File: classification.rst

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (236 lines) | stat: -rw-r--r-- 5,127 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
###################################
Classification (``classification``)
###################################

.. automodule:: Orange.classification

.. index:: logistic regression
   pair: classification; logistic regression

Logistic Regression
-------------------
.. autoclass:: LogisticRegressionLearner
   :members:



.. index:: random forest
   pair: classification; random forest

Random Forest
-------------
.. autoclass:: RandomForestLearner
   :members:



.. index:: random forest (simple)
   pair: classification; simple random forest

Simple Random Forest
--------------------

.. autoclass:: SimpleRandomForestLearner
   :members:



.. index:: softmax regression classifier
   pair: classification; softmax regression

Softmax Regression
------------------

.. autoclass:: SoftmaxRegressionLearner
   :members:


.. index:: k-nearest neighbors classifier
   pair: classification; k-nearest neighbors

k-Nearest Neighbors
-------------------
.. autoclass:: KNNLearner
   :members:


.. index:: naive Bayes classifier
   pair: classification; naive Bayes

Naive Bayes
-----------
.. autoclass:: NaiveBayesLearner
   :members:

The following code loads lenses dataset (four discrete attributes and discrete
class), constructs naive Bayesian learner, uses it on the entire dataset
to construct a classifier, and then applies classifier to the first three
data instances:

    >>> import Orange
    >>> lenses = Orange.data.Table('lenses')
    >>> nb = Orange.classification.NaiveBayesLearner()
    >>> classifier = nb(lenses)
    >>> classifier(lenses[0:3], True)
    array([[ 0.04358755,  0.82671726,  0.12969519],
           [ 0.17428279,  0.20342097,  0.62229625],
           [ 0.18633359,  0.79518516,  0.01848125]])

.. _`Naive Bayes`: http://en.wikipedia.org/wiki/Naive_Bayes_classifier
.. _`scikit-learn`: http://scikit-learn.org

.. index:: SVM
   pair: classification; SVM

Support Vector Machines
-----------------------
.. autoclass:: SVMLearner
   :members:


.. index:: SVM, linear
   pair: classification; linear SVM

Linear Support Vector Machines
------------------------------
.. autoclass:: LinearSVMLearner
   :members:



.. index:: Nu-SVM
   pair: classification; Nu-SVM

Nu-Support Vector Machines
--------------------------
.. autoclass:: NuSVMLearner
   :members:


.. index:: classification tree
   pair: classification; tree

Classification Tree
-------------------

Orange includes three implemenations of classification trees. `TreeLearner`
is home-grown and properly handles multinominal and missing values.
The one from scikit-learn, `SklTreeLearner`, is faster. Another home-grown,
`SimpleTreeLearner`, is simpler and still faster.

The following code loads iris dataset (four numeric attributes and discrete
class), constructs a decision tree learner, uses it on the entire dataset
to construct a classifier, and then prints the tree:

    >>> import Orange
    >>> iris = Orange.data.Table('iris')
    >>> tr = Orange.classification.TreeLearner()
    >>> classifier = tr(data)
    >>> printed_tree = classifier.print_tree()
    >>> for i in printed_tree.split('\n'):
    >>>     print(i)
    [50.  0.  0.] petal length ≤ 1.9
    [ 0. 50. 50.] petal length > 1.9
    [ 0. 49.  5.]     petal width ≤ 1.7
    [ 0. 47.  1.]         petal length ≤ 4.9
       [0. 2. 4.]         petal length > 4.9
       [0. 0. 3.]             petal width ≤ 1.5
       [0. 2. 1.]             petal width > 1.5
       [0. 2. 0.]                 sepal length ≤ 6.7
       [0. 0. 1.]                 sepal length > 6.7
    [ 0.  1. 45.]     petal width > 1.7

.. autoclass:: TreeLearner
   :members:

.. autoclass:: SklTreeLearner
   :members:

.. index:: classification tree (simple)
   pair: classification; simple tree

Simple Tree
-----------
.. autoclass:: SimpleTreeLearner
   :members:



.. index:: majority classifier
   pair: classification; majority

Majority Classifier
-------------------

.. autoclass:: MajorityLearner
   :members:


.. index:: neural network
   pair: classification; neural network

Neural Network
--------------
.. autoclass:: NNClassificationLearner
   :members:


.. index:: Rule induction
   pair: classification; rules

CN2 Rule Induction
------------------

.. automodule:: Orange.classification.rules

.. autoclass:: CN2Learner
   :members:

.. autoclass:: CN2UnorderedLearner
   :members:

.. autoclass:: CN2SDLearner
   :members:

.. autoclass:: CN2SDUnorderedLearner
   :members:


Calibration and threshold optimization
--------------------------------------

.. automodule:: Orange.classification.calibration

.. autoclass:: ThresholdClassifier
   :members:

.. autoclass:: ThresholdLearner
   :members:

.. autoclass:: CalibratedClassifier
   :members:

.. autoclass:: CalibratedLearner
   :members:


Gradient Boosted Trees
----------------------

.. automodule:: Orange.classification.gb

.. autoclass:: GBClassifier
   :members:

.. automodule:: Orange.classification.catgb

.. autoclass:: CatGBClassifier
   :members:

.. automodule:: Orange.classification.xgb

.. autoclass:: XGBClassifier
   :members:

.. autoclass:: XGBRFClassifier
   :members: