1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
# Test methods with long descriptive names can omit docstrings
# pylint: disable=missing-docstring, protected-access
from os import path
import unittest
from unittest.mock import Mock
import numpy as np
from Orange.classification import TreeLearner
from Orange.data import Table, ContinuousVariable, DiscreteVariable, Domain
from Orange.tree import DiscreteNode, MappedDiscreteNode, Node, NumericNode, \
TreeModel
from Orange.widgets.tests.base import WidgetTest, WidgetOutputsTestMixin
from Orange.widgets.visualize.owtreeviewer import OWTreeGraph
class TestOWTreeGraph(WidgetTest, WidgetOutputsTestMixin):
@classmethod
def setUpClass(cls):
super().setUpClass()
WidgetOutputsTestMixin.init(cls)
tree = TreeLearner()
cls.model = tree(cls.data)
cls.model.instances = cls.data
cls.signal_name = OWTreeGraph.Inputs.tree
cls.signal_data = cls.model
# Load a dataset that contains two variables with the same entropy
data_same_entropy = Table(path.join(
path.dirname(path.dirname(path.dirname(__file__))), "tests",
"datasets", "same_entropy.tab"))
cls.data_same_entropy = tree(data_same_entropy)
cls.data_same_entropy.instances = data_same_entropy
vara = DiscreteVariable("aaa", values=("e", "f", "g"))
root = DiscreteNode(vara, 0, np.array([42, 8]))
root.subset = np.arange(50)
varb = DiscreteVariable("bbb", values=tuple("ijkl"))
child0 = MappedDiscreteNode(varb, 1, np.array([0, 1, 0, 0]), (38, 5))
child0.subset = np.arange(16)
child1 = Node(None, 0, (13, 3))
child1.subset = np.arange(16, 30)
varc = ContinuousVariable("ccc")
child2 = NumericNode(varc, 2, 42, (78, 12))
child2.subset = np.arange(30, 50)
root.children = (child0, child1, child2)
child00 = Node(None, 0, (15, 4))
child00.subset = np.arange(10)
child01 = Node(None, 0, (10, 5))
child01.subset = np.arange(10, 16)
child0.children = (child00, child01)
child20 = Node(None, 0, (90, 4))
child20.subset = np.arange(30, 35)
child21 = Node(None, 0, (70, 9))
child21.subset = np.arange(35, 50)
child2.children = (child20, child21)
domain = Domain([vara, varb, varc], ContinuousVariable("y"))
t = [[i, j, k]
for i in range(3)
for j in range(4)
for k in (40, 44)]
x = np.array((t * 3)[:50])
data = Table.from_numpy(
domain, x, np.arange(len(x)))
cls.tree = TreeModel(data, root)
def setUp(self):
self.widget = self.create_widget(OWTreeGraph)
def _select_data(self):
node = self.widget.scene.nodes()[0]
node.setSelected(True)
return self.model.get_indices([node.node_inst])
def test_target_class_changed(self):
"""Check if node content has changed after selecting target class"""
w = self.widget
self.send_signal(w.Inputs.tree, self.signal_data)
nodes = w.scene.nodes()
text = nodes[0].toPlainText()
w.color_combo.activated.emit(1)
w.color_combo.setCurrentIndex(1)
self.assertNotEqual(nodes[0].toPlainText(), text)
def test_tree_determinism(self):
"""Check that the tree is drawn identically upon receiving the same
dataset with no parameter changes."""
w = self.widget
n_tries = 10
def _check_all_same(data):
"""Check that all the elements within an iterable are identical."""
iterator = iter(data)
try:
first = next(iterator)
except StopIteration:
return True
return all(first == rest for rest in iterator)
# Make sure the tree are deterministic for iris
scene_nodes = []
for _ in range(n_tries):
self.send_signal(w.Inputs.tree, self.signal_data)
scene_nodes.append([n.pos() for n in w.scene.nodes()])
for node_row in zip(*scene_nodes):
self.assertTrue(
_check_all_same(node_row),
"The tree was not drawn identically in the %d times it was "
"sent to widget after receiving the iris dataset." % n_tries
)
# Make sure trees are deterministic with data where some variables have
# the same entropy
scene_nodes = []
for _ in range(n_tries):
self.send_signal(w.Inputs.tree, self.data_same_entropy)
scene_nodes.append([n.pos() for n in w.scene.nodes()])
for node_row in zip(*scene_nodes):
self.assertTrue(
_check_all_same(node_row),
"The tree was not drawn identically in the %d times it was "
"sent to widget after receiving a dataset with variables with "
"same entropy." % n_tries
)
def test_update_node_info(self):
widget = self.widget
self.send_signal(widget.Inputs.tree, self.signal_data)
node = Mock()
widget.tree_adapter = Mock()
widget.tree_adapter.attribute = lambda *_: ContinuousVariable("foo")
widget.node_content_cls = lambda *_: "bar<br/>ban"
widget.tree_adapter.has_children = lambda *_: True
widget.show_intermediate = False
widget.update_node_info(node)
args = node.setHtml.call_args[0][0]
self.assertIn("foo", args)
self.assertNotIn("bar", args)
widget.tree_adapter.has_children = lambda *_: True
widget.show_intermediate = True
widget.update_node_info(node)
args = node.setHtml.call_args[0][0]
self.assertIn("bar<br/>ban<hr/>foo", args)
widget.tree_adapter.has_children = lambda *_: False
widget.show_intermediate = True
widget.update_node_info(node)
args = node.setHtml.call_args[0][0]
self.assertIn("bar<br/>ban<hr/>foo", args)
widget.tree_adapter.has_children = lambda *_: False
widget.show_intermediate = False
widget.update_node_info(node)
args = node.setHtml.call_args[0][0]
self.assertIn("bar<br/>ban<hr/>foo", args)
def test_tree_labels(self):
w = self.widget
w.show_intermediate = True
self.send_signal(w.Inputs.tree, self.tree)
txt = w.root_node.toPlainText()
self.assertIn("42.0 ± 8.0", txt)
self.assertIn("50 instances", txt)
self.assertIn("aaa", txt)
children = [edge.node2
for edge in w.root_node.graph_edges()]
txt = children[0].toPlainText()
self.assertIn("38.0 ± 5.0", txt)
self.assertIn("16 instances", txt)
self.assertIn("bbb", txt)
txt = children[1].toPlainText()
self.assertIn("13.0 ± 3.0", txt)
self.assertIn("14 instances", txt)
txt = children[2].toPlainText()
self.assertIn("78.0 ± 12.0", txt)
self.assertIn("20 instances", txt)
self.assertIn("ccc", txt)
w.controls.show_intermediate.click()
txt = w.root_node.toPlainText()
self.assertNotIn("42.0 ± 8.0", txt)
self.assertNotIn("50 instances", txt)
self.assertIn("aaa", txt)
children = [edge.node2
for edge in w.root_node.graph_edges()]
txt = children[0].toPlainText()
self.assertNotIn("38.0 ± 5.0", txt)
self.assertNotIn("16 instances", txt)
self.assertIn("bbb", txt)
txt = children[1].toPlainText()
self.assertIn("13.0 ± 3.0", txt)
self.assertIn("14 instances", txt)
txt = children[2].toPlainText()
self.assertNotIn("78.0 ± 12.0", txt)
self.assertNotIn("20 instances", txt)
self.assertIn("ccc", txt)
def test_select_node_labels(self):
widget = self.widget
combo = self.widget.controls.node_labels
def check_labels(attr):
column = widget.dataset.get_column(attr)
to_str = widget.domain[attr].str_val
for node in widget.scene.nodes():
if widget.tree_adapter.has_children(node.node_inst):
continue
subset = node.node_inst.subset
exp = ", ".join(map(to_str, column[subset[:4]]))
if len(subset) > 4:
exp += ", …"
self.assertIn(exp, node.toHtml())
def switch_to(attr):
idx = combo.model().indexOf(attr and widget.domain[attr])
combo.setCurrentIndex(idx)
combo.activated[int].emit(idx)
zoo = Table("zoo")
iris = Table("iris")
zootree = TreeLearner()(zoo)
iristree = TreeLearner()(iris)
self.assertIsNone(widget.node_labels)
# Default label is a string variable (with most unique values)
self.send_signal(widget.Inputs.tree, zootree)
self.assertIs(widget.node_labels, zootree.domain["name"])
check_labels("name")
# Change to another variable
switch_to("hair")
check_labels("hair")
# See that losing the data for a while keeps the label
self.send_signal(widget.Inputs.tree, None)
self.assertIsNone(widget.node_labels)
self.send_signal(widget.Inputs.tree, zootree)
check_labels("hair")
self.send_signal(widget.Inputs.tree, iristree)
self.assertIsNone(widget.node_labels)
switch_to("petal length")
check_labels("petal length")
self.send_signal(widget.Inputs.tree, None)
self.assertIsNone(widget.node_labels)
self.send_signal(widget.Inputs.tree, iristree)
self.assertEqual(widget.node_labels, iristree.domain["petal length"])
check_labels("petal length")
instances = zootree.instances
zootree.instances = None
self.send_signal(widget.Inputs.tree, zootree)
self.assertIsNone(widget.node_labels)
self.assertEqual(list(widget.label_model), [None])
zootree.instances = instances
widget.node_labels_hint = "" # Reset to no hint
self.send_signal(widget.Inputs.tree, zootree)
self.assertIs(widget.node_labels, zootree.domain["name"])
check_labels("name")
def test_select_node_many_labels(self):
zoo = Table("zoo")
zootree = TreeLearner()(zoo)
self.send_signal(self.widget.Inputs.tree, zootree)
ta = self.widget.tree_adapter
node = next(node for node in self.widget.scene.nodes()
if not ta.has_children(node.node_inst))
var = zoo.domain["name"]
values = zoo.get_column(var)
ta.get_instances_in_nodes = lambda *_: zoo[[0, 50]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50]])),
node.toHtml())
ta.get_instances_in_nodes = lambda *_: zoo[[0, 50, 75]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50, 75]])),
node.toHtml())
ta.get_instances_in_nodes = lambda *_: zoo[[0, 50, 75, 11]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50, 75, 11]])),
node.toHtml())
ta.get_instances_in_nodes = lambda *_: zoo[[0, 50, 75, 11, 3]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50, 75, 11]])) + ", …",
node.toHtml())
var = zoo.domain["legs"]
values = zoo.get_column(var)
self.widget.node_labels = var
ta.get_instances_in_nodes = lambda *_: zoo[[0, 50, 75, 11]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50, 75, 11]])),
node.toHtml())
ta.get_instances_in_nodes = lambda *_: zoo[[0, 50, 75, 11, 3]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50, 75, 11]])) + ", …",
node.toHtml())
iris = Table("iris")
iristree = TreeLearner()(iris)
self.send_signal(self.widget.Inputs.tree, iristree)
var = iris.domain["petal length"]
values = iris.get_column(var)
self.widget.node_labels = var
ta = self.widget.tree_adapter
node = next(node for node in self.widget.scene.nodes()
if not ta.has_children(node.node_inst))
ta.get_instances_in_nodes = lambda *_: iris[[0, 50, 75, 11, 13,
14, 15, 16]]
self.widget.update_node_info(node)
self.assertIn(", ".join(map(var.str_val, values[[0, 50, 75, 11]])) + ", …",
node.toHtml())
if __name__ == "__main__":
unittest.main()
|