File: classification-other.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (26 lines) | stat: -rw-r--r-- 856 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import Orange
import random

random.seed(42)
data = Orange.data.Table("voting")
test = Orange.data.Table(data.domain, random.sample(data, 5))
train = Orange.data.Table(data.domain, [d for d in data if d not in test])

tree = Orange.classification.tree.TreeLearner(max_depth=3)
knn = Orange.classification.knn.KNNLearner(n_neighbors=3)
lr = Orange.classification.LogisticRegressionLearner(C=0.1)

learners = [tree, knn, lr]
classifiers = [learner(train) for learner in learners]

target = 0
print("Probabilities for %s:" % data.domain.class_var.values[target])
print("original class ", " ".join("%-5s" % l.name for l in classifiers))

c_values = data.domain.class_var.values
for d in test:
    print(
        ("{:<15}" + " {:.3f}" * len(classifiers)).format(
            c_values[int(d.get_class())], *(c(d, 1)[target] for c in classifiers)
        )
    )