File: owsieve.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (555 lines) | stat: -rw-r--r-- 20,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import math
from itertools import chain

import numpy as np
from scipy.stats.distributions import chi2

from AnyQt.QtCore import Qt, QSize
from AnyQt.QtGui import QColor, QPen, QBrush
from AnyQt.QtWidgets import QGraphicsScene, QGraphicsLineItem, QSizePolicy

from Orange.data import Table, filter as data_filter, Variable
from Orange.data.sql.table import SqlTable, LARGE_TABLE, DEFAULT_SAMPLE_TIME
from Orange.preprocess import Discretize
from Orange.preprocess.discretize import EqualFreq
from Orange.statistics.contingency import get_contingency
from Orange.widgets import gui, settings
from Orange.widgets.settings import DomainContextHandler, ContextSetting
from Orange.widgets.utils import to_html
from Orange.widgets.utils.annotated_data import (create_annotated_table,
                                                 ANNOTATED_DATA_SIGNAL_NAME)
from Orange.widgets.utils.itemmodels import DomainModel
from Orange.widgets.utils.widgetpreview import WidgetPreview
from Orange.widgets.visualize.utils.vizrank import VizRankDialogAttrPair, \
    VizRankMixin
from Orange.widgets.visualize.utils import (
    CanvasText, CanvasRectangle, ViewWithPress)
from Orange.widgets.widget import OWWidget, AttributeList, Input, Output, \
    Msg


class ChiSqStats:
    """
    Compute and store statistics needed to show a plot for the given
    pair of attributes. The class is also used for ranking.
    """
    def __init__(self, data, attr1, attr2):
        attr1 = data.domain[attr1]
        attr2 = data.domain[attr2]
        if attr1.is_discrete and not attr1.values or \
                attr2.is_discrete and not attr2.values:
            self.p = np.nan
            return
        self.observed = get_contingency(data, attr1, attr2)
        self.n = np.sum(self.observed)
        # pylint: disable=unexpected-keyword-arg
        self.probs_x = self.observed.sum(axis=0) / self.n
        self.probs_y = self.observed.sum(axis=1) / self.n
        self.expected = np.outer(self.probs_y, self.probs_x) * self.n
        with np.errstate(divide="ignore", invalid="ignore"):
            self.residuals = \
                (self.observed - self.expected) / np.sqrt(self.expected)
        self.residuals = np.nan_to_num(self.residuals)
        self.chisqs = self.residuals ** 2
        self.chisq = float(np.sum(self.chisqs))
        self.p = chi2.sf(
            self.chisq, (len(self.probs_x) - 1) * (len(self.probs_y) - 1))

class SieveRank(VizRankDialogAttrPair):
    sort_names_in_row = True

    def compute_score(self, state):
        p = ChiSqStats(self.data, *(self.attr_order[i].name for i in state)).p
        return 2 if np.isnan(p) else p

    def bar_length(self, score):
        return min(1, -math.log(score, 10) / 50) if 0 < score <= 1 else 0


class OWSieveDiagram(OWWidget, VizRankMixin(SieveRank)):
    name = "Sieve Diagram"
    description = "Visualize the observed and expected frequencies " \
                  "for a combination of values."
    icon = "icons/SieveDiagram.svg"
    priority = 200
    keywords = "sieve diagram"

    class Inputs:
        data = Input("Data", Table, default=True)
        features = Input("Features", AttributeList)

    class Outputs:
        selected_data = Output("Selected Data", Table, default=True)
        annotated_data = Output(ANNOTATED_DATA_SIGNAL_NAME, Table)

    graph_name = "canvas"  # QGraphicsScene

    class Warning(OWWidget.Warning):
        cochran = Msg("Data does not meet the Cochran's rule\n{}")

    want_control_area = False

    settings_version = 1
    settingsHandler = DomainContextHandler()
    attr_x = ContextSetting(None)
    attr_y = ContextSetting(None)
    selection = ContextSetting(set())

    def __init__(self):
        # pylint: disable=missing-docstring
        super().__init__()

        self.data = self.discrete_data = None
        self.attrs = []
        self.input_features = None
        self.areas = []
        self.selection = set()

        self.mainArea.layout().setSpacing(0)
        self.attr_box = gui.hBox(self.mainArea, margin=0)
        self.domain_model = DomainModel(valid_types=DomainModel.PRIMITIVE)
        combo_args = dict(
            widget=self.attr_box, master=self, contentsLength=12,
            searchable=True, sendSelectedValue=True,
            callback=self.attr_changed, model=self.domain_model)
        fixed_size = (QSizePolicy.Fixed, QSizePolicy.Fixed)
        gui.comboBox(value="attr_x", **combo_args)
        gui.widgetLabel(self.attr_box, "\u2717", sizePolicy=fixed_size)
        gui.comboBox(value="attr_y", **combo_args)
        button = self.vizrank_button("Score Combinations")
        self.attr_box.layout().addWidget(button)
        self.vizrankSelectionChanged.connect(self.set_attr)
        button.setSizePolicy(*fixed_size)

        self.canvas = QGraphicsScene(self)
        self.canvasView = ViewWithPress(
            self.canvas, self.mainArea, handler=self.reset_selection)
        self.mainArea.layout().addWidget(self.canvasView)
        self.canvasView.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
        self.canvasView.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)

    def sizeHint(self):
        return QSize(450, 550)

    def resizeEvent(self, event):
        super().resizeEvent(event)
        self.update_graph()

    def showEvent(self, event):
        super().showEvent(event)
        self.update_graph()

    @classmethod
    def migrate_context(cls, context, version):
        if not version:
            settings.rename_setting(context, "attrX", "attr_x")
            settings.rename_setting(context, "attrY", "attr_y")
            settings.migrate_str_to_variable(context)

    @Inputs.data
    def set_data(self, data):
        """
        Discretize continuous attributes, and put all attributes and discrete
        metas into self.attrs.

        Select the first two attributes unless context overrides this.
        Method `resolve_shown_attributes` is called to use the attributes from
        the input, if it exists and matches the attributes in the data.

        Remove selection; again let the context override this.
        Initialize the vizrank dialog, but don't show it.

        Args:
            data (Table): input data
        """
        if isinstance(data, SqlTable) and data.approx_len() > LARGE_TABLE:
            data = data.sample_time(DEFAULT_SAMPLE_TIME)

        self.closeContext()
        self.data = data
        self.areas = []
        self.selection = set()
        if self.data is None:
            self.attrs[:] = []
            self.domain_model.set_domain(None)
            self.discrete_data = None
        else:
            self.domain_model.set_domain(data.domain)
        self.attrs = [x for x in self.domain_model if isinstance(x, Variable)]
        if self.attrs:
            self.attr_x = self.attrs[0]
            self.attr_y = self.attrs[len(self.attrs) > 1]
        else:
            self.attr_x = self.attr_y = None
            self.areas = []
            self.selection = set()
        self.openContext(self.data)
        if self.data:
            self.discrete_data = self.sparse_to_dense(data, True)
        self.resolve_shown_attributes()
        self.update_graph()
        self.update_selection()
        self.init_vizrank()

    def init_vizrank(self):
        errmsg = ""
        if self.data is None:
            errmsg = "No data"
        elif len(self.data) <= 1 or len(self.data.domain.attributes) <= 1:
            errmsg = "Not enough data"
        elif self.data.is_sparse():
            errmsg = "Data is sparse"

        if not errmsg:
            super().init_vizrank(self.discrete_data,
                                 list(self.data.domain.variables))
        else:
            self.disable_vizrank(errmsg)

    def set_attr(self, attrs):
        self.attr_x, self.attr_y = (self.data.domain[attr.name] for attr in attrs)
        self.update_attr()

    def attr_changed(self):
        self.update_attr()
        self.vizrankAutoSelect.emit([self.attr_x, self.attr_y])

    def update_attr(self):
        """Update the graph and selection."""
        self.selection = set()
        self.discrete_data = self.sparse_to_dense(self.data)
        self.update_graph()
        self.update_selection()

    def sparse_to_dense(self, data, init=False):
        """
        Extracts two selected columns from sparse matrix.
        GH-2260
        """
        def discretizer(data):
            if any(attr.is_continuous for attr in chain(data.domain.variables, data.domain.metas)):
                discretize = Discretize(
                    method=EqualFreq(n=4), remove_const=False,
                    discretize_classes=True, discretize_metas=True)
                return discretize(data).to_dense()
            return data

        if not data.is_sparse() and not init:
            return self.discrete_data
        if data.is_sparse():
            attrs = {self.attr_x,
                     self.attr_y}
            new_domain = data.domain.select_columns(attrs)
            data = Table.from_table(new_domain, data)
        return discretizer(data)

    @Inputs.features
    def set_input_features(self, attr_list):
        """
        Handler for the Features signal.

        The method stores the attributes and calls `resolve_shown_attributes`

        Args:
            attr_list (AttributeList): data from the signal
        """
        self.input_features = attr_list
        self.resolve_shown_attributes()
        self.update_selection()

    def resolve_shown_attributes(self):
        """
        Use the attributes from the input signal if the signal is present
        and at least two attributes appear in the domain. If there are
        multiple, use the first two. Combos are disabled if inputs are used.
        """
        self.warning()
        self.attr_box.setEnabled(True)
        if not self.input_features:  # None or empty
            return
        features = [f for f in self.input_features if f in self.domain_model]
        if not features:
            self.warning(
                "Features from the input signal are not present in the data")
            return
        old_attrs = self.attr_x, self.attr_y
        self.attr_x, self.attr_y = (features * 2)[:2]
        self.attr_box.setEnabled(False)
        if (self.attr_x, self.attr_y) != old_attrs:
            self.selection = set()
            self.update_graph()

    def reset_selection(self):
        self.selection = set()
        self.update_selection()

    def select_area(self, area, event):
        """
        Add or remove the clicked area from the selection

        Args:
            area (QRect): the area that is clicked
            event (QEvent): event description
        """
        if event.button() != Qt.LeftButton:
            return
        index = self.areas.index(area)
        if event.modifiers() & Qt.ControlModifier:
            self.selection ^= {index}
        else:
            self.selection = {index}
        self.update_selection()

    def update_selection(self):
        """
        Update the graph (pen width) to show the current selection.
        Filter and output the data.
        """
        if self.areas is None or not self.selection:
            self.Outputs.selected_data.send(None)
            self.Outputs.annotated_data.send(create_annotated_table(self.data, []))
            return

        filts = []
        for i, area in enumerate(self.areas):
            if i in self.selection:
                width = 4
                val_x, val_y = area.value_pair
                filts.append(
                    data_filter.Values([
                        data_filter.FilterDiscrete(self.attr_x.name, [val_x]),
                        data_filter.FilterDiscrete(self.attr_y.name, [val_y])
                    ]))
            else:
                width = 1
            pen = area.pen()
            pen.setWidth(width)
            area.setPen(pen)
        if len(filts) == 1:
            filts = filts[0]
        else:
            filts = data_filter.Values(filts, conjunction=False)
        selection = filts(self.discrete_data)
        idset = set(selection.ids)
        sel_idx = [i for i, id in enumerate(self.data.ids) if id in idset]
        if self.discrete_data is not self.data:
            selection = self.data[sel_idx]

        self.Outputs.selected_data.send(selection)
        self.Outputs.annotated_data.send(create_annotated_table(self.data, sel_idx))

    def update_graph(self):
        # Function uses weird names like r, g, b, but it does it with utmost
        # caution, hence
        # pylint: disable=invalid-name
        """Update the graph."""

        def text(txt, *args, **kwargs):
            text = html_text = None
            if "max_width" in kwargs:
                text = txt
            else:
                html_text = to_html(txt)
            return CanvasText(self.canvas, text, html_text=html_text,
                              *args, **kwargs)

        def width(txt):
            return text(txt, 0, 0, show=False).boundingRect().width()

        def height(txt):
            return text(txt, 0, 0, show=False).boundingRect().height()

        def fmt(val):
            return str(int(val)) if val % 1 == 0 else "{:.2f}".format(val)

        def show_pearson(rect, pearson, pen_width):
            """
            Color the given rectangle according to its corresponding
            standardized Pearson residual.

            Args:
                rect (QRect): the rectangle being drawn
                pearson (float): signed standardized pearson residual
                pen_width (int): pen width (bolder pen is used for selection)
            """
            r = rect.rect()
            x, y, w, h = r.x(), r.y(), r.width(), r.height()
            if w == 0 or h == 0:
                return

            r = b = 255
            if pearson > 0:
                r = g = max(int(255 - 20 * pearson), 55)
            elif pearson < 0:
                b = g = max(int(255 + 20 * pearson), 55)
            else:
                r = g = b = 224
            rect.setBrush(QBrush(QColor(r, g, b)))
            pen_color = QColor(255 * (r == 255), 255 * (g == 255),
                               255 * (b == 255))
            pen = QPen(pen_color, pen_width)
            rect.setPen(pen)
            if pearson > 0:
                pearson = min(pearson, 10)
                dist = 20 - 1.6 * pearson
            else:
                pearson = max(pearson, -10)
                dist = 20 - 8 * pearson
            pen.setWidth(1)

            def _offseted_line(ax, ay):
                r = QGraphicsLineItem(x + ax, y + ay, x + (ax or w),
                                      y + (ay or h))
                self.canvas.addItem(r)
                r.setPen(pen)

            ax = dist
            while ax < w:
                _offseted_line(ax, 0)
                ax += dist

            ay = dist
            while ay < h:
                _offseted_line(0, ay)
                ay += dist

        def make_tooltip():
            """Create the tooltip. The function uses local variables from
            the enclosing scope."""
            # pylint: disable=undefined-loop-variable
            def _oper(attr, txt):
                if self.data.domain[attr.name] == ddomain[attr.name]:
                    return " = "
                return " " if txt[0] in "<≥" else " in "

            xt, yt = ["<b>{attr}{eq}{val_name}</b>: {obs}/{n} ({p:.0f} %)".format(
                attr=to_html(attr.name),
                eq=_oper(attr, val_name),
                val_name=to_html(val_name),
                obs=fmt(prob * n),
                n=int(n),
                p=100 * prob)
                      for attr, val_name, prob in [(attr_x, xval_name, chi.probs_x[x]),
                                                   (attr_y, yval_name, chi.probs_y[y])]]

            ct = """<b>combination of values: </b><br/>
                   &nbsp;&nbsp;&nbsp;expected {exp} ({p_exp:.0f} %)<br/>
                   &nbsp;&nbsp;&nbsp;observed {obs} ({p_obs:.0f} %)""".format(
                       exp=fmt(chi.expected[y, x]),
                       p_exp=100 * chi.expected[y, x] / n,
                       obs=fmt(chi.observed[y, x]),
                       p_obs=100 * chi.observed[y, x] / n)

            return f"{xt}<br/>{yt}<hr/>{ct}"

        self.Warning.cochran.clear()
        for item in self.canvas.items():
            self.canvas.removeItem(item)
        if self.data is None or len(self.data) == 0 or \
                self.attr_x is None or self.attr_y is None:
            return

        ddomain = self.discrete_data.domain
        attr_x, attr_y = self.attr_x, self.attr_y
        disc_x, disc_y = ddomain[attr_x.name], ddomain[attr_y.name]
        view = self.canvasView

        chi = ChiSqStats(self.discrete_data, disc_x, disc_y)
        max_ylabel_w = max((width(val) for val in disc_y.values), default=0)
        max_ylabel_w = min(max_ylabel_w, 200)
        x_off = height(attr_y.name) + max_ylabel_w
        y_off = 15
        square_size = min(view.width() - x_off - 35, view.height() - y_off - 80)
        square_size = max(square_size, 10)
        self.canvasView.setSceneRect(0, 0, view.width(), view.height())
        if not disc_x.values or not disc_y.values:
            text_ = "Features {} and {} have no values".format(disc_x, disc_y) \
                if not disc_x.values and \
                   not disc_y.values and \
                          disc_x != disc_y \
                else \
                    "Feature {} has no values".format(
                        disc_x if not disc_x.values else disc_y)
            text(text_, view.width() / 2 + 70, view.height() / 2,
                 Qt.AlignRight | Qt.AlignVCenter)
            return
        n = chi.n
        curr_x = x_off
        max_xlabel_h = 0
        self.areas = []
        for x, (px, xval_name) in enumerate(zip(chi.probs_x, disc_x.values)):
            if px == 0:
                continue
            width = square_size * px

            curr_y = y_off
            for y in range(len(chi.probs_y) - 1, -1, -1):  # bottom-up order
                py = chi.probs_y[y]
                yval_name = disc_y.values[y]
                if py == 0:
                    continue
                height = square_size * py

                selected = len(self.areas) in self.selection
                rect = CanvasRectangle(
                    self.canvas, curr_x + 2, curr_y + 2, width - 4, height - 4,
                    z=-10, onclick=self.select_area)
                rect.value_pair = x, y
                self.areas.append(rect)
                show_pearson(rect, chi.residuals[y, x], 3 * selected)
                rect.setToolTip(make_tooltip())

                if x == 0:
                    text(yval_name, x_off, curr_y + height / 2,
                         Qt.AlignRight | Qt.AlignVCenter)
                curr_y += height

            xl = text(xval_name, curr_x + width / 2, y_off + square_size,
                      Qt.AlignHCenter | Qt.AlignTop, max_width=width)
            max_xlabel_h = max(int(xl.boundingRect().height()), max_xlabel_h)
            curr_x += width

        bottom = y_off + square_size + max_xlabel_h
        text(attr_y.name, 0, y_off + square_size / 2,
             Qt.AlignLeft | Qt.AlignVCenter, bold=True, vertical=True)
        text(attr_x.name, x_off + square_size / 2, bottom,
             Qt.AlignHCenter | Qt.AlignTop, bold=True)
        bottom += 30
        xl = text("χ²={:.2f}, p={:.3f}".format(chi.chisq, chi.p),
                  0, bottom)
        # Assume similar height for both lines
        text("N = " + fmt(chi.n), 0, bottom - xl.boundingRect().height())
        msg = self._check_cochran(chi)
        if msg is not None:
            self.Warning.cochran(msg)

    @staticmethod
    def _check_cochran(chi):
        """
        Check Cochran's rule.
        Return None if it is met, otherwise a string describing the problem.
        """
        expected = np.asarray(chi.expected, dtype=float)
        cells = expected.size
        if cells == 0:
            return "no cells in contingency table"
        eps = 1e-12
        num_lt1 = (expected < 1.0 - eps).sum()
        num_lt5 = (expected < 5.0 - eps).sum()
        if num_lt1 > 0:
            return "some expected frequencies are below 1"
        if num_lt5 > 0.2 * cells:
            return "more than 20% of expected frequencies are below 5"
        return None

    def get_widget_name_extension(self):
        if self.data is not None:
            return "{} vs {}".format(self.attr_x.name, self.attr_y.name)
        return None

    def send_report(self):
        self.report_plot()


if __name__ == "__main__":  # pragma: no cover
    WidgetPreview(OWSieveDiagram).run(Table("zoo"))