1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
|
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring,too-many-public-methods,protected-access
# pylint: disable=too-many-lines
from unittest.mock import MagicMock, patch, Mock
import numpy as np
from AnyQt.QtCore import QRectF, Qt
from AnyQt.QtWidgets import QToolTip
from AnyQt.QtGui import QColor, QFont
from orangewidget.tests.base import DEFAULT_TIMEOUT
from Orange.data import (
Table, Domain, ContinuousVariable, DiscreteVariable, TimeVariable
)
from Orange.widgets.tests.base import (
WidgetTest, WidgetOutputsTestMixin, datasets, ProjectionWidgetTestMixin
)
from Orange.widgets.tests.utils import simulate, excepthook_catch
from Orange.widgets.utils.colorpalettes import DefaultRGBColors
from Orange.widgets.visualize.owscatterplot import (
OWScatterPlot, ScatterPlotVizRank, OWScatterPlotGraph)
from Orange.widgets.visualize.utils.widget import MAX_COLORS
from Orange.widgets.widget import AttributeList
class TestOWScatterPlot(WidgetTest, ProjectionWidgetTestMixin,
WidgetOutputsTestMixin):
@classmethod
def setUpClass(cls):
super().setUpClass()
WidgetOutputsTestMixin.init(cls)
cls.same_input_output_domain = False
cls.signal_name = OWScatterPlot.Inputs.data
cls.signal_data = cls.data
def setUp(self):
self.widget = self.create_widget(OWScatterPlot)
def test_set_data(self):
# Connect iris to scatter plot
self.send_signal(self.widget.Inputs.data, self.data)
# First two attribute should be selected as x an y
self.assertEqual(self.widget.attr_x, self.data.domain[0])
self.assertEqual(self.widget.attr_y, self.data.domain[1])
# Class var should be selected as color
self.assertIs(self.widget.attr_color, self.data.domain.class_var)
# Change which attributes are displayed
self.widget.attr_x = self.data.domain[2]
self.widget.attr_y = self.data.domain[3]
# Disconnect the data
self.send_signal(self.widget.Inputs.data, None)
# removing data should have cleared attributes
self.assertIsNone(self.widget.attr_x)
self.assertIsNone(self.widget.attr_y)
self.assertIsNone(self.widget.attr_color)
# and remove the legend
self.assertEqual(len(self.widget.graph.color_legend.items), 0)
# Connect iris again
# same attributes that were used last time should be selected
self.send_signal(self.widget.Inputs.data, self.data)
self.assertIs(self.widget.attr_x, self.data.domain[2])
self.assertIs(self.widget.attr_y, self.data.domain[3])
def test_score_heuristics(self):
domain = Domain([ContinuousVariable(c) for c in "abcd"],
DiscreteVariable("e", values="ab"))
a = np.arange(10).reshape((10, 1))
data = Table(domain, np.hstack([a, a, a, a]), a >= 5)
vizrank = ScatterPlotVizRank(self.widget, data, attr_color=data.domain.class_var)
self.assertEqual([x.name for x in vizrank.score_attributes()],
list("abcd"))
def test_optional_combos(self):
domain = self.data.domain
d1 = Domain(domain.attributes[:2], domain.class_var,
[domain.attributes[2]])
t1 = self.data.transform(d1)
self.send_signal(self.widget.Inputs.data, t1)
self.widget.graph.attr_size = domain.attributes[2]
d2 = Domain(domain.attributes[:2], domain.class_var,
[domain.attributes[3]])
t2 = self.data.transform(d2)
self.send_signal(self.widget.Inputs.data, t2)
def test_error_message(self):
"""Check if error message appears and then disappears when
data is removed from input"""
data = self.data.copy()
with data.unlocked():
data.X[:, 0] = np.nan
self.send_signal(self.widget.Inputs.data, data)
self.assertTrue(self.widget.Warning.missing_coords.is_shown())
self.send_signal(self.widget.Inputs.data, None)
self.assertFalse(self.widget.Warning.missing_coords.is_shown())
def test_report_on_empty(self):
self.widget.report_plot = MagicMock()
self.widget.report_caption = MagicMock()
self.widget.report_items = MagicMock()
self.widget.send_report() # Essentially, don't crash
self.widget.report_plot.assert_not_called()
self.widget.report_caption.assert_not_called()
self.widget.report_items.assert_not_called()
def test_data_column_nans(self):
"""
ValueError cannot convert float NaN to integer.
In case when all column values are NaN then it throws that error.
GH-2061
"""
table = datasets.data_one_column_nans()
self.send_signal(self.widget.Inputs.data, table)
cb_attr_color = self.widget.controls.attr_color
simulate.combobox_activate_item(cb_attr_color, "b")
simulate.combobox_activate_item(self.widget.cb_attr_x, "a")
simulate.combobox_activate_item(self.widget.cb_attr_y, "a")
#self.widget.update_graph()
self.widget.graph.reset_graph()
def test_data_column_infs(self):
"""
Scatter Plot should not crash on data with infinity values
GH-2707
GH-2684
"""
table = datasets.data_one_column_infs()
self.send_signal(self.widget.Inputs.data, table)
attr_x = self.widget.controls.attr_x
simulate.combobox_activate_item(attr_x, "b")
def test_regression_line_pair(self):
"""It is possible to draw the line only for pair of continuous attrs"""
self.send_signal(self.widget.Inputs.data, self.data)
self.assertTrue(self.widget.cb_reg_line.isEnabled())
self.assertListEqual([], self.widget.graph.reg_line_items)
self.widget.cb_reg_line.setChecked(True)
self.assertEqual(4, len(self.widget.graph.reg_line_items))
self.widget.cb_attr_y.activated.emit(4)
self.widget.cb_attr_y.setCurrentIndex(4)
self.assertFalse(self.widget.cb_reg_line.isEnabled())
self.assertListEqual([], self.widget.graph.reg_line_items)
def test_ellipse_pair(self):
self.send_signal(self.widget.Inputs.data, self.data)
self.assertTrue(self.widget.graph.controls.show_ellipse.isEnabled())
self.assertListEqual([], self.widget.graph.ellipse_items)
self.widget.graph.controls.show_ellipse.setChecked(True)
self.assertEqual(4, len(self.widget.graph.ellipse_items))
self.widget.cb_attr_y.activated.emit(4)
self.widget.cb_attr_y.setCurrentIndex(4)
self.assertFalse(self.widget.graph.controls.show_ellipse.isEnabled())
self.assertListEqual([], self.widget.graph.ellipse_items)
def test_points_combo_boxes(self):
"""Check Point box combo models and values"""
self.send_signal(self.widget.Inputs.data, self.data)
controls = self.widget.controls
# color and label should contain all variables
# size should contain only continuous variables
# shape should contain only discrete variables
for var in self.data.domain.variables + self.data.domain.metas:
self.assertIn(var, controls.attr_color.model())
self.assertIn(var, controls.attr_label.model())
if var.is_continuous:
self.assertIn(var, controls.attr_size.model())
self.assertNotIn(var, controls.attr_shape.model())
if var.is_discrete:
self.assertNotIn(var, controls.attr_size.model())
self.assertIn(var, controls.attr_shape.model())
widget = self.create_widget(OWScatterPlot)
self.send_signal(self.widget.Inputs.data, self.data, widget=widget)
self.assertEqual(controls.attr_color.currentText(),
self.data.domain.class_var.name)
def test_group_selections(self):
self.send_signal(self.widget.Inputs.data, self.data)
graph = self.widget.graph
points = graph.scatterplot_item.points()
sel_column = np.zeros((len(self.data), 1))
x = self.data.X
def selectedx():
return self.get_output(self.widget.Outputs.selected_data).X
def selected_groups():
return self.get_output(self.widget.Outputs.selected_data).metas[:, 0]
def annotated():
return self.get_output(self.widget.Outputs.annotated_data).metas
def annotations():
return self.get_output(self.widget.Outputs.annotated_data).domain.metas[0].values
# Select 0:5
graph.select(points[:5])
np.testing.assert_equal(selectedx(), x[:5])
np.testing.assert_equal(selected_groups(), np.zeros(5))
sel_column[:5] = 1
np.testing.assert_equal(annotated(), sel_column)
self.assertEqual(annotations(), ("No", "Yes", ))
# Shift-select 5:10; now we have groups 0:5 and 5:10
with self.modifiers(Qt.ShiftModifier):
graph.select(points[5:10])
np.testing.assert_equal(selectedx(), x[:10])
np.testing.assert_equal(selected_groups(), np.array([0] * 5 + [1] * 5))
sel_column[:5] = 0
sel_column[5:10] = 1
sel_column[10:] = 2
np.testing.assert_equal(annotated(), sel_column)
self.assertEqual(len(annotations()), 3)
# Select: 15:20; we have 15:20
graph.select(points[15:20])
sel_column = np.zeros((len(self.data), 1))
sel_column[15:20] = 1
np.testing.assert_equal(selectedx(), x[15:20])
np.testing.assert_equal(selected_groups(), np.zeros(5))
self.assertEqual(annotations(), ("No", "Yes"))
# Alt-select (remove) 10:17; we have 17:20
with self.modifiers(Qt.AltModifier):
graph.select(points[10:17])
np.testing.assert_equal(selectedx(), x[17:20])
np.testing.assert_equal(selected_groups(), np.zeros(3))
sel_column[15:17] = 0
np.testing.assert_equal(annotated(), sel_column)
self.assertEqual(annotations(), ("No", "Yes"))
# Ctrl-Shift-select (add-to-last) 10:17; we have 17:25
with self.modifiers(Qt.ShiftModifier | Qt.ControlModifier):
graph.select(points[20:25])
np.testing.assert_equal(selectedx(), x[17:25])
np.testing.assert_equal(selected_groups(), np.zeros(8))
sel_column[20:25] = 1
np.testing.assert_equal(annotated(), sel_column)
self.assertEqual(annotations(), ("No", "Yes"))
# Shift-select (add) 30:35; we have 17:25, 30:35
with self.modifiers(Qt.ShiftModifier):
graph.select(points[30:35])
# ... then Ctrl-Shift-select (add-to-last) 10:17; we have 17:25, 30:40
with self.modifiers(Qt.ShiftModifier | Qt.ControlModifier):
graph.select(points[35:40])
sel_column[:] = 2
sel_column[17:25] = 0
sel_column[30:40] = 1
np.testing.assert_equal(selected_groups(), np.array([0] * 8 + [1] * 10))
np.testing.assert_equal(annotated(), sel_column)
self.assertEqual(len(annotations()), 3)
def test_saving_selection(self):
self.send_signal(self.widget.Inputs.data, self.data) # iris
self.widget.graph.select_by_rectangle(QRectF(4, 3, 3, 1))
selected_inds = np.flatnonzero(self.widget.graph.selection)
settings = self.widget.settingsHandler.pack_data(self.widget)
np.testing.assert_equal(selected_inds,
[i for i, g in settings["selection"]])
def test_points_selection(self):
# Opening widget with saved selection should restore it
self.widget = self.create_widget(
OWScatterPlot, stored_settings={
"selection_group": [(i, 1) for i in range(50)]}
)
self.send_signal(self.widget.Inputs.data, self.data) # iris
selected_data = self.get_output(self.widget.Outputs.selected_data)
self.assertEqual(len(selected_data), 50)
# Changing the dataset should clear selection
titanic = Table("titanic")
self.send_signal(self.widget.Inputs.data, titanic)
selected_data = self.get_output(self.widget.Outputs.selected_data)
self.assertIsNone(selected_data)
def test_migrate_selection(self):
settings = {"selection": list(range(2))}
OWScatterPlot.migrate_settings(settings, 0)
self.assertEqual(settings["selection_group"], [(0, 1), (1, 1)])
def test_invalid_points_selection(self):
# if selection contains rows that are not present in the current
# dataset, widget should select what can be selected.
self.widget = self.create_widget(
OWScatterPlot, stored_settings={
"selection_group": [(i, 1) for i in range(50)]}
)
data = self.data[:11].copy()
with data.unlocked():
data[0, 0] = np.nan
self.send_signal(self.widget.Inputs.data, data)
self.assertIsNone(self.get_output(self.widget.Outputs.selected_data))
def test_set_strings_settings(self):
"""
Test if settings can be loaded as strings and successfully put
in new owplotgui combos.
"""
self.send_signal(self.widget.Inputs.data, self.data)
settings = self.widget.settingsHandler.pack_data(self.widget)
plot_settings = settings["context_settings"][0].values
plot_settings["attr_label"] = ("sepal length", -2)
plot_settings["attr_color"] = ("sepal width", -2)
plot_settings["attr_shape"] = ("iris", -2)
plot_settings["attr_size"] = ("petal width", -2)
w = self.create_widget(OWScatterPlot, stored_settings=settings)
self.send_signal(self.widget.Inputs.data, self.data, widget=w)
self.assertEqual(w.attr_label.name, "sepal length")
self.assertEqual(w.attr_color.name, "sepal width")
self.assertEqual(w.attr_shape.name, "iris")
self.assertEqual(w.attr_size.name, "petal width")
def test_features_and_no_data(self):
"""
Prevent crashing when features are sent but no data.
"""
domain = Table("iris").domain
self.send_signal(self.widget.Inputs.features,
AttributeList(domain.variables))
self.send_signal(self.widget.Inputs.features, None)
def test_features_and_data(self):
self.assertTrue(self.widget.attr_box.isEnabled())
self.send_signal(self.widget.Inputs.data, self.data)
x, y = self.widget.graph.scatterplot_item.getData()
np.testing.assert_array_equal(x, self.data.X[:, 0])
np.testing.assert_array_equal(y, self.data.X[:, 1])
self.send_signal(self.widget.Inputs.features,
AttributeList(self.data.domain[2:]))
self.assertIs(self.widget.attr_x, self.data.domain[2])
self.assertIs(self.widget.attr_y, self.data.domain[3])
self.assertFalse(self.widget.attr_box.isEnabled())
self.assertFalse(self.widget.vizrank_button().isEnabled())
x, y = self.widget.graph.scatterplot_item.getData()
np.testing.assert_array_equal(x, self.data.X[:, 2])
np.testing.assert_array_equal(y, self.data.X[:, 3])
self.send_signal(self.widget.Inputs.data, None)
self.send_signal(self.widget.Inputs.data, self.data)
self.assertIs(self.widget.attr_x, self.data.domain[2])
self.assertIs(self.widget.attr_y, self.data.domain[3])
self.assertFalse(self.widget.attr_box.isEnabled())
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.send_signal(self.widget.Inputs.features, None)
self.assertTrue(self.widget.attr_box.isEnabled())
self.assertTrue(self.widget.vizrank_button().isEnabled())
def test_features_and_hidden_data(self):
new_domain = self.data.domain.copy()
new_domain.attributes[0].attributes["hidden"] = True
data = self.data.transform(new_domain)
self.send_signal(self.widget.Inputs.data, data)
self.send_signal(self.widget.Inputs.features, AttributeList(data.domain[:2]))
self.assertIsNone(self.widget.attr_x)
self.assertIsNone(self.widget.attr_y)
self.assertFalse(self.widget.attr_box.isEnabled())
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.send_signal(self.widget.Inputs.features, None)
self.assertEqual(self.widget.attr_x, self.data.domain[1])
self.assertEqual(self.widget.attr_y, self.data.domain[2])
self.assertTrue(self.widget.attr_box.isEnabled())
self.assertTrue(self.widget.vizrank_button().isEnabled())
# try with features not in data
bad_feat = AttributeList([ContinuousVariable("a"), ContinuousVariable("b")])
self.send_signal(self.widget.Inputs.features, bad_feat)
self.assertIsNone(self.widget.attr_x)
self.assertIsNone(self.widget.attr_y)
self.assertFalse(self.widget.attr_box.isEnabled())
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.send_signal(self.widget.Inputs.features, None)
self.assertEqual(self.widget.attr_x, self.data.domain[1])
self.assertEqual(self.widget.attr_y, self.data.domain[2])
self.assertTrue(self.widget.attr_box.isEnabled())
self.assertTrue(self.widget.vizrank_button().isEnabled())
def test_output_features(self):
data = Table("iris")
self.send_signal(self.widget.Inputs.data, data)
# This doesn't work because combo's callbacks are connected to signal
# `activated`, which is only triggered by user interaction, and not to
# `currentIndexChanged`
# combo_y = self.widget.controls.attr_y
# combo_y.setCurrentIndex(combo_y.model().indexOf(data.domain[3]))
# This is a workaround
self.widget.attr_y = data.domain[3]
self.widget.attr_changed()
features = self.get_output(self.widget.Outputs.features)
self.assertEqual(features, [data.domain[0], data.domain[3]])
def test_vizrank(self):
data = Table("iris")
self.send_signal(self.widget.Inputs.data, data)
vizrank = self.widget.vizrank_dialog
n_states = len(data.domain.attributes)
n_states = n_states * (n_states - 1) / 2
states = list(vizrank.state_generator())
self.assertEqual(len(states), n_states)
self.assertEqual(len(set(states)), n_states)
self.assertIsNotNone(vizrank.compute_score(states[0]))
self.send_signal(self.widget.Inputs.data, data[:9])
vizrank = self.widget.vizrank_dialog
self.assertIsNone(vizrank.compute_score(states[0]))
def test_vizrank_class_nan(self):
"""
When class values are nan, vizrank should be disabled. It should behave like
the class column is missing.
GH-2757
"""
def assert_vizrank_enabled(data, is_enabled):
self.send_signal(self.widget.Inputs.data, data)
self.assertEqual(is_enabled, self.widget.vizrank_button().isEnabled())
data1 = Table("iris")[::30]
data2 = Table("iris")[::30].copy()
with data2.unlocked():
data2.Y[:] = np.nan
domain = Domain(
attributes=data2.domain.attributes[:4], class_vars=DiscreteVariable("iris", values=()))
data2 = Table(domain, data2.X, Y=data2.Y)
data3 = Table("iris")[::30].copy()
with data3.unlocked():
data3.Y[:] = np.nan
for data, is_enabled in zip([data1, data2, data1, data3, data1],
[True, False, True, False, True]):
assert_vizrank_enabled(data, is_enabled)
def test_vizrank_nonprimitives(self):
"""VizRank does not try to include non primitive attributes"""
data = Table("zoo")
self.send_signal(self.widget.Inputs.data, data)
with patch("Orange.widgets.visualize.owscatterplot.ReliefF",
new=lambda *_1, **_2: lambda data: np.arange(len(data))):
self.widget.vizrank_button().click()
def test_vizrank_enabled(self):
self.send_signal(self.widget.Inputs.data, self.data)
self.assertTrue(self.widget.vizrank_button().isEnabled())
self.assertEqual(self.widget.vizrank_button().toolTip(), "")
self.assertTrue(self.widget.vizrank_button().isEnabled())
def test_vizrank_enabled_no_data(self):
self.send_signal(self.widget.Inputs.data, None)
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.assertEqual(self.widget.vizrank_button().toolTip(), "No data on input")
def test_vizrank_enabled_sparse_data(self):
self.send_signal(self.widget.Inputs.data, self.data.to_sparse())
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.assertEqual(self.widget.vizrank_button().toolTip(), "Data is sparse")
def test_vizrank_enabled_constant_data(self):
domain = Domain([ContinuousVariable("c1"),
ContinuousVariable("c2"),
ContinuousVariable("c3"),
ContinuousVariable("c4")],
DiscreteVariable("cls", values=("a", "b")))
X = np.zeros((10, 4))
table = Table(domain, X, np.random.randint(2, size=10))
self.send_signal(self.widget.Inputs.data, table)
self.assertEqual(self.widget.vizrank_button().toolTip(), "")
self.assertTrue(self.widget.vizrank_button().isEnabled())
self.assertTrue(self.widget.vizrank_button().isEnabled())
def test_vizrank_enabled_two_features(self):
self.send_signal(self.widget.Inputs.data, self.data[:, :2])
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.assertEqual(self.widget.vizrank_button().toolTip(),
"Not enough features for ranking")
def test_vizrank_enabled_no_color_var(self):
self.send_signal(self.widget.Inputs.data, self.data[:, :3])
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.assertEqual(self.widget.vizrank_button().toolTip(),
"Color variable is not selected")
def test_vizrank_enabled_color_var_nans(self):
domain = Domain([ContinuousVariable("c1"),
ContinuousVariable("c2"),
ContinuousVariable("c3"),
ContinuousVariable("c4")],
DiscreteVariable("cls", values=("a", "b")))
table = Table(domain, np.random.random((10, 4)), np.full(10, np.nan))
self.send_signal(self.widget.Inputs.data, table)
self.assertFalse(self.widget.vizrank_button().isEnabled())
self.assertEqual(self.widget.vizrank_button().toolTip(),
"Color variable has no values")
@patch.object(OWScatterPlot.__bases__[1], "init_vizrank")
def test_vizrank_hidden_attributes(self, init_vizrank):
"""
Test hidden attributes not considered in Find Informative Projections
"""
new_domain = self.data.domain.copy()
new_domain.attributes[0].attributes["hidden"] = True
data = self.data.transform(new_domain)
self.send_signal(self.widget.Inputs.data, data)
self.assertEqual(list(init_vizrank.call_args[0][1]),
list(new_domain.variables[1:]))
def test_auto_send_selection(self):
"""
Scatter Plot automatically sends selection only when the checkbox Send automatically
is checked.
GH-2649
GH-2646
"""
data = Table("iris")
self.send_signal(self.widget.Inputs.data, data)
self.widget.controls.auto_commit.setChecked(False)
self.assertFalse(self.widget.controls.auto_commit.isChecked())
self._select_data()
self.assertIsNone(self.get_output(self.widget.Outputs.selected_data))
self.widget.controls.auto_commit.setChecked(True)
output = self.get_output(self.widget.Outputs.selected_data)
self.assertIsInstance(output, Table)
def test_color_is_optional(self):
zoo = Table("zoo")
backbone, breathes, airborne, type_ = \
[zoo.domain[x] for x in ["backbone", "breathes", "airborne", "type"]]
default_x, default_y, default_color = \
zoo.domain[0], zoo.domain[1], zoo.domain.class_var
attr_x = self.widget.controls.attr_x
attr_y = self.widget.controls.attr_y
attr_color = self.widget.controls.attr_color
# Send dataset, ensure defaults are what we expect them to be
self.send_signal(self.widget.Inputs.data, zoo)
self.assertEqual(attr_x.currentText(), default_x.name)
self.assertEqual(attr_y.currentText(), default_y.name)
self.assertEqual(attr_color.currentText(), default_color.name)
# Select different values
simulate.combobox_activate_item(attr_x, backbone.name)
simulate.combobox_activate_item(attr_y, breathes.name)
simulate.combobox_activate_item(attr_color, airborne.name)
# Send compatible dataset, values should not change
zoo2 = zoo[:, (backbone, breathes, airborne, type_)]
self.send_signal(self.widget.Inputs.data, zoo2)
self.assertEqual(attr_x.currentText(), backbone.name)
self.assertEqual(attr_y.currentText(), breathes.name)
self.assertEqual(attr_color.currentText(), airborne.name)
# Send dataset without color variable
# x and y should remain, color reset to default
zoo3 = zoo[:, (backbone, breathes, type_)]
self.send_signal(self.widget.Inputs.data, zoo3)
self.assertEqual(attr_x.currentText(), backbone.name)
self.assertEqual(attr_y.currentText(), breathes.name)
self.assertEqual(attr_color.currentText(), default_color.name)
# Send dataset without x
# y and color should be the same as with zoo
zoo4 = zoo[:, (default_x, default_y, breathes, airborne, type_)]
self.send_signal(self.widget.Inputs.data, zoo4)
self.assertEqual(attr_x.currentText(), default_x.name)
self.assertEqual(attr_y.currentText(), default_y.name)
self.assertEqual(attr_color.currentText(), default_color.name)
# Send dataset compatible with zoo2 and zoo3
# Color should reset to one in zoo3, as it was used more
# recently
zoo5 = zoo[:, (default_x, backbone, breathes, airborne, type_)]
self.send_signal(self.widget.Inputs.data, zoo5)
self.assertEqual(attr_x.currentText(), backbone.name)
self.assertEqual(attr_y.currentText(), breathes.name)
self.assertEqual(attr_color.currentText(), type_.name)
def test_handle_metas(self):
"""
Scatter Plot Graph can handle metas
GH-2699
"""
w = self.widget
data = Table("iris")
domain = Domain(
attributes=data.domain.attributes[:2],
class_vars=data.domain.class_vars,
metas=data.domain.attributes[2:]
)
data = data.transform(domain).copy()
# Sometimes floats in metas are saved as objects
with data.unlocked():
data.metas = data.metas.astype(object)
self.send_signal(w.Inputs.data, data)
simulate.combobox_activate_item(w.cb_attr_x, data.domain.metas[1].name)
simulate.combobox_activate_item(w.controls.attr_color, data.domain.metas[0].name)
w.graph.reset_graph()
def test_subset_data(self):
"""
Scatter Plot subset data is sent to Scatter Plot Graph
GH-2773
"""
data = Table("iris")
w = self.widget
self.send_signal(w.Inputs.data, data)
self.send_signal(w.Inputs.data_subset, data[::30])
self.assertEqual(len(w.subset_indices), 5)
def test_opacity_warning(self):
data = Table("iris")
w = self.widget
self.send_signal(w.Inputs.data, data)
w.graph.controls.alpha_value.setSliderPosition(10)
self.assertFalse(w.Warning.transparent_subset.is_shown())
self.send_signal(w.Inputs.data_subset, data[::30])
self.assertTrue(w.Warning.transparent_subset.is_shown())
w.graph.controls.alpha_value.setSliderPosition(200)
self.assertFalse(w.Warning.transparent_subset.is_shown())
w.graph.controls.alpha_value.setSliderPosition(10)
self.assertTrue(w.Warning.transparent_subset.is_shown())
self.send_signal(w.Inputs.data_subset, None)
self.assertFalse(w.Warning.transparent_subset.is_shown())
def test_jittering(self):
self.send_signal(self.widget.Inputs.data, self.data)
self.widget.graph.controls.jitter_continuous.setChecked(True)
self.widget.graph.controls.jitter_size.setValue(1)
def test_metas_zero_column(self):
"""
Prevent crash when metas column is zero.
GH-2775
"""
data = Table("iris")
domain = data.domain
domain = Domain(domain.attributes[:3], domain.class_vars, domain.attributes[3:])
data = data.transform(domain).copy()
with data.unlocked():
data.metas[:, 0] = 0
w = self.widget
self.send_signal(w.Inputs.data, data)
simulate.combobox_activate_item(w.controls.attr_x, domain.metas[0].name)
def test_tooltip(self):
# The test tests presence of some data,
# but avoids checking the exact format
data = Table("heart_disease")
self.send_signal(self.widget.Inputs.data, data)
widget = self.widget
graph = widget.graph
scatterplot_item = graph.scatterplot_item
widget.controls.attr_x = data.domain["chest pain"]
widget.controls.attr_y = data.domain["cholesterol"]
all_points = scatterplot_item.points()
event = MagicMock()
with patch.object(scatterplot_item, "mapFromScene"), \
patch.object(QToolTip, "showText") as show_text:
# Single point hovered
with patch.object(scatterplot_item, "pointsAt",
return_value=[all_points[42]]):
# Show just x and y attribute
widget.tooltip_shows_all = False
self.assertTrue(graph.help_event(event))
(_, text), _ = show_text.call_args
self.assertIn(f"age = {data[42, 'age']}", text)
self.assertIn(f"gender = {data[42, 'gender']}", text)
self.assertNotIn(f"max HR = {data[42, 'max HR']}", text)
self.assertNotIn("others", text)
# Show all attributes
widget.tooltip_shows_all = True
self.assertTrue(graph.help_event(event))
(_, text), _ = show_text.call_args
self.assertIn(f"age = {data[42, 'age']}", text)
self.assertIn(f"gender = {data[42, 'gender']}", text)
self.assertIn(f"max HR = {data[42, 'max HR']}", text)
self.assertIn("... and 4 others", text)
# Two points hovered
with patch.object(scatterplot_item, "pointsAt",
return_value=[all_points[42], all_points[100]]):
self.assertTrue(graph.help_event(event))
(_, text), _ = show_text.call_args
self.assertIn(f"age = {data[42, 'age']}", text)
self.assertIn(f"gender = {data[42, 'gender']}", text)
self.assertIn(f"age = {data[100, 'age']}", text)
self.assertIn(f"gender = {data[100, 'gender']}", text)
# No points hovered
with patch.object(scatterplot_item, "pointsAt",
return_value=[]):
show_text.reset_mock()
self.assertFalse(graph.help_event(event))
self.assertEqual(show_text.call_count, 0)
def test_many_discrete_values(self):
"""
Do not show all discrete values if there are too many.
Also test for values with a nan.
GH-2804
"""
def prepare_data():
data = Table("iris")
values = list(range(15))
class_var = DiscreteVariable("iris5", values=[str(v) for v in values])
data = data.transform(
Domain(attributes=data.domain.attributes,
class_vars=[class_var])).copy()
with data.unlocked():
data.Y = np.array(values * 10, dtype=float)
return data
def assert_equal(data, max_):
self.send_signal(self.widget.Inputs.data, data)
pen_data, _ = self.widget.graph.get_colors()
self.assertEqual(max_, len(np.unique([id(p) for p in pen_data])), )
assert_equal(prepare_data(), MAX_COLORS)
# data with nan value
data = prepare_data()
with data.unlocked():
data.Y[42] = np.nan
assert_equal(data, MAX_COLORS + 1)
def test_invalidated_same_features(self):
self.widget.setup_plot = Mock()
# send data and set default features
self.send_signal(self.widget.Inputs.data, self.data)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables,
list(self.data.domain.attributes[:2]))
# send the same features as already set
self.widget.setup_plot.reset_mock()
self.send_signal(self.widget.Inputs.features,
AttributeList(self.data.domain.attributes[:2]))
self.widget.setup_plot.assert_not_called()
self.assertListEqual(self.widget.effective_variables,
list(self.data.domain.attributes[:2]))
def test_invalidated_same_time(self):
self.widget.setup_plot = Mock()
# send data and features at the same time (data first)
features = self.data.domain.attributes[:2]
signals = [(self.widget.Inputs.data, self.data),
(self.widget.Inputs.features, AttributeList(features))]
self.send_signals(signals)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables, list(features))
def test_invalidated_features_first(self):
self.widget.setup_plot = Mock()
# send features (same as default ones)
self.send_signal(self.widget.Inputs.features,
AttributeList(self.data.domain.attributes[:2]))
self.assertListEqual(self.widget.effective_variables, [])
self.widget.setup_plot.assert_called_once()
# send data
self.widget.setup_plot.reset_mock()
self.send_signal(self.widget.Inputs.data, self.data)
self.widget.setup_plot.assert_called()
self.assertListEqual(self.widget.effective_variables,
list(self.data.domain.attributes[:2]))
def test_invalidated_same_time_features_first(self):
self.widget.setup_plot = Mock()
# send features and data at the same time (features first)
features = self.data.domain.attributes[:2]
signals = [(self.widget.Inputs.features, AttributeList(features)),
(self.widget.Inputs.data, self.data)]
self.send_signals(signals)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables, list(features))
self.widget.setup_plot.reset_mock()
features = self.data.domain.attributes[2:]
signals = [(self.widget.Inputs.features, AttributeList(features)),
(self.widget.Inputs.data, self.data)]
self.send_signals(signals)
self.widget.setup_plot.assert_called_once()
def test_invalidated_diff_features(self):
self.widget.setup_plot = Mock()
# send data and set default features
self.send_signal(self.widget.Inputs.data, self.data)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables,
list(self.data.domain.attributes[:2]))
# send different features
self.widget.setup_plot.reset_mock()
self.send_signal(self.widget.Inputs.features,
AttributeList(self.data.domain.attributes[2:4]))
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables,
list(self.data.domain.attributes[2:4]))
def test_invalidated_diff_features_same_time(self):
self.widget.setup_plot = Mock()
# send data and different features at the same time (data first)
features = self.data.domain.attributes[2:4]
signals = [(self.widget.Inputs.data, self.data),
(self.widget.Inputs.features, AttributeList(features))]
self.send_signals(signals)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables, list(features))
def test_invalidated_diff_features_features_first(self):
self.widget.setup_plot = Mock()
# send features (not the same as defaults)
self.send_signal(self.widget.Inputs.features,
AttributeList(self.data.domain.attributes[2:4]))
self.assertListEqual(self.widget.effective_variables, [])
self.widget.setup_plot.assert_called_once()
# send data
self.widget.setup_plot.reset_mock()
self.send_signal(self.widget.Inputs.data, self.data)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables,
list(self.data.domain.attributes[2:4]))
def test_invalidated_diff_features_same_time_features_first(self):
self.widget.setup_plot = Mock()
# send data and different features at the same time (features first)
features = self.data.domain.attributes[2:4]
signals = [(self.widget.Inputs.features, AttributeList(features)),
(self.widget.Inputs.data, self.data)]
self.send_signals(signals)
self.widget.setup_plot.assert_called_once()
self.assertListEqual(self.widget.effective_variables, list(features))
@patch('Orange.widgets.visualize.owscatterplot.ScatterPlotVizRank.'
'auto_select')
def test_vizrank_receives_manual_change(self, auto_select):
# Recreate the widget so the patch kicks in
self.widget = self.create_widget(OWScatterPlot)
data = Table("iris.tab")
self.send_signal(self.widget.Inputs.data, data)
model = self.widget.controls.attr_x.model()
self.widget.attr_x = model[0]
self.widget.attr_y = model[1]
simulate.combobox_activate_index(self.widget.controls.attr_x, 2)
self.assertIs(self.widget.attr_x, model[2])
auto_select.assert_called_with([model[2], model[1]])
def test_regression_lines_appear(self):
self.widget.graph.controls.show_reg_line.setChecked(True)
self.assertEqual(len(self.widget.graph.reg_line_items), 0)
self.send_signal(self.widget.Inputs.data, self.data)
self.assertEqual(len(self.widget.graph.reg_line_items), 4)
simulate.combobox_activate_index(self.widget.controls.attr_color, 0)
self.assertEqual(len(self.widget.graph.reg_line_items), 1)
data = self.data.copy()
with data.unlocked():
data[:, 0] = np.nan
self.send_signal(self.widget.Inputs.data, data)
self.assertEqual(len(self.widget.graph.reg_line_items), 0)
def test_ellipse_appear(self):
self.widget.graph.controls.show_ellipse.setChecked(True)
self.assertEqual(len(self.widget.graph.ellipse_items), 0)
self.send_signal(self.widget.Inputs.data, self.data)
self.assertEqual(len(self.widget.graph.ellipse_items), 4)
simulate.combobox_activate_index(self.widget.controls.attr_color, 0)
self.assertEqual(len(self.widget.graph.ellipse_items), 1)
data = self.data.copy()
with data.unlocked():
data[:, 0] = np.nan
self.send_signal(self.widget.Inputs.data, data)
self.assertEqual(len(self.widget.graph.ellipse_items), 0)
def test_regression_line_coeffs(self):
widget = self.widget
graph = widget.graph
xy = np.array([[0, 0], [1, 0], [1, 2], [2, 2],
[0, 1], [1, 3], [2, 5]], dtype=float)
colors = np.array([0, 0, 0, 0, 1, 1, 1], dtype=float)
widget.get_coordinates_data = lambda: xy.T
widget.can_draw_regression_line = lambda: True
widget.get_color_data = lambda: colors
widget.is_continuous_color = lambda: False
graph.palette = DefaultRGBColors
graph.controls.show_reg_line.setChecked(True)
graph.update_regression_line()
line1 = graph.reg_line_items[1]
self.assertEqual(line1.pos().x(), 0)
self.assertEqual(line1.pos().y(), 0)
self.assertEqual(line1.angle, 45)
self.assertEqual(line1.pen.color().hue(), graph.palette[0].hue())
line2 = graph.reg_line_items[2]
self.assertEqual(line2.pos().x(), 0)
self.assertEqual(line2.pos().y(), 1)
self.assertAlmostEqual(line2.angle, np.degrees(np.arctan2(2, 1)))
self.assertEqual(line2.pen.color().hue(), graph.palette[1].hue())
graph.orthonormal_regression = True
graph.update_regression_line()
line1 = graph.reg_line_items[1]
self.assertEqual(line1.pos().x(), 0)
self.assertAlmostEqual(line1.pos().y(), -0.6180339887498949)
self.assertAlmostEqual(line1.angle, 58.28252558853899)
self.assertEqual(line1.pen.color().hue(), graph.palette[0].hue())
line2 = graph.reg_line_items[2]
self.assertEqual(line2.pos().x(), 0)
self.assertEqual(line2.pos().y(), 1)
self.assertAlmostEqual(line2.angle, np.degrees(np.arctan2(2, 1)))
self.assertEqual(line2.pen.color().hue(), graph.palette[1].hue())
def test_ellipse_coeffs(self):
widget = self.widget
graph = widget.graph
xy = np.array([[0, 0], [1, 0], [1, 2], [2, 2],
[0, 1], [1, 3], [2, 5]], dtype=float)
colors = np.array([0, 0, 0, 0, 1, 1, 1], dtype=float)
widget.get_coordinates_data = lambda: xy.T
widget.can_draw_regression_line = lambda: True
widget.get_color_data = lambda: colors
widget.is_continuous_color = lambda: False
graph.palette = DefaultRGBColors
graph.controls.show_ellipse.setChecked(True)
graph.update_ellipse()
item = graph.ellipse_items[1]
self.assertEqual(item.pos().x(), 0)
self.assertEqual(item.pos().y(), 0)
self.assertEqual(item.opts["pen"].color().hue(),
graph.palette[0].hue())
item = graph.ellipse_items[2]
self.assertEqual(item.pos().x(), 0)
self.assertEqual(item.pos().y(), 0)
self.assertEqual(item.opts["pen"].color().hue(),
graph.palette[1].hue())
def test_orthonormal_line(self):
color = QColor(1, 2, 3)
width = 42
# Normal line
line = OWScatterPlotGraph._orthonormal_line(
np.array([0, 1, 1, 2]), np.array([0, 0, 2, 2]), color, width)
self.assertEqual(line.pos().x(), 0)
self.assertAlmostEqual(line.pos().y(), -0.6180339887498949)
self.assertAlmostEqual(line.angle, 58.28252558853899)
self.assertEqual(line.pen.color(), color)
self.assertEqual(line.pen.width(), width)
# Normal line, negative slope
line = OWScatterPlotGraph._orthonormal_line(
np.array([1, 2, 3]), np.array([3, 2, 1]), color, width)
self.assertEqual(line.pos().x(), 1)
self.assertEqual(line.pos().y(), 3)
self.assertEqual(line.angle % 360, 315)
# Horizontal line
line = OWScatterPlotGraph._orthonormal_line(
np.array([10, 11, 12]), np.array([42, 42, 42]), color, width)
self.assertEqual(line.pos().x(), 10)
self.assertEqual(line.pos().y(), 42)
self.assertEqual(line.angle, 0)
# Vertical line
line = OWScatterPlotGraph._orthonormal_line(
np.array([42, 42, 42]), np.array([10, 11, 12]), color, width)
self.assertEqual(line.pos().x(), 42)
self.assertEqual(line.pos().y(), 10)
self.assertEqual(line.angle, 90)
# No line because all points coincide
line = OWScatterPlotGraph._orthonormal_line(
np.array([1, 1, 1]), np.array([42, 42, 42]), color, width)
self.assertIsNone(line)
# No line because the group is symmetric
line = OWScatterPlotGraph._orthonormal_line(
np.array([1, 1, 2, 2]), np.array([42, 5, 5, 42]), color, width)
self.assertIsNone(line)
def test_regression_line(self):
color = QColor(1, 2, 3)
width = 42
# Normal line
line = OWScatterPlotGraph._regression_line(
np.array([0, 1, 1, 2]), np.array([0, 0, 2, 2]), color, width)
self.assertEqual(line.pos().x(), 0)
self.assertAlmostEqual(line.pos().y(), 0)
self.assertEqual(line.angle, 45)
self.assertEqual(line.pen.color(), color)
self.assertEqual(line.pen.width(), width)
# Normal line, negative slope
line = OWScatterPlotGraph._regression_line(
np.array([1, 2, 3]), np.array([3, 2, 1]), color, width)
self.assertEqual(line.pos().x(), 1)
self.assertEqual(line.pos().y(), 3)
self.assertEqual(line.angle % 360, 315)
# Horizontal line
line = OWScatterPlotGraph._regression_line(
np.array([10, 11, 12]), np.array([42, 42, 42]), color, width)
self.assertEqual(line.pos().x(), 10)
self.assertEqual(line.pos().y(), 42)
self.assertEqual(line.angle, 0)
# Vertical line
line = OWScatterPlotGraph._regression_line(
np.array([42, 42, 42]), np.array([10, 11, 12]), color, width)
self.assertIsNone(line)
# No line because all points coincide
line = OWScatterPlotGraph._regression_line(
np.array([1, 1, 1]), np.array([42, 42, 42]), color, width)
self.assertIsNone(line)
def test_add_line_calls_proper_regressor(self):
graph = self.widget.graph
graph._orthonormal_line = Mock(return_value=None)
graph._regression_line = Mock(return_value=None)
x, y, c = Mock(), Mock(), Mock()
graph.orthonormal_regression = True
graph._add_line(x, y, c)
graph._orthonormal_line.assert_called_once_with(x, y, c, 3, Qt.SolidLine)
graph._regression_line.assert_not_called()
graph._orthonormal_line.reset_mock()
graph.orthonormal_regression = False
graph._add_line(x, y, c)
graph._regression_line.assert_called_with(x, y, c, 3, Qt.SolidLine)
graph._orthonormal_line.assert_not_called()
def test_no_regression_line(self):
graph = self.widget.graph
graph._orthonormal_line = lambda *_: None
graph.orthonormal_regression = True
graph.plot_widget.addItem = Mock()
x, y, c = Mock(), Mock(), Mock()
graph._add_line(x, y, c)
graph.plot_widget.addItem.assert_not_called()
self.assertEqual(graph.reg_line_items, [])
def test_update_regression_line_calls_add_line(self):
widget = self.widget
graph = widget.graph
x, y = np.array([[0, 0], [1, 0], [1, 2], [2, 2],
[0, 1], [1, 3], [2, 5]], dtype=float).T
colors = np.array([0, 0, 0, 0, 1, 1, 1], dtype=float)
widget.get_coordinates_data = lambda: (x, y)
widget.can_draw_regression_line = lambda: True
widget.get_color_data = lambda: colors
widget.is_continuous_color = lambda: False
graph.palette = DefaultRGBColors
graph.controls.show_reg_line.setChecked(True)
graph._add_line = Mock()
graph.update_regression_line()
(args1, _), (args2, _), (args3, _) = graph._add_line.call_args_list
np.testing.assert_equal(args1[0], x)
np.testing.assert_equal(args1[1], y)
self.assertEqual(args1[2], QColor("#505050"))
np.testing.assert_equal(args2[0], x[:4])
np.testing.assert_equal(args2[1], y[:4])
self.assertEqual(args2[2].hue(), graph.palette[0].hue())
np.testing.assert_equal(args3[0], x[4:])
np.testing.assert_equal(args3[1], y[4:])
self.assertEqual(args3[2].hue(), graph.palette[1].hue())
graph._add_line.reset_mock()
# Continuous color - just a single line
widget.is_continuous_color = lambda: True
graph.update_regression_line()
graph._add_line.assert_called_once()
args1, _ = graph._add_line.call_args_list[0]
np.testing.assert_equal(args1[0], x)
np.testing.assert_equal(args1[1], y)
self.assertEqual(args1[2].hue(), QColor("#505050").hue())
graph._add_line.reset_mock()
widget.is_continuous_color = lambda: False
# No palette - just a single line
graph.palette = None
graph.update_regression_line()
graph._add_line.assert_called_once()
graph._add_line.reset_mock()
graph.palette = DefaultRGBColors
# Regression line is disabled
graph.show_reg_line = False
graph.update_regression_line()
graph._add_line.assert_not_called()
graph.show_reg_line = True
# No colors - just one line
widget.get_color_data = lambda: None
graph.update_regression_line()
graph._add_line.assert_called_once()
graph._add_line.reset_mock()
# No data
widget.get_coordinates_data = lambda: (None, None)
graph.update_regression_line()
graph._add_line.assert_not_called()
graph.show_reg_line = True
widget.get_coordinates_data = lambda: (x, y)
# One color group contains just one point - skip that line
widget.get_color_data = lambda: np.array([0] + [1] * (len(x) - 1))
graph.update_regression_line()
(args1, _), (args2, _) = graph._add_line.call_args_list
np.testing.assert_equal(args1[0], x)
np.testing.assert_equal(args1[1], y)
self.assertEqual(args1[2].hue(), QColor("#505050").hue())
np.testing.assert_equal(args2[0], x[1:])
np.testing.assert_equal(args2[1], y[1:])
self.assertEqual(args2[2].hue(), graph.palette[1].hue())
def test_update_regression_line_is_called(self):
widget = self.widget
graph = widget.graph
urline = graph.update_regression_line = Mock()
self.send_signal(widget.Inputs.data, self.data)
urline.assert_called_once()
urline.reset_mock()
self.send_signal(widget.Inputs.data, None)
urline.assert_called_once()
urline.reset_mock()
self.send_signal(widget.Inputs.data, self.data)
urline.assert_called_once()
urline.reset_mock()
simulate.combobox_activate_index(self.widget.controls.attr_color, 0)
urline.assert_called_once()
urline.reset_mock()
simulate.combobox_activate_index(self.widget.controls.attr_color, 2)
urline.assert_called_once()
urline.reset_mock()
simulate.combobox_activate_index(self.widget.controls.attr_x, 3)
urline.assert_called_once()
urline.reset_mock()
def test_time_axis(self):
a = np.array([[1581953776, 1], [1581963776, 2], [1582953776, 3]])
d1 = Domain([ContinuousVariable("time"), ContinuousVariable("value")])
data = Table.from_numpy(d1, a)
d2 = Domain([TimeVariable("time"), ContinuousVariable("value")])
data_time = Table.from_numpy(d2, a)
x_axis = self.widget.graph.plot_widget.plotItem.getAxis("bottom")
self.send_signal(self.widget.Inputs.data, data)
self.assertFalse(x_axis._use_time)
_ticks = x_axis.tickValues(1581953776, 1582953776, 1000)
ticks = x_axis.tickStrings(_ticks[0][1], 1, _ticks[0][0])
try:
float(ticks[0])
except ValueError:
self.fail("axis should display floats")
self.send_signal(self.widget.Inputs.data, data_time)
self.assertTrue(x_axis._use_time)
_ticks = x_axis.tickValues(1581953776, 1582953776, 1000)
ticks = x_axis.tickStrings(_ticks[0][1], 1, _ticks[0][0])
with self.assertRaises(ValueError):
float(ticks[0])
spacing, ticks = x_axis.tickValues(1581953776, 1582953776, 10)[0]
self.assertEqual(spacing, 1582953776 - 1581953776)
self.assertTrue(not ticks.size or 1581953776 <= ticks[0] <= 1582953776)
def test_clear_plot(self):
self.widget.cb_class_density.setChecked(True)
self.send_signal(self.widget.Inputs.data, self.data)
data = self.data.transform(Domain(self.data.domain.attributes))[:100]
self.send_signal(self.widget.Inputs.data, data)
with excepthook_catch():
self.send_signal(self.widget.Inputs.data, self.data)
def test_visual_settings(self, timeout=DEFAULT_TIMEOUT):
super().test_visual_settings()
graph = self.widget.graph
font = QFont()
font.setItalic(True)
font.setFamily("Helvetica")
key, value = ('Fonts', 'Axis title', 'Font size'), 16
self.widget.set_visual_settings(key, value)
key, value = ('Fonts', 'Axis title', 'Italic'), True
self.widget.set_visual_settings(key, value)
font.setPointSize(16)
for item in graph.parameter_setter.axis_items:
self.assertFontEqual(item.label.font(), font)
key, value = ('Fonts', 'Axis ticks', 'Font size'), 15
self.widget.set_visual_settings(key, value)
key, value = ('Fonts', 'Axis ticks', 'Italic'), True
self.widget.set_visual_settings(key, value)
font.setPointSize(15)
for item in graph.parameter_setter.axis_items:
self.assertFontEqual(item.style["tickFont"], font)
self.widget.graph.controls.show_reg_line.setChecked(True)
self.assertGreater(len(graph.parameter_setter.reg_line_label_items), 0)
self.widget.graph.controls.show_ellipse.setChecked(True)
key, value = ('Fonts', 'Line label', 'Font size'), 16
self.widget.set_visual_settings(key, value)
key, value = ('Fonts', 'Line label', 'Italic'), True
self.widget.set_visual_settings(key, value)
font.setPointSize(16)
for label in graph.parameter_setter.reg_line_label_items:
self.assertFontEqual(label.textItem.font(), font)
key, value = ('Figure', 'Lines', 'Width'), 10
self.widget.set_visual_settings(key, value)
for item in graph.reg_line_items:
self.assertEqual(item.pen.width(), 10)
for item in graph.ellipse_items:
self.assertEqual(item.opts["pen"].width(), 10)
def test_error_bars_enabled(self):
self.assertFalse(self.widget.button_attr_x.isEnabled())
self.assertFalse(self.widget.button_attr_y.isEnabled())
self.send_signal(self.widget.Inputs.data, self.data)
self.assertTrue(self.widget.button_attr_x.isEnabled())
self.assertTrue(self.widget.button_attr_y.isEnabled())
self.send_signal(self.widget.Inputs.data, Table("zoo"))
self.assertFalse(self.widget.button_attr_x.isEnabled())
self.assertFalse(self.widget.button_attr_y.isEnabled())
def test_error_bars(self):
data = Table("iris")
var = ContinuousVariable("ϵ")
data = data.add_column(var, np.full(150, 0.1))
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var
self.widget.attr_x_lower = var
self.widget.attr_y_upper = var
self.widget.attr_y_lower = var
graph = self.widget.graph
graph.reset_graph()
self.assertEqual(len(graph.error_bars_items), 2)
self.send_signal(self.widget.Inputs.data, None)
self.assertEqual(len(graph.error_bars_items), 0)
def test_error_bars_missing_values(self):
data = Table("iris")
with data.unlocked():
data.X[0, 0] = np.nan
data.X[1, 0] = np.nan
data = data[:4]
var = ContinuousVariable("ϵ")
data = data.add_column(var, np.array([0.1, np.nan, 0.1, np.nan]))
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var
self.widget.attr_x_lower = var
self.widget.attr_y_upper = var
self.widget.attr_y_lower = var
graph = self.widget.graph
graph.reset_graph()
self.assertEqual(len(graph.error_bars_items), 2)
self.assertEqual(len(graph.scatterplot_item.data), 2)
self.assertEqual(len(graph.error_bars_items[0].opts["left"]), 2)
def test_error_bars_jitter(self):
data = Table("iris")
var = ContinuousVariable("ϵ")
data = data.add_column(var, np.full(150, 0.1))
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var
self.widget.attr_x_lower = var
self.widget.graph.reset_graph()
error_bar_item = self.widget.graph.error_bars_items[0]
self.assertEqual(list(error_bar_item.opts["x"][:3]),
list(data.X[:3, 0]))
self.assertEqual(list(error_bar_item.opts["y"][:3]),
list(data.X[:3, 1]))
self.assertEqual(list(error_bar_item.opts["left"][:3]), [0.1] * 3)
self.assertEqual(list(error_bar_item.opts["right"][:3]), [0.1] * 3)
self.widget.graph.controls.jitter_continuous.setChecked(True)
self.widget.graph.controls.jitter_size.setValue(10)
self.widget.graph.reset_graph()
error_bar_item = self.widget.graph.error_bars_items[0]
self.assertEqual(list(error_bar_item.opts["x"][:3].round(1)),
[5.2, 5.1, 4.8])
self.assertEqual(list(error_bar_item.opts["y"][:3].round(1)),
[3.6, 2.9, 3.3])
self.assertEqual(list(error_bar_item.opts["left"][:3]), [0.1] * 3)
self.assertEqual(list(error_bar_item.opts["right"][:3]), [0.1] * 3)
def test_error_bars_abs_values(self):
data = Table("iris")
var_upper = ContinuousVariable("ϵ_upper")
var_lower = ContinuousVariable("ϵ_lower")
data = data.add_column(var_upper, data.X[:, 0] + 0.1)
data = data.add_column(var_lower, data.X[:, 0] - 0.1)
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var_upper
self.widget.attr_x_lower = var_lower
self.widget.attr_x_is_abs = True
self.widget.graph.reset_graph()
error_bar_item = self.widget.graph.error_bars_items[0]
self.assertEqual(list(error_bar_item.opts["x"][:3]),
list(data.X[:3, 0]))
self.assertEqual(list(error_bar_item.opts["y"][:3]),
list(data.X[:3, 1]))
self.assertEqual(list(error_bar_item.opts["left"][:3].round(1)),
[0.1] * 3)
self.assertEqual(list(error_bar_item.opts["right"][:3].round(1)),
[0.1] * 3)
def test_error_bars_button_clicked(self):
data = Table("iris")
var1 = ContinuousVariable("ϵ1")
var2 = ContinuousVariable("ϵ2")
var3 = ContinuousVariable("ϵ3")
var4 = ContinuousVariable("ϵ4")
data = data.add_column(var1, np.full(150, 0.1))
data = data.add_column(var2, np.full(150, 0.1))
data = data.add_column(var3, np.full(150, 0.1))
data = data.add_column(var4, np.full(150, 0.1))
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var1
self.widget.attr_x_lower = var2
self.widget.attr_y_upper = var3
self.widget.attr_y_lower = var4
x_dlg = self.widget._OWScatterPlot__x_axis_dlg
x_dlg._set_data = Mock()
x_dlg.show = Mock()
x_dlg.raise_ = Mock()
x_dlg.activateWindow = Mock()
self.widget.button_attr_x.click()
x_dlg._set_data.assert_called_with(data.domain, var1, var2, False)
y_dlg = self.widget._OWScatterPlot__y_axis_dlg
y_dlg._set_data = Mock()
y_dlg.show = Mock()
y_dlg.raise_ = Mock()
y_dlg.activateWindow = Mock()
self.widget.button_attr_y.click()
y_dlg._set_data.assert_called_with(data.domain, var3, var4, False)
def test_error_bars_dlg_changed(self):
data = Table("iris")
var_upper = ContinuousVariable("ϵ_upper")
var_lower = ContinuousVariable("ϵ_lower")
data = data.add_column(var_upper, data.X[:, 1] + 0.2)
data = data.add_column(var_lower, data.X[:, 1] - 0.1)
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_y_upper = var_upper
self.widget.attr_y_lower = var_lower
y_dlg = self.widget._OWScatterPlot__y_axis_dlg
y_dlg.show = Mock()
y_dlg.raise_ = Mock()
y_dlg.activateWindow = Mock()
self.widget.button_attr_y.click()
y_dlg._ErrorBarsDialog__radio_buttons.buttons()[1].click()
self.widget.graph.reset_graph()
error_bar_item = self.widget.graph.error_bars_items[1]
self.assertEqual(list(error_bar_item.opts["x"][:3]),
list(data.X[:3, 0]))
self.assertEqual(list(error_bar_item.opts["y"][:3]),
list(data.X[:3, 1]))
self.assertEqual(list(error_bar_item.opts["top"][:3].round(1)),
[0.2] * 3)
self.assertEqual(list(error_bar_item.opts["bottom"][:3].round(1)),
[0.1] * 3)
def test_error_bars_saved_settings(self):
data = Table("iris")
var_upper = ContinuousVariable("ϵ_upper")
var_lower = ContinuousVariable("ϵ_lower")
data = data.add_column(var_upper, data.X[:, 0] + 0.2)
data = data.add_column(var_lower, data.X[:, 0] - 0.1)
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var_upper
self.widget.attr_x_lower = var_lower
self.widget.attr_x_is_abs = True
settings = self.widget.settingsHandler.pack_data(self.widget)
widget = self.create_widget(OWScatterPlot, stored_settings=settings)
self.send_signal(widget.Inputs.data, data, widget=widget)
widget.graph.reset_graph()
error_bar_item = widget.graph.error_bars_items[0]
self.assertEqual(list(error_bar_item.opts["x"][:3]),
list(data.X[:3, 0]))
self.assertEqual(list(error_bar_item.opts["y"][:3]),
list(data.X[:3, 1]))
self.assertEqual(list(error_bar_item.opts["right"][:3].round(1)),
[0.2] * 3)
self.assertEqual(list(error_bar_item.opts["left"][:3].round(1)),
[0.1] * 3)
def test_error_bars_change_domain(self):
data = Table("iris")
var_upper = ContinuousVariable("ϵ_upper")
var_lower = ContinuousVariable("ϵ_lower")
data = data.add_column(var_upper, data.X[:, 0] + 0.1)
data = data.add_column(var_lower, data.X[:, 0] - 0.1)
self.send_signal(self.widget.Inputs.data, data)
self.widget.attr_x_upper = var_upper
self.widget.attr_x_lower = var_lower
self.widget.attr_x_is_abs = True
_data = Table("iris")
var_upper = ContinuousVariable("ϵ_upper_")
var_lower = ContinuousVariable("ϵ_lower_")
_data = _data.add_column(var_upper, _data.X[:, 0] + 0.1)
_data = _data.add_column(var_lower, _data.X[:, 0] - 0.1)
self.send_signal(self.widget.Inputs.data, _data)
self.assertEqual(self.widget.graph.error_bars_items, [])
self.send_signal(self.widget.Inputs.data, data)
self.widget.graph.reset_graph()
error_bar_item = self.widget.graph.error_bars_items[0]
self.assertEqual(list(error_bar_item.opts["x"][:3]),
list(data.X[:3, 0]))
self.assertEqual(list(error_bar_item.opts["y"][:3]),
list(data.X[:3, 1]))
self.assertEqual(list(error_bar_item.opts["right"][:3].round(1)),
[0.1] * 3)
self.assertEqual(list(error_bar_item.opts["left"][:3].round(1)),
[0.1] * 3)
if __name__ == "__main__":
import unittest
unittest.main()
|