yet using
data[prop]` looks reasonably safe.
The alternative, updating the whole scatterplot from the Orange Table,
is too slow.
"""
assert len(self.data) == len(x) == len(y)
data = dict(x=x, y=y)
for prop in ('pen', 'brush', 'size', 'symbol', 'data'):
data[prop] = self.data[prop]
self.setData(**data)
def updateSpots(self, dataSet=None): # pylint: disable=unused-argument
self._update_spots_in_paint = True
self.update()
# pylint: disable=arguments-differ
def paint(self, painter, option, widget=None):
try:
if self._z_mapping is not None:
assert len(self._z_mapping) == len(self.data)
self.data = self.data[self._z_mapping]
if self._update_spots_in_paint:
self._update_spots_in_paint = False
super().updateSpots()
painter.setRenderHint(QPainter.SmoothPixmapTransform, True)
super().paint(painter, option, widget)
finally:
if self._inv_mapping is not None:
self.data = self.data[self._inv_mapping]
def _define_symbols():
"""
Add symbol ? to ScatterPlotItemSymbols,
reflect the triangle to point upwards
"""
path = QPainterPath()
path.addEllipse(QRectF(-0.35, -0.35, 0.7, 0.7))
path.moveTo(-0.5, 0.5)
path.lineTo(0.5, -0.5)
path.moveTo(-0.5, -0.5)
path.lineTo(0.5, 0.5)
Symbols["?"] = path
path = QPainterPath()
plusCoords = [
(-0.5, -0.1), (-0.5, 0.1), (-0.1, 0.1), (-0.1, 0.5),
(0.1, 0.5), (0.1, 0.1), (0.5, 0.1), (0.5, -0.1),
(0.1, -0.1), (0.1, -0.5), (-0.1, -0.5), (-0.1, -0.1)
]
path.moveTo(*plusCoords[0])
for x, y in plusCoords[1:]:
path.lineTo(x, y)
path.closeSubpath()
Symbols["+"] = path
tr = QTransform()
tr.rotate(180)
Symbols['t'] = tr.map(Symbols['t'])
tr = QTransform()
tr.rotate(45)
Symbols['x'] = tr.map(Symbols["+"])
_define_symbols()
def _make_pen(color, width):
p = QPen(color, width)
p.setCosmetic(True)
return p
class AxisItem(AxisItem):
"""
Axis that if needed displays ticks appropriate for time data.
"""
_label_width = 80
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._use_time = False
def use_time(self, enable):
"""Enables axes to display ticks for time data."""
self._use_time = enable
self.enableAutoSIPrefix(not enable)
def is_time(self):
return self._use_time
def tickValues(self, minVal, maxVal, size):
"""Find appropriate tick locations."""
if not self._use_time:
return super().tickValues(minVal, maxVal, size)
# if timezone is not set, then local is used which cause exceptions
minVal = max(minVal,
datetime.min.replace(tzinfo=timezone.utc).timestamp() + 1)
maxVal = min(maxVal,
datetime.max.replace(tzinfo=timezone.utc).timestamp() - 1)
mn = utc_from_timestamp(minVal).timetuple()
mx = utc_from_timestamp(maxVal).timetuple()
try:
bins = _time_binnings(mn, mx, 6, 30)[-1]
except (IndexError, ValueError):
# cannot handle very large and very small time intervals
return super().tickValues(minVal, maxVal, size)
ticks = bins.thresholds
# Remove ticks that will later be removed in AxisItem.generateDrawSpecs
# because they are out of range. Removing them here is needed so that
# they do not affect spaces and label format
ticks = ticks[int((ticks[0] < minVal))
:len(ticks) - int((ticks[-1] > maxVal))]
max_steps = max(int(size / self._label_width), 1)
if len(ticks) > max_steps:
# remove some of ticks so that they don't overlap
step = int(np.ceil(float(len(ticks)) / max_steps))
ticks = ticks[::step]
# In case of a single tick, `default` will inform tickStrings
# about the appropriate scale.
spacing = min((b - a for a, b in zip(ticks[:-1], ticks[1:])),
default=maxVal - minVal)
return [(spacing, ticks)]
def tickStrings(self, values, scale, spacing):
"""Format tick values according to space between them."""
if not self._use_time:
return super().tickStrings(values, scale, spacing)
if spacing >= 3600 * 24 * 365:
fmt = "%Y"
elif spacing >= 3600 * 24 * 28:
fmt = "%Y %b"
elif spacing >= 3600 * 24:
fmt = "%Y %b %d"
elif spacing >= 3600:
min_day = max_day = 1
if len(values) > 0:
min_day = datetime.fromtimestamp(
min(values), tz=timezone.utc).day
max_day = datetime.fromtimestamp(
max(values), tz=timezone.utc).day
if min_day == max_day:
fmt = "%Hh"
else:
fmt = "%d %Hh"
elif spacing >= 60:
fmt = "%H:%M"
elif spacing >= 1:
fmt = "%H:%M:%S"
else:
fmt = '%S.%f'
return [utc_from_timestamp(x).strftime(fmt) for x in values]
class ScatterBaseParameterSetter(CommonParameterSetter):
CAT_LEGEND_LABEL = "Categorical legend"
NUM_LEGEND_LABEL = "Numerical legend"
NUM_LEGEND_SETTING = {
Updater.SIZE_LABEL: (range(4, 50), 11),
Updater.IS_ITALIC_LABEL: (None, False),
}
def __init__(self, master):
super().__init__()
self.master = master
self.cat_legend_settings = {}
self.num_legend_settings = {}
def update_setters(self):
self.initial_settings = {
self.LABELS_BOX: {
self.FONT_FAMILY_LABEL: self.FONT_FAMILY_SETTING,
self.TITLE_LABEL: self.FONT_SETTING,
self.LABEL_LABEL: self.FONT_SETTING,
self.CAT_LEGEND_LABEL: self.FONT_SETTING,
self.NUM_LEGEND_LABEL: self.NUM_LEGEND_SETTING,
},
self.ANNOT_BOX: {
self.TITLE_LABEL: {self.TITLE_LABEL: ("", "")},
}
}
def update_cat_legend(**settings):
self.cat_legend_settings.update(**settings)
Updater.update_legend_font(self.cat_legend_items, **settings)
def update_num_legend(**settings):
self.num_legend_settings.update(**settings)
Updater.update_num_legend_font(self.num_legend, **settings)
labels = self.LABELS_BOX
self._setters[labels][self.CAT_LEGEND_LABEL] = update_cat_legend
self._setters[labels][self.NUM_LEGEND_LABEL] = update_num_legend
@property
def title_item(self):
return self.master.plot_widget.getPlotItem().titleLabel
@property
def cat_legend_items(self):
items = self.master.color_legend.items
if items and items[0] and isinstance(items[0][0], PaletteItemSample):
items = []
return itertools.chain(self.master.shape_legend.items, items)
@property
def num_legend(self):
items = self.master.color_legend.items
if items and items[0] and isinstance(items[0][0], PaletteItemSample):
return self.master.color_legend
return None
@property
def labels(self):
return self.master.labels
class OWScatterPlotBase(gui.OWComponent, QObject):
"""
Provide a graph component for widgets that show any kind of point plot
The component plots a set of points with given coordinates, shapes,
sizes and colors. Its function is similar to that of a *view*, whereas
the widget represents a *model* and a *controler*.
The model (widget) needs to provide methods:
- `get_coordinates_data`, `get_size_data`, `get_color_data`,
`get_shape_data`, `get_label_data`, which return a 1d array (or two
arrays, for `get_coordinates_data`) of `dtype` `float64`, except for
`get_label_data`, which returns formatted labels;
- `get_shape_labels` returns a list of strings for shape legend
- `get_color_labels` returns strings for color legend, or a function for
formatting numbers if the legend is continuous, or None for default
formatting
- `get_tooltip`, which gives a tooltip for a single data point
- (optional) `impute_sizes`, `impute_shapes` get final coordinates and
shapes, and replace nans;
- `get_subset_mask` returns a bool array indicating whether a
data point is in the subset or not (e.g. in the 'Data Subset' signal
in the Scatter plot and similar widgets);
- `get_palette` returns a palette appropriate for visualizing the
current color data;
- `is_continuous_color` decides the type of the color legend;
The widget (in a role of controller) must also provide methods
- `selection_changed`
If `get_coordinates_data` returns `(None, None)`, the plot is cleared. If
`get_size_data`, `get_color_data` or `get_shape_data` return `None`,
all points will have the same size, color or shape, respectively.
If `get_label_data` returns `None`, there are no labels.
The view (this compomnent) provides methods `update_coordinates`,
`update_sizes`, `update_colors`, `update_shapes` and `update_labels`
that the widget (in a role of a controler) should call when any of
these properties are changed. If the widget calls, for instance, the
plot's `update_colors`, the plot will react by calling the widget's
`get_color_data` as well as the widget's methods needed to construct the
legend.
The view also provides a method `reset_graph`, which should be called only
when
- the widget gets entirely new data
- the number of points may have changed, for instance when selecting
a different attribute for x or y in the scatter plot, where the points
with missing x or y coordinates are hidden.
Every `update_something` calls the plot's `get_something`, which
calls the model's `get_something_data`, then it transforms this data
into whatever is needed (colors, shapes, scaled sizes) and changes the
plot. For the simplest example, here is `update_shapes`:
```
def update_shapes(self):
if self.scatterplot_item:
shape_data = self.get_shapes()
self.scatterplot_item.setSymbol(shape_data)
self.update_legends()
def get_shapes(self):
shape_data = self.master.get_shape_data()
shape_data = self.master.impute_shapes(
shape_data, len(self.CurveSymbols) - 1)
return self.CurveSymbols[shape_data]
```
On the widget's side, `get_something_data` is essentially just:
```
def get_size_data(self):
return self.get_column(self.attr_size)
```
where `get_column` retrieves a column while also filtering out the
points with missing x and y and so forth. (Here we present the simplest
two cases, "shapes" for the view and "sizes" for the model. The colors
for the view are more complicated since they deal with discrete and
continuous palettes, and the shapes for the view merge infrequent shapes.)
The plot can also show just a random sample of the data. The sample size is
set by `set_sample_size`, and the rest is taken care by the plot: the
widget keeps providing the data for all points, selection indices refer
to the entire set etc. Internally, sampling happens as early as possible
(in methods `get_<something>`).
"""
too_many_labels = Signal(bool)
begin_resizing = Signal()
step_resizing = Signal()
end_resizing = Signal()
label_only_selected = Setting(False)
point_width = Setting(10)
alpha_value = Setting(128)
show_grid = Setting(False)
show_legend = Setting(True)
class_density = Setting(False)
jitter_size = Setting(0)
resolution = 256
CurveSymbols = np.array("o x t + d star ?".split())
MinShapeSize = 6
DarkerValue = 120
UnknownColor = (168, 50, 168)
COLOR_DEFAULT = (128, 128, 128)
MAX_VISIBLE_LABELS = 500
def __init__(self, scatter_widget, parent=None, view_box=ViewBox):
QObject.__init__(self)
gui.OWComponent.__init__(self, scatter_widget)
self.subset_is_shown = False
self.jittering_suspended = False
self.view_box = view_box(self)
_axis = {"left": AxisItem("left"), "bottom": AxisItem("bottom")}
self.plot_widget = PlotWidget(
viewBox=self.view_box, parent=parent, background=None,
axisItems=_axis
)
self.plot_widget.hideAxis("left")
self.plot_widget.hideAxis("bottom")
self.plot_widget.getPlotItem().buttonsHidden = True
self.plot_widget.setAntialiasing(True)
self.plot_widget.sizeHint = lambda: QSize(500, 500)
self.density_img = None
self.scatterplot_item = None
self.scatterplot_item_sel = None
self.labels = []
self.master = scatter_widget
tooltip = self._create_drag_tooltip()
self.view_box.setDragTooltip(tooltip)
self.selection = None # np.ndarray
self.n_valid = 0
self.n_shown = 0
self.sample_size = None
self.sample_indices = None
self.palette = None
self.shape_legend = self._create_legend(((1, 0), (1, 0)))
self.color_legend = self._create_legend(((1, 1), (1, 1)))
self.update_legend_visibility()
self.scale = None # DiscretizedScale
self._too_many_labels = False
# self.setMouseTracking(True)
# self.grabGesture(QPinchGesture)
# self.grabGesture(QPanGesture)
self.update_grid_visibility()
self._tooltip_delegate = EventDelegate(self.help_event)
self.plot_widget.scene().installEventFilter(self._tooltip_delegate)
self.view_box.sigTransformChanged.connect(self.update_density)
self.view_box.sigRangeChangedManually.connect(self.update_labels)
self.timer = None
self.parameter_setter = ScatterBaseParameterSetter(self)
def _create_legend(self, anchor):
legend = LegendItem()
legend.setParentItem(self.plot_widget.getViewBox())
legend.restoreAnchor(anchor)
return legend
def _create_drag_tooltip(self):
tip_parts = [
(Qt.ControlModifier,
"{}: Append to group".
format("Cmd" if sys.platform == "darwin" else "Ctrl")),
(Qt.ShiftModifier, "Shift: Add group"),
(Qt.AltModifier, "Alt: Remove")
]
all_parts = "<center>" + \
", ".join(part for _, part in tip_parts) + \
"</center>"
self.tiptexts = {
modifier: all_parts.replace(part, "<b>{}</b>".format(part))
for modifier, part in tip_parts
}
self.tiptexts[Qt.NoModifier] = all_parts
self.tip_textitem = text = QGraphicsTextItem()
# Set to the longest text
text.setHtml(self.tiptexts[Qt.ControlModifier])
text.setPos(4, 2)
r = text.boundingRect()
text.setTextWidth(r.width())
rect = QGraphicsRectItem(0, 0, r.width() + 8, r.height() + 4)
color = self.plot_widget.palette().color(QPalette.Disabled, QPalette.Window)
color.setAlpha(212)
rect.setBrush(color)
rect.setPen(QPen(Qt.NoPen))
self.update_tooltip()
tooltip_group = QGraphicsItemGroup()
tooltip_group.addToGroup(rect)
tooltip_group.addToGroup(text)
return tooltip_group
def update_tooltip(self, modifiers=Qt.NoModifier):
text = self.tiptexts[Qt.NoModifier]
for mod in [Qt.ControlModifier,
Qt.ShiftModifier,
Qt.AltModifier]:
if modifiers & mod:
text = self.tiptexts.get(mod)
break
self.tip_textitem.setHtml(text)
def suspend_jittering(self):
if self.jittering_suspended:
return
self.jittering_suspended = True
if self.jitter_size != 0:
self.update_jittering()
def unsuspend_jittering(self):
if not self.jittering_suspended:
return
self.jittering_suspended = False
if self.jitter_size != 0:
self.update_jittering()
def update_jittering(self):
x, y = self.get_coordinates()
if x is None or len(x) == 0 or self.scatterplot_item is None:
return
self.scatterplot_item.setCoordinates(x, y)
self.scatterplot_item_sel.setCoordinates(x, y)
self.update_labels()
# TODO: Rename to remove_plot_items
def clear(self):
"""
Remove all graphical elements from the plot
Calls the pyqtgraph's plot widget's clear, sets all handles to `None`,
removes labels and selections.
This method should generally not be called by the widget. If the data
is gone (*e.g.* upon receiving `None` as an input data signal), this
should be handler by calling `reset_graph`, which will in turn call
`clear`.
Derived classes should override this method if they add more graphical
elements. For instance, the regression line in the scatterplot adds
`self.reg_line_item = None` (the line in the plot is already removed
in this method).
"""
self.plot_widget.clear()
self.density_img = None
if self.timer is not None and self.timer.isActive():
self.timer.stop()
self.timer = None
self.scatterplot_item = None
self.scatterplot_item_sel = None
self.labels = []
self._signal_too_many_labels(False)
self.view_box.init_history()
self.view_box.tag_history()
# TODO: I hate `keep_something` and `reset_something` arguments
# __keep_selection is used exclusively be set_sample size which would
# otherwise just repeat the code from reset_graph except for resetting
# the selection. I'm uncomfortable with this; we may prefer to have a
# method _reset_graph which does everything except resetting the selection,
# and reset_graph would call it.
def reset_graph(self, __keep_selection=False):
"""
Reset the graph to new data (or no data)
The method must be called when the plot receives new data, in
particular when the number of points change. If only their properties
- like coordinates or shapes - change, an update method
(`update_coordinates`, `update_shapes`...) should be called instead.
The method must also be called when the data is gone.
The method calls `clear`, followed by calls of all update methods.
NB. Argument `__keep_selection` is for internal use only
"""
self.clear()
if not __keep_selection:
self.selection = None
self.sample_indices = None
self.update_coordinates()
self.update_point_props()
def set_sample_size(self, sample_size):
"""
Set the sample size
Args:
sample_size (int or None): sample size or `None` to show all points
"""
if self.sample_size != sample_size:
self.sample_size = sample_size
self.reset_graph(True)
def update_point_props(self):
"""
Update the sizes, colors, shapes and labels
The method calls the appropriate update methods for individual
properties.
"""
self.update_sizes()
self.update_colors()
self.update_selection_colors()
self.update_shapes()
self.update_labels()
# Coordinates
# TODO: It could be nice if this method was run on entire data, not just
# a sample. For this, however, it would need to either be called from
# `get_coordinates` before sampling (very ugly) or call
# `self.master.get_coordinates_data` (beyond ugly) or the widget would
# have to store the ranges of unsampled data (ugly).
# Maybe we leave it as it is.
def _reset_view(self, x_data, y_data):
"""
Set the range of the view box
Args:
x_data (np.ndarray): x coordinates
y_data (np.ndarray) y coordinates
"""
min_x, max_x = np.min(x_data), np.max(x_data)
min_y, max_y = np.min(y_data), np.max(y_data)
self.view_box.setRange(
QRectF(min_x, min_y, max_x - min_x or 1, max_y - min_y or 1),
padding=0.025)
def _filter_visible(self, data):
"""Return the sample from the data using the stored sample_indices"""
if data is None or self.sample_indices is None:
return data
else:
return np.asarray(data[self.sample_indices])
def get_coordinates(self):
"""
Prepare coordinates of the points in the plot
The method is called by `update_coordinates`. It gets the coordinates
from the widget, jitters them and return them.
The methods also initializes the sample indices if neededd and stores
the original and sampled number of points.
Returns:
(tuple): a pair of numpy arrays containing (sampled) coordinates,
or `(None, None)`.
"""
x, y = self.master.get_coordinates_data()
if x is None:
self.n_valid = self.n_shown = 0
return None, None
self.n_valid = len(x)
self._create_sample()
x = self._filter_visible(x)
y = self._filter_visible(y)
# Jittering after sampling is OK if widgets do not change the sample
# semi-permanently, e.g. take a sample for the duration of some
# animation. If the sample size changes dynamically (like by adding
# a "sample size" slider), points would move around when the sample
# size changes. To prevent this, jittering should be done before
# sampling (i.e. two lines earlier). This would slow it down somewhat.
x, y = self.jitter_coordinates(x, y)
return x, y
def _create_sample(self):
"""
Create a random sample if the data is larger than the set sample size
"""
self.n_shown = min(self.n_valid, self.sample_size or self.n_valid)
if self.sample_size is not None \
and self.sample_indices is None \
and self.n_valid != self.n_shown:
random = np.random.RandomState(seed=0)
self.sample_indices = random.choice(
self.n_valid, self.n_shown, replace=False)
# TODO: Is this really needed?
np.sort(self.sample_indices)
def jitter_coordinates(self, x, y):
"""
Display coordinates to random positions within ellipses with
radiuses of `self.jittter_size` percents of spans
"""
if self.jitter_size == 0 or self.jittering_suspended:
return x, y
return self._jitter_data(x, y)
def _jitter_data(self, x, y, span_x=None, span_y=None):
if span_x is None:
span_x = np.max(x) - np.min(x)
if span_y is None:
span_y = np.max(y) - np.min(y)
random = np.random.RandomState(seed=0)
rs = random.uniform(0, 1, len(x))
phis = random.uniform(0, 2 * np.pi, len(x))
magnitude = self.jitter_size / 100
return (x + magnitude * span_x * rs * np.cos(phis),
y + magnitude * span_y * rs * np.sin(phis))
def update_coordinates(self):
"""
Trigger the update of coordinates while keeping other features intact.
The method gets the coordinates by calling `self.get_coordinates`,
which in turn calls the widget's `get_coordinate_data`. The number of
coordinate pairs returned by the latter must match the current number
of points. If this is not the case, the widget should trigger
the complete update by calling `reset_graph` instead of this method.
"""
x, y = self.get_coordinates()
if x is None or len(x) == 0:
return
self._reset_view(x, y)
if self.scatterplot_item is None:
if self.sample_indices is None:
indices = np.arange(self.n_valid)
else:
indices = self.sample_indices
kwargs = dict(x=x, y=y, data=indices)
self.scatterplot_item = ScatterPlotItem(**kwargs)
self.scatterplot_item.sigClicked.connect(self.select_by_click)
self.scatterplot_item_sel = ScatterPlotItem(**kwargs)
self.plot_widget.addItem(self.scatterplot_item_sel)
self.plot_widget.addItem(self.scatterplot_item)
else:
self.scatterplot_item.setCoordinates(x, y)
self.scatterplot_item_sel.setCoordinates(x, y)
self.update_labels()
self.update_density() # Todo: doesn't work: try MDS with density on
# Sizes
def get_sizes(self):
"""
Prepare data for sizes of points in the plot
The method is called by `update_sizes`. It gets the sizes
from the widget and performs the necessary scaling and sizing.
The output is rounded to half a pixel for faster drawing.
Returns:
(np.ndarray): sizes
"""
size_column = self.master.get_size_data()
if size_column is None:
return np.full((self.n_shown,),
self.MinShapeSize + (5 + self.point_width) * 0.5)
size_column = self._filter_visible(size_column)
size_column = size_column.copy()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
size_column -= np.nanmin(size_column)
mx = np.nanmax(size_column)
if mx > 0:
size_column /= mx
else:
size_column[:] = 0.5
sizes = self.MinShapeSize + (5 + self.point_width) * size_column
# round sizes to half pixel for smaller pyqtgraph's symbol pixmap atlas
sizes = (sizes * 2).round() / 2
return sizes
def update_sizes(self):
"""
Trigger an update of point sizes
The method calls `self.get_sizes`, which in turn calls the widget's
`get_size_data`. The result are properly scaled and then passed
back to widget for imputing (`master.impute_sizes`).
"""
if self.scatterplot_item:
size_data = self.get_sizes()
size_imputer = getattr(
self.master, "impute_sizes", self.default_impute_sizes)
size_imputer(size_data)
if self.timer is not None and self.timer.isActive():
self.timer.stop()
self.timer = None
current_size_data = self.scatterplot_item.data["size"].copy()
diff = size_data - current_size_data
widget = self
class Timeout:
# 0.5 - np.cos(np.arange(0.17, 1, 0.09) * np.pi) / 2
factors = [0.07, 0.16, 0.27, 0.41, 0.55,
0.68, 0.81, 0.9, 0.97, 1]
def __init__(self):
self._counter = 0
def __call__(self):
factor = self.factors[self._counter]
self._counter += 1
size = current_size_data + diff * factor
if len(self.factors) == self._counter:
widget.timer.stop()
widget.timer = None
size = size_data
widget.scatterplot_item.setSize(size)
widget.scatterplot_item_sel.setSize(size + SELECTION_WIDTH)
if widget.timer is None:
widget.end_resizing.emit()
else:
widget.step_resizing.emit()
if self.n_valid <= MAX_N_VALID_SIZE_ANIMATE and \
np.all(current_size_data > 0) and np.any(diff != 0):
# If encountered any strange behaviour when updating sizes,
# implement it with threads
self.begin_resizing.emit()
interval = int(500 / len(Timeout.factors))
self.timer = QTimer(self.scatterplot_item, interval=interval)
self.timer.timeout.connect(Timeout())
self.timer.start()
else:
self.begin_resizing.emit()
self.scatterplot_item.setSize(size_data)
self.scatterplot_item_sel.setSize(size_data + SELECTION_WIDTH)
self.end_resizing.emit()
update_point_size = update_sizes # backward compatibility (needed?!)
update_size = update_sizes
@classmethod
def default_impute_sizes(cls, size_data):
"""
Fallback imputation for sizes.
Set the size to two pixels smaller than the minimal size
Returns:
(bool): True if there was any missing data
"""
nans = np.isnan(size_data)
if np.any(nans):
size_data[nans] = cls.MinShapeSize - 2
return True
else:
return False
# Colors
def get_colors(self):
"""
Prepare data for colors of the points in the plot
The method is called by `update_colors`. It gets the colors and the
indices of the data subset from the widget (`get_color_data`,
`get_subset_mask`), and constructs lists of pens and brushes for
each data point.
The method uses different palettes for discrete and continuous data,
as determined by calling the widget's method `is_continuous_color`.
If also marks the points that are in the subset as defined by, for
instance the 'Data Subset' signal in the Scatter plot and similar
widgets. (Do not confuse this with *selected points*, which are
marked by circles around the points, which are colored by groups
and thus independent of this method.)
Returns:
(tuple): a list of pens and list of brushes
"""
c_data = self.master.get_color_data()
c_data = self._filter_visible(c_data)
subset = self.master.get_subset_mask()
subset = self._filter_visible(subset)
self.subset_is_shown = subset is not None
if c_data is None: # same color
self.palette = None
return self._get_same_colors(subset)
elif self.master.is_continuous_color():
return self._get_continuous_colors(c_data, subset)
else:
return self._get_discrete_colors(c_data, subset)
def _get_same_colors(self, subset, color=COLOR_DEFAULT):
"""
Return the same pen for all points while the brush color depends
upon whether the point is in the subset or not
Args:
subset (np.ndarray): a bool array indicating whether a data point
is in the subset or not (e.g. in the 'Data Subset' signal
in the Scatter plot and similar widgets);
Returns:
(tuple): a list of pens and list of brushes
"""
alpha_subset, alpha_unset = self._alpha_for_subsets()
if subset is not None:
qcolor = QColor(*color, alpha_subset)
brush = np.where(subset, QBrush(qcolor), QBrush(QColor(0, 0, 0, 0)))
pen = np.where(subset,
_make_pen(qcolor, 1.5),
_make_pen(QColor(*color, alpha_unset), 1.5))
else:
qcolor = QColor(*color, self.alpha_value)
brush = np.full(self.n_shown, QBrush(qcolor))
pen = [_make_pen(qcolor, 1.5)] * self.n_shown
return pen, brush
def _get_continuous_colors(self, c_data, subset):
"""
Return the pens and colors whose color represent an index into
a continuous palette. The same color is used for pen and brush,
except the former is darker. If the data has a subset, the brush
is transparent for points that are not in the subset.
"""
palette = self.master.get_palette()
if np.isnan(c_data).all():
self.palette = palette
return self._get_same_colors(subset, self.palette.nan_color)
self.scale = DiscretizedScale(np.nanmin(c_data), np.nanmax(c_data))
bins = self.scale.get_bins()
self.palette = \
colorpalettes.BinnedContinuousPalette.from_palette(palette, bins)
colors = self.palette.values_to_colors(c_data)
alphas = np.full((len(c_data), 1), self.alpha_value, dtype=np.ubyte)
brush = np.hstack((colors, alphas))
pen = np.hstack(
((colors.astype(dtype=float) * 100 / self.DarkerValue).astype(np.ubyte),
alphas))
# Reuse pens and brushes with the same colors because PyQtGraph then
# builds smaller pixmap atlas, which makes the drawing faster
def reuse(cache, fun, *args):
if args not in cache:
cache[args] = fun(args)
return cache[args]
def create_pen(col):
return _make_pen(QColor(*col), 1.5)
def create_brush(col):
return QBrush(QColor(*col))
if subset is not None:
alpha_subset, alpha_unset = self._alpha_for_subsets()
brush[:, 3] = 0
brush[subset, 3] = alpha_subset
pen[:, 3] = alpha_unset
brush[subset, 3] = alpha_subset
cached_pens = {}
pen = [reuse(cached_pens, create_pen, *col) for col in pen.tolist()]
cached_brushes = {}
brush = np.array([reuse(cached_brushes, create_brush, *col)
for col in brush.tolist()])
return pen, brush
def _get_discrete_colors(self, c_data, subset):
"""
Return the pens and colors whose color represent an index into
a discrete palette. The same color is used for pen and brush,
except the former is darker. If the data has a subset, the brush
is transparent for points that are not in the subset.
"""
self.palette = self.master.get_palette()
c_data = c_data.copy()
c_data[np.isnan(c_data)] = len(self.palette)
c_data = c_data.astype(int)
colors = self.palette.qcolors_w_nan
if subset is None:
for col in colors:
col.setAlpha(self.alpha_value)
pens = np.array(
[_make_pen(col.darker(self.DarkerValue), 1.5)
for col in colors])
pen = pens[c_data]
brushes = np.array([QBrush(col) for col in colors])
brush = brushes[c_data]
else:
subset_colors = [QColor(col) for col in colors]
alpha_subset, alpha_unset = self._alpha_for_subsets()
for col in subset_colors:
col.setAlpha(alpha_subset)
for col in colors:
col.setAlpha(alpha_unset)
pens, subset_pens = (
np.array(
[_make_pen(col.darker(self.DarkerValue), 1.5)
for col in cols])
for cols in (colors, subset_colors))
pen = np.where(subset, subset_pens[c_data], pens[c_data])
brushes = np.array([QBrush(col) for col in subset_colors])
brush = brushes[c_data]
black = np.full(len(brush), QBrush(QColor(0, 0, 0, 0)))
brush = np.where(subset, brush, black)
return pen, brush
def _alpha_for_subsets(self):
a, b, c = 1.2, -3.2, 3
x = self.alpha_value / 255
alpha_subset = 31 + int(224 * (a * x ** 3 + b * x ** 2 + c * x))
x = 1 - x
alpha_unset = int(255 - 224 * (a * x ** 3 + b * x ** 2 + c * x))
return alpha_subset, alpha_unset
def update_colors(self):
"""
Trigger an update of point colors
The method calls `self.get_colors`, which in turn calls the widget's
`get_color_data` to get the indices in the pallette. `get_colors`
returns a list of pens and brushes to which this method uses to
update the colors. Finally, the method triggers the update of the
legend and the density plot.
"""
if self.scatterplot_item is not None:
pen_data, brush_data = self.get_colors()
self.scatterplot_item.setPen(pen_data, update=False, mask=None)
self.scatterplot_item.setBrush(brush_data, mask=None)
self.update_z_values()
self.update_legends()
self.update_density()
update_alpha_value = update_colors
def update_density(self):
"""
Remove the existing density plot (if there is one) and replace it
with a new one (if enabled).
The method gets the colors from the pens of the currently plotted
points.
"""
if self.density_img:
self.plot_widget.removeItem(self.density_img)
self.density_img = None
if self.class_density and self.scatterplot_item is not None:
c_data = self.master.get_color_data()
if c_data is None:
return
visible_c_data = self._filter_visible(c_data)
mask = np.isfinite(visible_c_data)
if not self.master.is_continuous_color():
mask = np.bitwise_and(mask, visible_c_data < MAX_COLORS - 1)
pens = self.scatterplot_item.data['pen']
rgb_data = [
pen.color().getRgb()[:3] if pen is not None else (255, 255, 255)
for known, pen in zip(mask, pens)
if known]
if len(set(rgb_data)) <= 1:
return
[min_x, max_x], [min_y, max_y] = self.view_box.viewRange()
x_data, y_data = self.scatterplot_item.getData()
self.density_img = classdensity.class_density_image(
min_x, max_x, min_y, max_y, self.resolution,
x_data[mask], y_data[mask], rgb_data)
self.plot_widget.addItem(self.density_img, ignoreBounds=True)
def update_selection_colors(self):
"""
Trigger an update of selection markers
This update method is usually not called by the widget but by the
plot, since it is the plot that handles the selections.
Like other update methods, it calls the corresponding get method
(`get_colors_sel`) which returns a list of pens and brushes.
"""
if self.scatterplot_item_sel is None:
return
pen, brush = self.get_colors_sel()
self.scatterplot_item_sel.setPen(pen, update=False, mask=None)
self.scatterplot_item_sel.setBrush(brush, mask=None)
self.update_z_values()
def get_colors_sel(self):
"""
Return pens and brushes for selection markers.
A pen can is set to `Qt.NoPen` if a point is not selected.
All brushes are completely transparent whites.
Returns:
(tuple): a list of pens and a list of brushes
"""
nopen = QPen(Qt.NoPen)
if self.selection is None:
pen = [nopen] * self.n_shown
else:
sels = np.max(self.selection)
if sels == 1:
pen = np.where(
self._filter_visible(self.selection),
_make_pen(QColor(255, 190, 0, 255), SELECTION_WIDTH),
nopen)
else:
palette = colorpalettes.LimitedDiscretePalette(
number_of_colors=sels + 1)
pen = np.choose(
self._filter_visible(self.selection),
[nopen] + [_make_pen(palette[i], SELECTION_WIDTH)
for i in range(sels)])
return pen, [QBrush(QColor(255, 255, 255, 0))] * self.n_shown
# Labels
def get_labels(self):
"""
Prepare data for labels for points
The method returns the results of the widget's `get_label_data`
Returns:
(labels): a sequence of labels
"""
return self._filter_visible(self.master.get_label_data())
def update_labels(self):
"""
Trigger an update of labels
The method calls `get_labels` which in turn calls the widget's
`get_label_data`. The obtained labels are shown if the corresponding
points are selected or if `label_only_selected` is `false`.
"""
for label in self.labels:
self.plot_widget.removeItem(label)
self.labels = []
mask = None
if self.scatterplot_item is not None:
x, y = self.scatterplot_item.getData()
mask = self._label_mask(x, y)
if mask is not None:
labels = self.get_labels()
if labels is None:
mask = None
self._signal_too_many_labels(
bool(mask is not None and mask.sum() > self.MAX_VISIBLE_LABELS))
if self._too_many_labels or mask is None or not np.any(mask):
return
foreground = self.plot_widget.palette().color(QPalette.Text)
labels = labels[mask]
x = x[mask]
y = y[mask]
for label, xp, yp in zip(labels, x, y):
ti = TextItem(label, foreground)
ti.setPos(xp, yp)
self.plot_widget.addItem(ti)
self.labels.append(ti)
ti.setFont(self.parameter_setter.label_font)
def _signal_too_many_labels(self, too_many):
if self._too_many_labels != too_many:
self._too_many_labels = too_many
self.too_many_labels.emit(too_many)
def _label_mask(self, x, y):
(x0, x1), (y0, y1) = self.view_box.viewRange()
mask = np.logical_and(
np.logical_and(x >= x0, x <= x1),
np.logical_and(y >= y0, y <= y1))
if self.label_only_selected:
sub_mask = self._filter_visible(self.master.get_subset_mask())
if self.selection is None:
if sub_mask is None:
return None
else:
sel_mask = sub_mask
else:
sel_mask = self._filter_visible(self.selection) != 0
if sub_mask is not None:
sel_mask = np.logical_or(sel_mask, sub_mask)
mask = np.logical_and(mask, sel_mask)
return mask
# Shapes
def get_shapes(self):
"""
Prepare data for shapes of points in the plot
The method is called by `update_shapes`. It gets the data from
the widget's `get_shape_data`, and then calls its `impute_shapes`
to impute the missing shape (usually with some default shape).
Returns:
(np.ndarray): an array of symbols (e.g. o, x, + ...)
"""
shape_data = self.master.get_shape_data()
shape_data = self._filter_visible(shape_data)
# Data has to be copied so the imputation can change it in-place
# TODO: Try avoiding this when we move imputation to the widget
if shape_data is not None:
shape_data = np.copy(shape_data)
shape_imputer = getattr(
self.master, "impute_shapes", self.default_impute_shapes)
shape_imputer(shape_data, len(self.CurveSymbols) - 1)
if isinstance(shape_data, np.ndarray):
shape_data = shape_data.astype(int)
else:
shape_data = np.zeros(self.n_shown, dtype=int)
return self.CurveSymbols[shape_data]
@staticmethod
def default_impute_shapes(shape_data, default_symbol):
"""
Fallback imputation for shapes.
Use the default symbol, usually the last symbol in the list.
Returns:
(bool): True if there was any missing data
"""
if shape_data is None:
return False
nans = np.isnan(shape_data)
if np.any(nans):
shape_data[nans] = default_symbol
return True
else:
return False
def update_shapes(self):
"""
Trigger an update of point symbols
The method calls `get_shapes` to obtain an array with a symbol
for each point and uses it to update the symbols.
Finally, the method updates the legend.
"""
if self.scatterplot_item:
shape_data = self.get_shapes()
self.scatterplot_item.setSymbol(shape_data)
self.update_legends()
def update_z_values(self):
"""
Set z-values for point in the plot
The order is as follows:
- selected points that are also in the subset on top,
- followed by selected points,
- followed by points from the subset,
- followed by the rest.
Within each of these four groups, points are ordered by their colors.
Points with less frequent colors are above those with more frequent.
The points for which the value for the color is missing are at the
bottom of their respective group.
"""
if not self.scatterplot_item:
return
subset = self.master.get_subset_mask()
c_data = self.master.get_color_data()
if subset is None and self.selection is None and c_data is None:
self.scatterplot_item.setZ(None)
return
z = np.zeros(self.n_shown)
if subset is not None:
subset = self._filter_visible(subset)
z[subset] += 1000
if self.selection is not None:
z[self._filter_visible(self.selection) != 0] += 2000
if c_data is not None:
c_nan = np.isnan(c_data)
vis_data = self._filter_visible(c_data)
vis_nan = np.isnan(vis_data)
z[vis_nan] -= 999
if not self.master.is_continuous_color():
dist = np.bincount(c_data[~c_nan].astype(int))
vis_knowns = vis_data[~vis_nan].astype(int)
argdist = np.argsort(dist)
z[~vis_nan] -= argdist[vis_knowns]
self.scatterplot_item.setZ(z)
def update_grid_visibility(self):
"""Show or hide the grid"""
self.plot_widget.showGrid(x=self.show_grid, y=self.show_grid)
def update_legend_visibility(self):
"""
Show or hide legends based on whether they are enabled and non-empty
"""
self.shape_legend.setVisible(
self.show_legend and bool(self.shape_legend.items))
self.color_legend.setVisible(
self.show_legend and bool(self.color_legend.items))
def update_legends(self):
"""Update content of legends and their visibility"""
cont_color = self.master.is_continuous_color()
shape_labels = self.master.get_shape_labels()
color_labels = self.master.get_color_labels()
if not cont_color and shape_labels is not None \
and shape_labels == color_labels:
colors = self.master.get_color_data()
shapes = self.master.get_shape_data()
mask = np.isfinite(colors) * np.isfinite(shapes)
combined = (colors == shapes)[mask].all()
else:
combined = False
if combined:
self._update_combined_legend(shape_labels)
else:
self._update_shape_legend(shape_labels)
if cont_color:
self._update_continuous_color_legend(color_labels)
else:
self._update_color_legend(color_labels)
self.update_legend_visibility()
Updater.update_legend_font(self.parameter_setter.cat_legend_items,
**self.parameter_setter.cat_legend_settings)
Updater.update_num_legend_font(self.parameter_setter.num_legend,
**self.parameter_setter.num_legend_settings)
def _update_shape_legend(self, labels):
self.shape_legend.clear()
if labels is None or self.scatterplot_item is None:
return
color = QColor(0, 0, 0)
color.setAlpha(self.alpha_value)
for label, symbol in zip(labels, self.CurveSymbols):
self.shape_legend.addItem(
SymbolItemSample(pen=color, brush=color, size=10, symbol=symbol),
escape(label))
def _update_continuous_color_legend(self, label_formatter: Callable[[float], str]):
self.color_legend.clear()
if self.scale is None or self.scatterplot_item is None:
return
label = PaletteItemSample(self.palette, self.scale, label_formatter)
self.color_legend.addItem(label, "")
self.color_legend.setGeometry(label.boundingRect())
def _update_color_legend(self, labels):
self.color_legend.clear()
if labels is None:
return
self._update_colored_legend(self.color_legend, labels, 'o')
def _update_combined_legend(self, labels):
# update_colored_legend will already clear the shape legend
# so we remove colors here
use_legend = \
self.shape_legend if self.shape_legend.items else self.color_legend
self.color_legend.clear()
self.shape_legend.clear()
self._update_colored_legend(use_legend, labels, self.CurveSymbols)
def _update_colored_legend(self, legend, labels, symbols):
if self.scatterplot_item is None or not self.palette:
return
if isinstance(symbols, str):
symbols = itertools.repeat(symbols, times=len(labels))
colors = self.palette.values_to_colors(np.arange(len(labels)))
for color, label, symbol in zip(colors, labels, symbols):
color = QColor(*color)
pen = _make_pen(color.darker(self.DarkerValue), 1.5)
color.setAlpha(self.alpha_value)
brush = QBrush(color)
legend.addItem(
SymbolItemSample(pen=pen, brush=brush, size=10, symbol=symbol),
escape(label))
def zoom_button_clicked(self):
self.plot_widget.getViewBox().setMouseMode(
self.plot_widget.getViewBox().RectMode)
def pan_button_clicked(self):
self.plot_widget.getViewBox().setMouseMode(
self.plot_widget.getViewBox().PanMode)
def select_button_clicked(self):
self.plot_widget.getViewBox().setMouseMode(
self.plot_widget.getViewBox().RectMode)
def reset_button_clicked(self):
self.plot_widget.getViewBox().autoRange()
self.update_labels()
def select_by_click(self, _, points):
if self.scatterplot_item is not None:
self.select(points)
def select_by_rectangle(self, rect):
if self.scatterplot_item is not None:
x0, x1 = sorted((rect.topLeft().x(), rect.bottomRight().x()))
y0, y1 = sorted((rect.topLeft().y(), rect.bottomRight().y()))
x, y = self.master.get_coordinates_data()
indices = np.flatnonzero(
(x0 <= x) & (x <= x1) & (y0 <= y) & (y <= y1))
self.select_by_indices(indices.astype(int))
def unselect_all(self):
if self.selection is not None:
self.selection = None
self.update_selection_colors()
if self.label_only_selected:
self.update_labels()
self.master.selection_changed()
def select(self, points):
# noinspection PyArgumentList
if self.scatterplot_item is None:
return
indices = [p.data() for p in points]
self.select_by_indices(indices)
def select_by_indices(self, indices):
if self.selection is None:
self.selection = np.zeros(self.n_valid, dtype=np.uint8)
keys = QApplication.keyboardModifiers()
if keys & Qt.ControlModifier:
self.selection_append(indices)
elif keys & Qt.ShiftModifier:
self.selection_new_group(indices)
elif keys & Qt.AltModifier:
self.selection_remove(indices)
else:
self.selection_select(indices)
def selection_select(self, indices):
self.selection = np.zeros(self.n_valid, dtype=np.uint8)
self.selection[indices] = 1
self._update_after_selection()
def selection_append(self, indices):
self.selection[indices] = max(np.max(self.selection), 1)
self._update_after_selection()
def selection_new_group(self, indices):
self.selection[indices] = np.max(self.selection) + 1
self._update_after_selection()
def selection_remove(self, indices):
self.selection[indices] = 0
self._update_after_selection()
def _update_after_selection(self):
self._compress_indices()
self.update_selection_colors()
if self.label_only_selected:
self.update_labels()
self.master.selection_changed()
def _compress_indices(self):
indices = sorted(set(self.selection) | {0})
if len(indices) == max(indices) + 1:
return
mapping = np.zeros((max(indices) + 1,), dtype=int)
for i, ind in enumerate(indices):
mapping[ind] = i
self.selection = mapping[self.selection]
def get_selection(self):
if self.selection is None:
return np.array([], dtype=np.uint8)
else:
return np.flatnonzero(self.selection)
def help_event(self, event):
"""
Create a `QToolTip` for the point hovered by the mouse
"""
if self.scatterplot_item is None:
return False
act_pos = self.scatterplot_item.mapFromScene(event.scenePos())
point_data = [p.data() for p in self.scatterplot_item.pointsAt(act_pos)]
text = self.master.get_tooltip(point_data)
if text:
QToolTip.showText(event.screenPos(), text, widget=self.plot_widget)
return True
else:
return False
|