File: test_owsilhouetteplot.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (307 lines) | stat: -rw-r--r-- 12,831 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# pylint: disable=protected-access
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring
import random
import unittest
from unittest.mock import Mock

import numpy as np

from orangewidget.settings import Context

import Orange.distance
from Orange.data import (
    Table, Domain, ContinuousVariable, DiscreteVariable, StringVariable)
from Orange.misc import DistMatrix
from Orange.widgets.utils.annotated_data import ANNOTATED_DATA_SIGNAL_NAME
from Orange.widgets.visualize.owsilhouetteplot import OWSilhouettePlot
from Orange.widgets.tests.base import WidgetTest, WidgetOutputsTestMixin
from Orange.widgets.tests.utils import possible_duplicate_table


class TestOWSilhouettePlot(WidgetTest, WidgetOutputsTestMixin):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        WidgetOutputsTestMixin.init(cls)
        cls.same_input_output_domain = False

        cls.signal_name = OWSilhouettePlot.Inputs.data
        cls.signal_data = cls.data
        cls.scorename = "Silhouette ({})".format(cls.data.domain.class_var.name)

    def setUp(self):
        self.widget = self.create_widget(OWSilhouettePlot,
                                         stored_settings={"auto_commit": True})
        self.widget = self.widget  # type: OWSilhouettePlot

    def test_no_data(self):
        """Check that the widget doesn't crash on empty data"""
        self.send_signal(self.widget.Inputs.data, self.data[:0])

    def test_outputs_add_scores(self):
        # check output when appending scores
        self.send_signal(self.widget.Inputs.data, self.data)
        selected_indices = self._select_data()
        selected = self.get_output(self.widget.Outputs.selected_data)
        annotated = self.get_output(self.widget.Outputs.annotated_data)
        self.assertEqual(self.scorename, selected.domain.metas[0].name)
        self.assertEqual(self.scorename, annotated.domain.metas[0].name)
        np.testing.assert_array_equal(selected.X, self.data.X[selected_indices])

    def _select_data(self):
        random.seed(42)
        points = random.sample(range(0, len(self.data)), 20)
        self.widget._silplot.setSelection(points)
        return sorted(points)

    def test_insufficient_clusters(self):
        iris = self.data
        data_one_cluster = iris[:3]  # three instances Iris-setosa only
        self.send_signal(self.widget.Inputs.data, data_one_cluster)
        self.assertTrue(self.widget.Error.need_two_clusters.is_shown())

        data_singletons = iris[[0, 50, 100]]
        assert len(np.unique(data_singletons.Y)) == 3  # 3 instances 3 labels
        self.send_signal(self.widget.Inputs.data, data_singletons)
        self.assertTrue(self.widget.Error.singleton_clusters_all.is_shown())

    def test_not_symmetric(self):
        w = self.widget
        self.send_signal(w.Inputs.data, DistMatrix([[1, 2, 3], [4, 5, 6]]))
        self.assertTrue(w.Error.input_validation_error.is_shown())
        self.send_signal(w.Inputs.data, None)
        self.assertFalse(w.Error.input_validation_error.is_shown())

    def test_unknowns_in_labels(self):
        data = self.data[[0, 1, 2, 50, 51, 52, 100, 101, 102]]
        with data.unlocked(data.Y):
            data.Y[::3] = np.nan
        valid = ~np.isnan(data.Y.flatten())
        self.send_signal(self.widget.Inputs.data, data)
        output = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        scores = output[:, self.scorename].metas.flatten()
        self.assertTrue(np.all(np.isnan(scores[::3])))
        self.assertTrue(np.all(np.isfinite(scores[valid])))

        # Run again on subset with known labels
        data_1 = data[np.flatnonzero(valid)]
        self.send_signal(self.widget.Inputs.data, data_1)
        output_1 = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        scores_1 = output_1[:, self.scorename].metas.flatten()
        self.assertTrue(np.all(np.isfinite(scores_1)))
        # the scores must match
        np.testing.assert_almost_equal(scores_1, scores[valid], decimal=12)

    def test_nan_distances(self):
        self.widget.distance_idx = 2
        self.assertEqual(self.widget.Distances[self.widget.distance_idx][0],
                         'Cosine')
        data = self.data[[0, 1, 2, 50, 51, 52, 100, 101, 102]]
        with data.unlocked(data.X):
            data.X[::3] = 0
        valid = np.any(data.X != 0, axis=1)
        self.assertFalse(self.widget.Warning.nan_distances.is_shown())
        self.send_signal(self.widget.Inputs.data, data)
        self.assertTrue(np.isnan(self.widget._matrix).any())
        self.assertTrue(self.widget.Warning.nan_distances.is_shown())
        output = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        scores = output[:, self.scorename].metas.flatten()
        self.assertTrue(np.all(np.isnan(scores[::3])))
        self.assertTrue(np.all(np.isfinite(scores[valid])))

    def test_ignore_categorical(self):
        data = Table('heart_disease')
        self.widget.distance_idx = 2
        self.assertEqual(self.widget.Distances[self.widget.distance_idx][0],
                         'Cosine')
        self.assertFalse(self.widget.Warning.ignoring_categorical.is_shown())
        self.send_signal(self.widget.Inputs.data, data)
        self.assertTrue(self.widget.Warning.ignoring_categorical.is_shown())
        output = self.get_output(ANNOTATED_DATA_SIGNAL_NAME)
        self.assertEqual(len(output.domain.variables), len(data.domain.variables))
        self.widget.distance_idx = 0
        self.widget._update()
        self.assertFalse(self.widget.Warning.ignoring_categorical.is_shown())

    def test_meta_object_dtype(self):
        # gh-1875: Test on mixed string/discrete metas
        data = self.data[::5]
        domain = Domain(data.domain.attributes,
                        [],
                        [data.domain["iris"], StringVariable("S")])
        data = data.from_table(domain, data)
        self.send_signal(self.widget.Inputs.data, data)

    def test_memory_error(self):
        """
        Handling memory error.
        GH-2336
        Handling value error as well. This value error is in a relation with memory error.
        GH-2521
        """
        for i, side_effect in enumerate([MemoryError, ValueError]):
            data = Table("iris")[::3]
            self.send_signal(self.widget.Inputs.data, data)
            self.assertFalse(self.widget.Error.memory_error.is_shown())
            self.assertFalse(self.widget.Error.value_error.is_shown())
            with unittest.mock.patch("numpy.asarray", side_effect=side_effect):
                self.widget._matrix = None
                self.widget.data = data
                self.widget._effective_data = data
                self.widget._update()
                self.assertTrue(self.widget.Error.memory_error.is_shown() != i)
                self.assertTrue(self.widget.Error.value_error.is_shown() == i)

    def test_bad_data_range(self):
        """
        Silhouette Plot now sets axis range properly.
        GH-2377
        """
        nan = np.nan
        table = Table.from_list(
            Domain(
                [ContinuousVariable("a"), ContinuousVariable("b"), ContinuousVariable("c")],
                [DiscreteVariable("d", values=("y", "n"))]),
            list(zip([4, nan, nan],
                     [15, nan, nan],
                     [16, nan, nan],
                     "nyy"))
        )
        self.send_signal(self.widget.Inputs.data, table)

    def test_saved_selection(self):
        self.widget.settingsHandler.pack_data(self.widget)
        # no assert here, just test is doesn't crash on empty

        iris = Table("iris")

        self.send_signal(self.widget.Inputs.data, iris)
        random.seed(42)
        points = random.sample(range(0, len(self.data)), 20)
        self.widget._silplot.setSelection(points)
        settings = self.widget.settingsHandler.pack_data(self.widget)

        w = self.create_widget(OWSilhouettePlot, stored_settings=settings)
        self.send_signal(w.Inputs.data, iris, widget=w)
        self.assertEqual(len(self.get_output(w.Outputs.selected_data)), 20)

    def test_distance_input(self):
        widget = self.widget
        data = Table("heart_disease")[::4]
        matrix = Orange.distance.Euclidean(data)
        self.send_signal(widget.Inputs.data, matrix, widget=widget)
        self.assertIsNotNone(widget.distances)
        self.assertIsNotNone(widget.data)
        self.assertFalse(widget._distances_gui_box.isEnabled())

        self.send_signal(widget.Inputs.data, data, widget=widget)
        self.assertIsNone(widget.distances)
        self.assertIsNotNone(widget.data)
        self.assertTrue(widget._distances_gui_box.isEnabled())

    def test_input_distance_no_data(self):
        widget = self.widget
        matrix = DistMatrix(
            np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]),
            row_items=None
        )
        self.send_signal(widget.Inputs.data, matrix, widget=widget)
        self.assertTrue(widget.Error.input_validation_error.is_shown())
        self.assertIsNone(widget.data)
        self.assertIsNone(widget.distances)
        self.send_signal(widget.Inputs.data, None, widget=widget)
        self.assertFalse(widget.Error.input_validation_error.is_shown())

    def test_no_group_var(self):
        widget = self.widget
        data = Table("iris")[::4]
        data = data[:, data.domain.attributes]
        matrix = Orange.distance.Euclidean(data)
        self.send_signal(widget.Inputs.data, matrix, widget=widget)

        self.assertTrue(widget.Error.input_validation_error.is_shown())
        self.assertIsNone(widget.data)
        self.assertIsNone(widget.distances)

        self.send_signal(widget.Inputs.data, None, widget=widget)
        self.assertFalse(widget.Error.input_validation_error.is_shown())

    def test_unique_output_domain(self):
        widget = self.widget
        data = possible_duplicate_table('Silhouette (iris)')
        matrix = Orange.distance.Euclidean(data)
        self.send_signal(widget.Inputs.data, matrix, widget=widget)

        output = self.get_output(self.widget.Outputs.annotated_data)
        self.assertEqual(output.domain.metas[0].name, 'Silhouette (iris) (1)')

    def test_report(self):
        widget = self.widget
        widget.report_plot = Mock()
        widget.report_caption = Mock()

        widget.send_report()
        widget.report_plot.assert_not_called()
        widget.report_caption.assert_not_called()

        data = Table("zoo")
        self.send_signal(widget.Inputs.data, data)

        widget.annotation_var = None
        widget.send_report()
        widget.report_plot.assert_called()
        widget.report_caption.assert_called()
        text = widget.report_caption.call_args[0][0]
        self.assertIn(data.domain.class_var.name, text)
        self.assertNotIn("nnotated", text)

        widget.annotation_var = data.domain.metas[0]
        widget._silplot.rowNamesVisible = lambda: True
        widget.send_report()
        text = widget.report_caption.call_args[0][0]
        self.assertIn(data.domain.class_var.name, text)
        self.assertIn("nnotated", text)
        self.assertIn(data.domain.metas[0].name, text)

    def test_migration(self):
        enc_domain = dict(
            attributes=(('foo', 1), ('bar', 1), ('baz', 1), ('bax', 1),
                        ('cfoo', 1), ('mbaz', 1)))

        # No annotation
        context = Context(
            values=dict(cluster_var_idx=(0, -2), annotation_var_idx=(0, -2)),
            **enc_domain
        )
        OWSilhouettePlot.migrate_context(context, 1)
        values = context.values
        self.assertNotIn("cluster_var_idx", values)
        self.assertNotIn("annotation_var_idx", values)
        self.assertEqual(values["cluster_var"], ("foo", 101))
        self.assertEqual(values["annotation_var"], None)

        # We have annotation
        context = Context(
            values=dict(cluster_var_idx=(2, -2), annotation_var_idx=(4, -2)),
            **enc_domain
        )
        OWSilhouettePlot.migrate_context(context, 1)
        self.assertNotIn("cluster_var_idx", values)
        self.assertNotIn("annotation_var_idx", values)
        self.assertEqual(context.values["cluster_var"], ("baz", 101))
        self.assertEqual(context.values["annotation_var"], ("bax", 101))

        # We thought was had annotation, but the index is wrong due to
        # incorrect domain
        context = Context(
            values=dict(cluster_var_idx=(4, -2), annotation_var_idx=(7, -2)),
            **enc_domain
        )
        OWSilhouettePlot.migrate_context(context, 1)
        self.assertEqual(context.values["cluster_var"], ("cfoo", 101))
        self.assertNotIn("annotation_var_idx", values)


if __name__ == "__main__":
    unittest.main()