File: ordered_hash.h

package info (click to toggle)
ordered-map 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 424 kB
  • sloc: cpp: 3,123; makefile: 16
file content (1628 lines) | stat: -rw-r--r-- 58,641 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
/**
 * MIT License
 * 
 * Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef TSL_ORDERED_HASH_H
#define TSL_ORDERED_HASH_H


#include <algorithm>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <exception>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>


/**
 * Macros for compatibility with GCC 4.8
 */
#if (defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9))
#    define TSL_OH_NO_CONTAINER_ERASE_CONST_ITERATOR
#    define TSL_OH_NO_CONTAINER_EMPLACE_CONST_ITERATOR
#endif

/**
 * Only activate tsl_oh_assert if TSL_DEBUG is defined. 
 * This way we avoid the performance hit when NDEBUG is not defined with assert as tsl_oh_assert is used a lot
 * (people usually compile with "-O3" and not "-O3 -DNDEBUG").
 */
#ifdef TSL_DEBUG
#    define tsl_oh_assert(expr) assert(expr)
#else
#    define tsl_oh_assert(expr) (static_cast<void>(0))
#endif

/**
 * If exceptions are enabled, throw the exception passed in parameter, otherwise call std::terminate.
 */
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || (defined (_MSC_VER) && defined (_CPPUNWIND))) && !defined(TSL_NO_EXCEPTIONS)
#    define TSL_OH_THROW_OR_TERMINATE(ex, msg) throw ex(msg)
#else
#    define TSL_OH_NO_EXCEPTIONS
#    ifdef NDEBUG
#        define TSL_OH_THROW_OR_TERMINATE(ex, msg) std::terminate()
#    else
#        include <iostream>
#        define TSL_OH_THROW_OR_TERMINATE(ex, msg) do { std::cerr << msg << std::endl; std::terminate(); } while(0)
#    endif
#endif


namespace tsl {

namespace detail_ordered_hash {
    
template<typename T>
struct make_void {
    using type = void;
};

template<typename T, typename = void>
struct has_is_transparent: std::false_type {
};

template<typename T>
struct has_is_transparent<T, typename make_void<typename T::is_transparent>::type>: std::true_type {
};


template<typename T, typename = void>
struct is_vector: std::false_type {
};

template<typename T>
struct is_vector<T, typename std::enable_if<
                        std::is_same<T, std::vector<typename T::value_type, typename T::allocator_type>>::value
                    >::type>: std::true_type {
};

// Only available in C++17, we need to be compatible with C++11
template<class T>
const T& clamp( const T& v, const T& lo, const T& hi) {
    return std::min(hi, std::max(lo, v));
}

template<typename T, typename U>
static T numeric_cast(U value, const char* error_message = "numeric_cast() failed.") {
    T ret = static_cast<T>(value);
    if(static_cast<U>(ret) != value) {
        TSL_OH_THROW_OR_TERMINATE(std::runtime_error, error_message);
    }
    
    const bool is_same_signedness = (std::is_unsigned<T>::value && std::is_unsigned<U>::value) ||
                                    (std::is_signed<T>::value && std::is_signed<U>::value);
    if(!is_same_signedness && (ret < T{}) != (value < U{})) {
        TSL_OH_THROW_OR_TERMINATE(std::runtime_error, error_message);
    }
    
    return ret;
}


/**
 * Fixed size type used to represent size_type values on serialization. Need to be big enough
 * to represent a std::size_t on 32 and 64 bits platforms, and must be the same size on both platforms.
 */
using slz_size_type = std::uint64_t;
static_assert(std::numeric_limits<slz_size_type>::max() >= std::numeric_limits<std::size_t>::max(),
              "slz_size_type must be >= std::size_t");

template<class T, class Deserializer>
static T deserialize_value(Deserializer& deserializer) {
    // MSVC < 2017 is not conformant, circumvent the problem by removing the template keyword
#if defined (_MSC_VER) && _MSC_VER < 1910
    return deserializer.Deserializer::operator()<T>();
#else
    return deserializer.Deserializer::template operator()<T>();
#endif
}


/**
 * Each bucket entry stores an index which is the index in m_values corresponding to the bucket's value 
 * and a hash (which may be truncated to 32 bits depending on IndexType) corresponding to the hash of the value.
 * 
 * The size of IndexType limits the size of the hash table to std::numeric_limits<IndexType>::max() - 1 elements (-1 due to 
 * a reserved value used to mark a bucket as empty).
 */
template<class IndexType>
class bucket_entry {
    static_assert(std::is_unsigned<IndexType>::value, "IndexType must be an unsigned value.");
    static_assert(std::numeric_limits<IndexType>::max() <= std::numeric_limits<std::size_t>::max(), 
                  "std::numeric_limits<IndexType>::max() must be <= std::numeric_limits<std::size_t>::max().");
    
public:
    using index_type = IndexType;
    using truncated_hash_type = typename std::conditional<std::numeric_limits<IndexType>::max() <= 
                                                          std::numeric_limits<std::uint_least32_t>::max(),
                                                              std::uint_least32_t, 
                                                              std::size_t>::type;
    
    bucket_entry() noexcept: m_index(EMPTY_MARKER_INDEX), m_hash(0) {
    }
    
    bool empty() const noexcept {
        return m_index == EMPTY_MARKER_INDEX;
    }
    
    void clear() noexcept {
        m_index = EMPTY_MARKER_INDEX;
    }
    
    index_type index() const noexcept {
        tsl_oh_assert(!empty());
        return m_index;
    }
    
    index_type& index_ref() noexcept {
        tsl_oh_assert(!empty());
        return m_index;
    }
    
    void set_index(index_type index) noexcept {
        tsl_oh_assert(index <= max_size());
        
        m_index = index;
    }
    
    truncated_hash_type truncated_hash() const noexcept {
        tsl_oh_assert(!empty());
        return m_hash;
    }
    
    truncated_hash_type& truncated_hash_ref() noexcept {
        tsl_oh_assert(!empty());
        return m_hash;
    }
    
    void set_hash(std::size_t hash) noexcept {
        m_hash = truncate_hash(hash);
    }
    
    template<class Serializer>
    void serialize(Serializer& serializer) const {
        const slz_size_type index = m_index;
        serializer(index);
        
        const slz_size_type hash = m_hash;
        serializer(hash);
    }
    
    template<class Deserializer>
    static bucket_entry deserialize(Deserializer& deserializer) {
        const slz_size_type index = deserialize_value<slz_size_type>(deserializer);
        const slz_size_type hash = deserialize_value<slz_size_type>(deserializer);
        
        bucket_entry bentry;
        bentry.m_index = numeric_cast<index_type>(index, "Deserialized index is too big.");
        bentry.m_hash = numeric_cast<truncated_hash_type>(hash, "Deserialized hash is too big.");
        
        return bentry;
    }
    
    
    
    static truncated_hash_type truncate_hash(std::size_t hash) noexcept {
        return truncated_hash_type(hash);
    }
    
    static std::size_t max_size() noexcept {
        return static_cast<std::size_t>(std::numeric_limits<index_type>::max()) - NB_RESERVED_INDEXES;
    }
    
private:
    static const index_type EMPTY_MARKER_INDEX = std::numeric_limits<index_type>::max();
    static const std::size_t NB_RESERVED_INDEXES = 1;
    
    index_type m_index;
    truncated_hash_type m_hash;
};



/**
 * Internal common class used by ordered_map and ordered_set.
 * 
 * ValueType is what will be stored by ordered_hash (usually std::pair<Key, T> for map and Key for set).
 * 
 * KeySelect should be a FunctionObject which takes a ValueType in parameter and return a reference to the key.
 * 
 * ValueSelect should be a FunctionObject which takes a ValueType in parameter and return a reference to the value. 
 * ValueSelect should be void if there is no value (in set for example).
 * 
 * ValueTypeContainer is the container which will be used to store ValueType values. 
 * Usually a std::deque<ValueType, Allocator> or std::vector<ValueType, Allocator>.
 * 
 * 
 * 
 * The ordered_hash structure is a hash table which preserves the order of insertion of the elements.
 * To do so, it stores the values in the ValueTypeContainer (m_values) using emplace_back at each
 * insertion of a new element. Another structure (m_buckets of type std::vector<bucket_entry>) will 
 * serve as buckets array for the hash table part. Each bucket stores an index which corresponds to 
 * the index in m_values where the bucket's value is and the (truncated) hash of this value. An index
 * is used instead of a pointer to the value to reduce the size of each bucket entry.
 * 
 * To resolve collisions in the buckets array, the structures use robin hood linear probing with 
 * backward shift deletion.
 */
template<class ValueType,
         class KeySelect,
         class ValueSelect,
         class Hash,
         class KeyEqual,
         class Allocator,
         class ValueTypeContainer,
         class IndexType>
class ordered_hash: private Hash, private KeyEqual {
private:
    template<typename U>
    using has_mapped_type = typename std::integral_constant<bool, !std::is_same<U, void>::value>;
    
    static_assert(std::is_same<typename ValueTypeContainer::value_type, ValueType>::value, 
                  "ValueTypeContainer::value_type != ValueType. "
                  "Check that the ValueTypeContainer has 'Key' as type for a set or 'std::pair<Key, T>' as type for a map.");
    
    static_assert(std::is_same<typename ValueTypeContainer::allocator_type, Allocator>::value, 
                  "ValueTypeContainer::allocator_type != Allocator. "
                  "Check that the allocator for ValueTypeContainer is the same as Allocator.");
    
    static_assert(std::is_same<typename Allocator::value_type, ValueType>::value, 
                  "Allocator::value_type != ValueType. "
                  "Check that the allocator has 'Key' as type for a set or 'std::pair<Key, T>' as type for a map.");
    
    
public:
    template<bool IsConst>
    class ordered_iterator;
    
    using key_type = typename KeySelect::key_type;
    using value_type = ValueType;
    using size_type = std::size_t;
    using difference_type = std::ptrdiff_t;
    using hasher = Hash;
    using key_equal = KeyEqual;
    using allocator_type = Allocator;
    using reference = value_type&;
    using const_reference = const value_type&;
    using pointer = value_type*;
    using const_pointer = const value_type*;
    using iterator = ordered_iterator<false>;
    using const_iterator = ordered_iterator<true>;
    using reverse_iterator = std::reverse_iterator<iterator>;
    using const_reverse_iterator = std::reverse_iterator<const_iterator>;
    
    using values_container_type = ValueTypeContainer;
    
public:
    template<bool IsConst>
    class ordered_iterator {
        friend class ordered_hash;
        
    private:
        using iterator = typename std::conditional<IsConst, 
                                                    typename values_container_type::const_iterator, 
                                                    typename values_container_type::iterator>::type;
    
        
        ordered_iterator(iterator it) noexcept: m_iterator(it) {
        }
        
    public:
        using iterator_category = std::random_access_iterator_tag;
        using value_type = const typename ordered_hash::value_type;
        using difference_type = typename iterator::difference_type;
        using reference = value_type&;
        using pointer = value_type*;
        
        
        ordered_iterator() noexcept {
        }
        
        // Copy constructor from iterator to const_iterator.
        template<bool TIsConst = IsConst, typename std::enable_if<TIsConst>::type* = nullptr>
        ordered_iterator(const ordered_iterator<!TIsConst>& other) noexcept: m_iterator(other.m_iterator) {
        }

        ordered_iterator(const ordered_iterator& other) = default;
        ordered_iterator(ordered_iterator&& other) = default;
        ordered_iterator& operator=(const ordered_iterator& other) = default;
        ordered_iterator& operator=(ordered_iterator&& other) = default;

        const typename ordered_hash::key_type& key() const {
            return KeySelect()(*m_iterator);
        }

        template<class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value && IsConst>::type* = nullptr>
        const typename U::value_type& value() const {
            return U()(*m_iterator);
        }

        template<class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value && !IsConst>::type* = nullptr>
        typename U::value_type& value() {
            return U()(*m_iterator);
        }
        
        reference operator*() const { return *m_iterator; }
        pointer operator->() const { return m_iterator.operator->(); }
        
        ordered_iterator& operator++() { ++m_iterator; return *this; }
        ordered_iterator& operator--() { --m_iterator; return *this; }
        
        ordered_iterator operator++(int) { ordered_iterator tmp(*this); ++(*this); return tmp; }
        ordered_iterator operator--(int) { ordered_iterator tmp(*this); --(*this); return tmp; }
        
        reference operator[](difference_type n) const { return m_iterator[n]; }
        
        ordered_iterator& operator+=(difference_type n) { m_iterator += n; return *this; }
        ordered_iterator& operator-=(difference_type n) { m_iterator -= n; return *this; }
        
        ordered_iterator operator+(difference_type n) { ordered_iterator tmp(*this); tmp += n; return tmp; }
        ordered_iterator operator-(difference_type n) { ordered_iterator tmp(*this); tmp -= n; return tmp; }
        
        friend bool operator==(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator == rhs.m_iterator; 
        }
        
        friend bool operator!=(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator != rhs.m_iterator; 
        }
        
        friend bool operator<(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator < rhs.m_iterator; 
        }
        
        friend bool operator>(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator > rhs.m_iterator; 
        }
        
        friend bool operator<=(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator <= rhs.m_iterator; 
        }
        
        friend bool operator>=(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator >= rhs.m_iterator; 
        }

        friend ordered_iterator operator+(difference_type n, const ordered_iterator& it) { 
            return n + it.m_iterator;
        }

        friend difference_type operator-(const ordered_iterator& lhs, const ordered_iterator& rhs) { 
            return lhs.m_iterator - rhs.m_iterator; 
        }

    private:
        iterator m_iterator;
    };
    
    
private:
    using bucket_entry = tsl::detail_ordered_hash::bucket_entry<IndexType>;
                                         
    using buckets_container_allocator = typename 
                            std::allocator_traits<allocator_type>::template rebind_alloc<bucket_entry>; 
                            
    using buckets_container_type = std::vector<bucket_entry, buckets_container_allocator>;
    
    
    using truncated_hash_type = typename bucket_entry::truncated_hash_type;
    using index_type = typename bucket_entry::index_type;
    
public:
    ordered_hash(size_type bucket_count, 
                 const Hash& hash,
                 const KeyEqual& equal,
                 const Allocator& alloc,
                 float max_load_factor): Hash(hash),
                                         KeyEqual(equal), 
                                         m_buckets_data(alloc), 
                                         m_buckets(static_empty_bucket_ptr()), 
                                         m_hash_mask(0),
                                         m_values(alloc), 
                                         m_grow_on_next_insert(false)
    {
        if(bucket_count > max_bucket_count()) {
            TSL_OH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size.");
        }
        
        if(bucket_count > 0) {
            bucket_count = round_up_to_power_of_two(bucket_count);
            
            m_buckets_data.resize(bucket_count);
            m_buckets = m_buckets_data.data(),
            m_hash_mask = bucket_count - 1;
        }
        
        this->max_load_factor(max_load_factor);
    }
    
    ordered_hash(const ordered_hash& other): Hash(other),
                                             KeyEqual(other),
                                             m_buckets_data(other.m_buckets_data),
                                             m_buckets(m_buckets_data.empty()?static_empty_bucket_ptr():
                                                                              m_buckets_data.data()),
                                             m_hash_mask(other.m_hash_mask),
                                             m_values(other.m_values),
                                             m_load_threshold(other.m_load_threshold),
                                             m_max_load_factor(other.m_max_load_factor),
                                             m_grow_on_next_insert(other.m_grow_on_next_insert)
    {
    }
    
    ordered_hash(ordered_hash&& other) noexcept(std::is_nothrow_move_constructible<Hash>::value &&
                                                std::is_nothrow_move_constructible<KeyEqual>::value &&
                                                std::is_nothrow_move_constructible<buckets_container_type>::value &&
                                                std::is_nothrow_move_constructible<values_container_type>::value)
                                          : Hash(std::move(static_cast<Hash&>(other))),
                                            KeyEqual(std::move(static_cast<KeyEqual&>(other))),
                                            m_buckets_data(std::move(other.m_buckets_data)),
                                            m_buckets(m_buckets_data.empty()?static_empty_bucket_ptr():
                                                                             m_buckets_data.data()),
                                            m_hash_mask(other.m_hash_mask),
                                            m_values(std::move(other.m_values)),
                                            m_load_threshold(other.m_load_threshold),
                                            m_max_load_factor(other.m_max_load_factor),
                                            m_grow_on_next_insert(other.m_grow_on_next_insert)
    {
        other.m_buckets_data.clear();
        other.m_buckets = static_empty_bucket_ptr();
        other.m_hash_mask = 0;
        other.m_values.clear();
        other.m_load_threshold = 0;
        other.m_grow_on_next_insert = false;
    }
    
    ordered_hash& operator=(const ordered_hash& other) {
        if(&other != this) {
            Hash::operator=(other);
            KeyEqual::operator=(other);
            
            m_buckets_data = other.m_buckets_data;
            m_buckets = m_buckets_data.empty()?static_empty_bucket_ptr():
                                               m_buckets_data.data();
                                                        
            m_hash_mask = other.m_hash_mask;
            m_values = other.m_values;
            m_load_threshold = other.m_load_threshold;
            m_max_load_factor = other.m_max_load_factor;
            m_grow_on_next_insert = other.m_grow_on_next_insert;
        }
        
        return *this;
    }
    
    ordered_hash& operator=(ordered_hash&& other) {
        other.swap(*this);
        other.clear();
        
        return *this;
    }
    
    allocator_type get_allocator() const {
        return m_values.get_allocator();
    }
    
    
    /*
     * Iterators
     */
    iterator begin() noexcept {
        return iterator(m_values.begin());
    }
    
    const_iterator begin() const noexcept {
        return cbegin();
    }
    
    const_iterator cbegin() const noexcept {
        return const_iterator(m_values.cbegin());
    }
    
    iterator end() noexcept {
        return iterator(m_values.end());
    }
    
    const_iterator end() const noexcept {
        return cend();
    }
    
    const_iterator cend() const noexcept {
        return const_iterator(m_values.cend());
    }  
    
    
    reverse_iterator rbegin() noexcept {
        return reverse_iterator(m_values.end());
    }
    
    const_reverse_iterator rbegin() const noexcept {
        return rcbegin();
    }
    
    const_reverse_iterator rcbegin() const noexcept {
        return const_reverse_iterator(m_values.cend());
    }
    
    reverse_iterator rend() noexcept {
        return reverse_iterator(m_values.begin());
    }
    
    const_reverse_iterator rend() const noexcept {
        return rcend();
    }
    
    const_reverse_iterator rcend() const noexcept {
        return const_reverse_iterator(m_values.cbegin());
    }  
    
    
    /*
     * Capacity
     */
    bool empty() const noexcept {
        return m_values.empty();
    }
    
    size_type size() const noexcept {
        return m_values.size();
    }
    
    size_type max_size() const noexcept {
        return std::min(bucket_entry::max_size(), m_values.max_size());
    }
    

    /*
     * Modifiers
     */
    void clear() noexcept {
        for(auto& bucket: m_buckets_data) {
            bucket.clear();
        }
        
        m_values.clear();
        m_grow_on_next_insert = false;
    }
    
    template<typename P>
    std::pair<iterator, bool> insert(P&& value) {
        return insert_impl(KeySelect()(value), std::forward<P>(value));
    }
    
    template<typename P>
    iterator insert_hint(const_iterator hint, P&& value) { 
        if(hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) { 
            return mutable_iterator(hint); 
        }
        
        return insert(std::forward<P>(value)).first; 
    }
    
    template<class InputIt>
    void insert(InputIt first, InputIt last) {
        if(std::is_base_of<std::forward_iterator_tag, 
                           typename std::iterator_traits<InputIt>::iterator_category>::value) 
        {
            const auto nb_elements_insert = std::distance(first, last);
            const size_type nb_free_buckets = m_load_threshold - size();
            tsl_oh_assert(m_load_threshold >= size());
            
            if(nb_elements_insert > 0 && nb_free_buckets < size_type(nb_elements_insert)) {
                reserve(size() + size_type(nb_elements_insert));
            }
        }
        
        for(; first != last; ++first) {
            insert(*first);
        }
    }
    
    
    
    template<class K, class M>
    std::pair<iterator, bool> insert_or_assign(K&& key, M&& value) {
        auto it = try_emplace(std::forward<K>(key), std::forward<M>(value));
        if(!it.second) {
            it.first.value() = std::forward<M>(value);
        }
        
        return it;
    }
    
    template<class K, class M>
    iterator insert_or_assign(const_iterator hint, K&& key, M&& obj) {
        if(hint != cend() && compare_keys(KeySelect()(*hint), key)) { 
            auto it = mutable_iterator(hint); 
            it.value() = std::forward<M>(obj);
            
            return it;
        }
        
        return insert_or_assign(std::forward<K>(key), std::forward<M>(obj)).first;
    }
    
    
    
    template<class... Args>
    std::pair<iterator, bool> emplace(Args&&... args) {
        return insert(value_type(std::forward<Args>(args)...));
    }
    
    template<class... Args>
    iterator emplace_hint(const_iterator hint, Args&&... args) { 
        return insert_hint(hint, value_type(std::forward<Args>(args)...));
    }
    
    
    
    template<class K, class... Args>
    std::pair<iterator, bool> try_emplace(K&& key, Args&&... value_args) {
        return insert_impl(key, std::piecewise_construct, 
                                std::forward_as_tuple(std::forward<K>(key)), 
                                std::forward_as_tuple(std::forward<Args>(value_args)...));     
    }
    
    template<class K, class... Args>
    iterator try_emplace_hint(const_iterator hint, K&& key, Args&&... args) {
        if(hint != cend() && compare_keys(KeySelect()(*hint), key)) { 
            return mutable_iterator(hint); 
        }
        
        return try_emplace(std::forward<K>(key), std::forward<Args>(args)...).first;
    }
    
    
    
    /**
     * Here to avoid `template<class K> size_type erase(const K& key)` being used when
     * we use an `iterator` instead of a `const_iterator`.
     */
    iterator erase(iterator pos) {
        return erase(const_iterator(pos));
    }
    
    iterator erase(const_iterator pos) {
        tsl_oh_assert(pos != cend());
        
        const std::size_t index_erase = iterator_to_index(pos);
        
        auto it_bucket = find_key(pos.key(), hash_key(pos.key()));
        tsl_oh_assert(it_bucket != m_buckets_data.end());
        
        erase_value_from_bucket(it_bucket);
        
        /*
         * One element was removed from m_values, due to the left shift the next element 
         * is now at the position of the previous element (or end if none).
         */
        return begin() + index_erase;
    }

    iterator erase(const_iterator first, const_iterator last) {
        if(first == last) {
            return mutable_iterator(first);
        }
        
        tsl_oh_assert(std::distance(first, last) > 0);
        const std::size_t start_index = iterator_to_index(first);
        const std::size_t nb_values = std::size_t(std::distance(first, last));
        const std::size_t end_index = start_index + nb_values;
        
        // Delete all values
#ifdef TSL_OH_NO_CONTAINER_ERASE_CONST_ITERATOR     
        auto next_it = m_values.erase(mutable_iterator(first).m_iterator, mutable_iterator(last).m_iterator);   
#else
        auto next_it = m_values.erase(first.m_iterator, last.m_iterator);
#endif
        
        /*
         * Mark the buckets corresponding to the values as empty and do a backward shift.
         * 
         * Also, the erase operation on m_values has shifted all the values on the right of last.m_iterator.
         * Adapt the indexes for these values.
         */
        std::size_t ibucket = 0;
        while(ibucket < m_buckets_data.size()) {
            if(m_buckets[ibucket].empty()) {
                ibucket++;
            }
            else if(m_buckets[ibucket].index() >= start_index && m_buckets[ibucket].index() < end_index) {
                m_buckets[ibucket].clear();
                backward_shift(ibucket);
                // Don't increment ibucket, backward_shift may have replaced current bucket.
            }
            else if(m_buckets[ibucket].index() >= end_index) {
                m_buckets[ibucket].set_index(index_type(m_buckets[ibucket].index() - nb_values));
                ibucket++;
            }
            else {
                ibucket++;
            }
        }
        
        return iterator(next_it);
    }
    

    template<class K>
    size_type erase(const K& key) {
        return erase(key, hash_key(key));
    }
    
    template<class K>
    size_type erase(const K& key, std::size_t hash) {
        return erase_impl(key, hash);
    }
    
    void swap(ordered_hash& other) {
        using std::swap;
        
        swap(static_cast<Hash&>(*this), static_cast<Hash&>(other));
        swap(static_cast<KeyEqual&>(*this), static_cast<KeyEqual&>(other));
        swap(m_buckets_data, other.m_buckets_data);
        swap(m_buckets, other.m_buckets);
        swap(m_hash_mask, other.m_hash_mask);
        swap(m_values, other.m_values);
        swap(m_load_threshold, other.m_load_threshold);
        swap(m_max_load_factor, other.m_max_load_factor);
        swap(m_grow_on_next_insert, other.m_grow_on_next_insert);
    }
    
        
    

    /*
     * Lookup
     */    
    template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    typename U::value_type& at(const K& key) {
        return at(key, hash_key(key));
    }
    
    template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    typename U::value_type& at(const K& key, std::size_t hash) {
        return const_cast<typename U::value_type&>(static_cast<const ordered_hash*>(this)->at(key, hash));
    }
    
    template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    const typename U::value_type& at(const K& key) const {
        return at(key, hash_key(key));
    }
    
    template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    const typename U::value_type& at(const K& key, std::size_t hash) const {
        auto it = find(key, hash);
        if(it != end()) {
            return it.value();
        }
        else {
            TSL_OH_THROW_OR_TERMINATE(std::out_of_range, "Couldn't find the key.");
        }
    }
    
    
    template<class K, class U = ValueSelect, typename std::enable_if<has_mapped_type<U>::value>::type* = nullptr>
    typename U::value_type& operator[](K&& key) {
        return try_emplace(std::forward<K>(key)).first.value();
    }
    
    
    template<class K>
    size_type count(const K& key) const {
        return count(key, hash_key(key));
    }
    
    template<class K>
    size_type count(const K& key, std::size_t hash) const {
        if(find(key, hash) == cend()) {
            return 0;
        }
        else {
            return 1;
        }
    }
    
    template<class K>
    iterator find(const K& key) {
        return find(key, hash_key(key));
    }
    
    template<class K>
    iterator find(const K& key, std::size_t hash) {
        auto it_bucket = find_key(key, hash);
        return (it_bucket != m_buckets_data.end())?iterator(m_values.begin() + it_bucket->index()):end();
    }
    
    template<class K>
    const_iterator find(const K& key) const {
        return find(key, hash_key(key));
    }
    
    template<class K>
    const_iterator find(const K& key, std::size_t hash) const {
        auto it_bucket = find_key(key, hash);
        return (it_bucket != m_buckets_data.cend())?const_iterator(m_values.begin() + it_bucket->index()):end();
    }
    

    template<class K>
    bool contains(const K& key) const {
        return contains(key, hash_key(key));
    }
    
    template<class K>
    bool contains(const K& key, std::size_t hash) const {
        return find(key, hash) != cend();
    }
    
    
    template<class K>
    std::pair<iterator, iterator> equal_range(const K& key) {
        return equal_range(key, hash_key(key));
    }
    
    template<class K>
    std::pair<iterator, iterator> equal_range(const K& key, std::size_t hash) {
        iterator it = find(key, hash);
        return std::make_pair(it, (it == end())?it:std::next(it));
    }
    
    template<class K>
    std::pair<const_iterator, const_iterator> equal_range(const K& key) const {
        return equal_range(key, hash_key(key));
    }
    
    template<class K>
    std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t hash) const {
        const_iterator it = find(key, hash);
        return std::make_pair(it, (it == cend())?it:std::next(it));
    }    
    
    
    /*
     * Bucket interface 
     */
    size_type bucket_count() const {
        return m_buckets_data.size(); 
    }
    
    size_type max_bucket_count() const {
        return m_buckets_data.max_size();
    }    
    
    /*
     *  Hash policy 
     */
    float load_factor() const {
        if(bucket_count() == 0) {
            return 0;
        }
        
        return float(size())/float(bucket_count());
    }
    
    float max_load_factor() const {
        return m_max_load_factor;
    }
    
    void max_load_factor(float ml) {
        m_max_load_factor = clamp(ml, float(MAX_LOAD_FACTOR__MINIMUM), 
                                      float(MAX_LOAD_FACTOR__MAXIMUM));

        m_max_load_factor = ml;
        m_load_threshold = size_type(float(bucket_count())*m_max_load_factor);
    }
    
    void rehash(size_type count) {
        count = std::max(count, size_type(std::ceil(float(size())/max_load_factor())));
        rehash_impl(count);
    }
    
    void reserve(size_type count) {
        reserve_space_for_values(count);
        
        count = size_type(std::ceil(float(count)/max_load_factor()));
        rehash(count);
    }
    
    
    /*
     * Observers
     */
    hasher hash_function() const {
        return static_cast<const Hash&>(*this);
    }
    
    key_equal key_eq() const {
        return static_cast<const KeyEqual&>(*this);
    }

    
    /*
     * Other
     */
    iterator mutable_iterator(const_iterator pos) {
        return iterator(m_values.begin() + iterator_to_index(pos));
    }
    
    iterator nth(size_type index) {
        tsl_oh_assert(index <= size());
        return iterator(m_values.begin() + index);
    }
    
    const_iterator nth(size_type index) const {
        tsl_oh_assert(index <= size());
        return const_iterator(m_values.cbegin() + index);
    }
    
    const_reference front() const {
        tsl_oh_assert(!empty());
        return m_values.front();
    }
    
    const_reference back() const {
        tsl_oh_assert(!empty());
        return m_values.back();
    }
    
    const values_container_type& values_container() const noexcept {
        return m_values;
    }
    
    template<class U = values_container_type, typename std::enable_if<is_vector<U>::value>::type* = nullptr>    
    const typename values_container_type::value_type* data() const noexcept {
        return m_values.data();
    }
    
    template<class U = values_container_type, typename std::enable_if<is_vector<U>::value>::type* = nullptr>    
    size_type capacity() const noexcept {
        return m_values.capacity();
    }
    
    void shrink_to_fit() {
        m_values.shrink_to_fit();
    }
    
    
    template<typename P>
    std::pair<iterator, bool> insert_at_position(const_iterator pos, P&& value) {
        return insert_at_position_impl(pos.m_iterator, KeySelect()(value), std::forward<P>(value));
    }
    
    template<class... Args>
    std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
        return insert_at_position(pos, value_type(std::forward<Args>(args)...));
    }
    
    template<class K, class... Args>
    std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, K&& key, Args&&... value_args) {
        return insert_at_position_impl(pos.m_iterator, key, 
                                       std::piecewise_construct, 
                                       std::forward_as_tuple(std::forward<K>(key)), 
                                       std::forward_as_tuple(std::forward<Args>(value_args)...));
    }
    

    void pop_back() {
        tsl_oh_assert(!empty());
        erase(std::prev(end()));
    }
    
    
    /**
     * Here to avoid `template<class K> size_type unordered_erase(const K& key)` being used when
     * we use a iterator instead of a const_iterator.
     */    
    iterator unordered_erase(iterator pos) {
        return unordered_erase(const_iterator(pos));
    }
    
    iterator unordered_erase(const_iterator pos) {
        const std::size_t index_erase = iterator_to_index(pos);
        unordered_erase(pos.key());
        
        /*
         * One element was deleted, index_erase now points to the next element as the elements after
         * the deleted value were shifted to the left in m_values (will be end() if we deleted the last element).
         */
        return begin() + index_erase;
    }
    
    template<class K>
    size_type unordered_erase(const K& key) {
        return unordered_erase(key, hash_key(key));
    }
    
    template<class K>
    size_type unordered_erase(const K& key, std::size_t hash) {
        auto it_bucket_key = find_key(key, hash);
        if(it_bucket_key == m_buckets_data.end()) {
            return 0;
        }
        
        /**
         * If we are not erasing the last element in m_values, we swap 
         * the element we are erasing with the last element. We then would 
         * just have to do a pop_back() in m_values.
         */
        if(!compare_keys(key, KeySelect()(back()))) {
            auto it_bucket_last_elem = find_key(KeySelect()(back()), hash_key(KeySelect()(back())));
            tsl_oh_assert(it_bucket_last_elem != m_buckets_data.end());
            tsl_oh_assert(it_bucket_last_elem->index() == m_values.size() - 1);
            
            using std::swap;
            swap(m_values[it_bucket_key->index()], m_values[it_bucket_last_elem->index()]);
            swap(it_bucket_key->index_ref(), it_bucket_last_elem->index_ref());
        }
        
        erase_value_from_bucket(it_bucket_key);
        
        return 1;
    }
    
    template<class Serializer>
    void serialize(Serializer& serializer) const {
        serialize_impl(serializer);
    }
    
    template<class Deserializer>
    void deserialize(Deserializer& deserializer, bool hash_compatible) {
        deserialize_impl(deserializer, hash_compatible);
    }
    
    friend bool operator==(const ordered_hash& lhs, const ordered_hash& rhs) {
        return lhs.m_values == rhs.m_values;
    }
    
    friend bool operator!=(const ordered_hash& lhs, const ordered_hash& rhs) {
        return lhs.m_values != rhs.m_values;
    }
    
    friend bool operator<(const ordered_hash& lhs, const ordered_hash& rhs) {
        return lhs.m_values < rhs.m_values;
    }
    
    friend bool operator<=(const ordered_hash& lhs, const ordered_hash& rhs) {
        return lhs.m_values <= rhs.m_values;
    }
    
    friend bool operator>(const ordered_hash& lhs, const ordered_hash& rhs) {
        return lhs.m_values > rhs.m_values;
    }
    
    friend bool operator>=(const ordered_hash& lhs, const ordered_hash& rhs) {
        return lhs.m_values >= rhs.m_values;
    }
    
    
private:
    template<class K>
    std::size_t hash_key(const K& key) const {
        return Hash::operator()(key);
    }
    
    template<class K1, class K2>
    bool compare_keys(const K1& key1, const K2& key2) const {
        return KeyEqual::operator()(key1, key2);
    }
    
    template<class K>
    typename buckets_container_type::iterator find_key(const K& key, std::size_t hash) {
        auto it = static_cast<const ordered_hash*>(this)->find_key(key, hash);
        return m_buckets_data.begin() + std::distance(m_buckets_data.cbegin(), it);
    }
    
    /**
     * Return bucket which has the key 'key' or m_buckets_data.end() if none.
     * 
     * From the bucket_for_hash, search for the value until we either find an empty bucket
     * or a bucket which has a value with a distance from its ideal bucket longer
     * than the probe length for the value we are looking for.
     */
    template<class K>
    typename buckets_container_type::const_iterator find_key(const K& key, std::size_t hash) const {
        for(std::size_t ibucket = bucket_for_hash(hash), dist_from_ideal_bucket = 0; ; 
            ibucket = next_bucket(ibucket), dist_from_ideal_bucket++) 
        {
            if(m_buckets[ibucket].empty()) {
                return m_buckets_data.end();
            }
            else if(m_buckets[ibucket].truncated_hash() == bucket_entry::truncate_hash(hash) && 
                    compare_keys(key, KeySelect()(m_values[m_buckets[ibucket].index()]))) 
            {
                return m_buckets_data.begin() + ibucket;
            }
            else if(dist_from_ideal_bucket > distance_from_ideal_bucket(ibucket)) {
                return m_buckets_data.end();
            }
        }
    }
    
    void rehash_impl(size_type bucket_count) {
        tsl_oh_assert(bucket_count >= size_type(std::ceil(float(size())/max_load_factor())));
        
        if(bucket_count > max_bucket_count()) {
            TSL_OH_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maximum size.");
        }
        
        if(bucket_count > 0) {
            bucket_count = round_up_to_power_of_two(bucket_count);
        }
        
        if(bucket_count == this->bucket_count()) {
            return;
        }
        
        
        buckets_container_type old_buckets(bucket_count);
        m_buckets_data.swap(old_buckets);
        m_buckets = m_buckets_data.empty()?static_empty_bucket_ptr():
                                           m_buckets_data.data();
        // Everything should be noexcept from here.
        
        m_hash_mask = (bucket_count > 0)?(bucket_count - 1):0;
        this->max_load_factor(m_max_load_factor);
        m_grow_on_next_insert = false;
        
        
        
        for(const bucket_entry& old_bucket: old_buckets) {
            if(old_bucket.empty()) {
                continue;
            }
            
            truncated_hash_type insert_hash = old_bucket.truncated_hash();
            index_type insert_index = old_bucket.index();
            
            for(std::size_t ibucket = bucket_for_hash(insert_hash), dist_from_ideal_bucket = 0; ; 
                ibucket = next_bucket(ibucket), dist_from_ideal_bucket++) 
            {
                if(m_buckets[ibucket].empty()) {
                    m_buckets[ibucket].set_index(insert_index);
                    m_buckets[ibucket].set_hash(insert_hash);
                    break;
                }
                
                const std::size_t distance = distance_from_ideal_bucket(ibucket);
                if(dist_from_ideal_bucket > distance) {
                    std::swap(insert_index, m_buckets[ibucket].index_ref());
                    std::swap(insert_hash, m_buckets[ibucket].truncated_hash_ref());
                    dist_from_ideal_bucket = distance;
                }
            }
        }
    }
    
    template<class T = values_container_type, typename std::enable_if<is_vector<T>::value>::type* = nullptr>
    void reserve_space_for_values(size_type count) {
        m_values.reserve(count);
    }
    
    template<class T = values_container_type, typename std::enable_if<!is_vector<T>::value>::type* = nullptr>
    void reserve_space_for_values(size_type /*count*/) {
    }
    
    /**
     * Swap the empty bucket with the values on its right until we cross another empty bucket
     * or if the other bucket has a distance_from_ideal_bucket == 0.
     */
    void backward_shift(std::size_t empty_ibucket) noexcept {
        tsl_oh_assert(m_buckets[empty_ibucket].empty());
        
        std::size_t previous_ibucket = empty_ibucket;
        for(std::size_t current_ibucket = next_bucket(previous_ibucket); 
            !m_buckets[current_ibucket].empty() && distance_from_ideal_bucket(current_ibucket) > 0;
            previous_ibucket = current_ibucket, current_ibucket = next_bucket(current_ibucket)) 
        {
            std::swap(m_buckets[current_ibucket], m_buckets[previous_ibucket]);
        }
    }
    
    void erase_value_from_bucket(typename buckets_container_type::iterator it_bucket) {
        tsl_oh_assert(it_bucket != m_buckets_data.end() && !it_bucket->empty());
        
        m_values.erase(m_values.begin() + it_bucket->index());
        
        /*
         * m_values.erase shifted all the values on the right of the erased value, 
         * shift the indexes by -1 in the buckets array for these values.
         */
        if(it_bucket->index() != m_values.size()) {
            shift_indexes_in_buckets(it_bucket->index(), -1);
        }        
        
        // Mark the bucket as empty and do a backward shift of the values on the right
        it_bucket->clear();
        backward_shift(std::size_t(std::distance(m_buckets_data.begin(), it_bucket)));
    }
    
    /**
     * Go through each value from [from_ivalue, m_values.size()) in m_values and for each
     * bucket corresponding to the value, shift the index by delta.
     * 
     * delta must be equal to 1 or -1.
     */
    void shift_indexes_in_buckets(index_type from_ivalue, int delta) noexcept  {
        tsl_oh_assert(delta == 1 || delta == -1);
        
        for(std::size_t ivalue = from_ivalue; ivalue < m_values.size(); ivalue++) {
            // All the values in m_values have been shifted by delta. Find the bucket corresponding 
            // to the value m_values[ivalue]
            const index_type old_index = static_cast<index_type>(ivalue - delta);
            
            std::size_t ibucket = bucket_for_hash(hash_key(KeySelect()(m_values[ivalue])));
            while(m_buckets[ibucket].index() != old_index) {
                ibucket = next_bucket(ibucket);
            }
            
            m_buckets[ibucket].set_index(index_type(ivalue));
        }
    }
    
    template<class K>
    size_type erase_impl(const K& key, std::size_t hash) {
        auto it_bucket = find_key(key, hash);
        if(it_bucket != m_buckets_data.end()) {
            erase_value_from_bucket(it_bucket);
            
            return 1;
        }
        else {
            return 0;
        }
    }
    
    /**
     * Insert the element at the end.
     */
    template<class K, class... Args>
    std::pair<iterator, bool> insert_impl(const K& key, Args&&... value_type_args) {
        const std::size_t hash = hash_key(key);
        
        std::size_t ibucket = bucket_for_hash(hash); 
        std::size_t dist_from_ideal_bucket = 0;
        
        while(!m_buckets[ibucket].empty() && dist_from_ideal_bucket <= distance_from_ideal_bucket(ibucket)) {
            if(m_buckets[ibucket].truncated_hash() == bucket_entry::truncate_hash(hash) && 
               compare_keys(key, KeySelect()(m_values[m_buckets[ibucket].index()]))) 
            {
                return std::make_pair(begin() + m_buckets[ibucket].index(), false);
            }
            
            ibucket = next_bucket(ibucket);
            dist_from_ideal_bucket++;
        }
        
        if(size() >= max_size()) {
            TSL_OH_THROW_OR_TERMINATE(std::length_error, "We reached the maximum size for the hash table.");
        }
        
        
        if(grow_on_high_load()) {
            ibucket = bucket_for_hash(hash);
            dist_from_ideal_bucket = 0;
        }
        
                
        m_values.emplace_back(std::forward<Args>(value_type_args)...);
        insert_index(ibucket, dist_from_ideal_bucket, 
                     index_type(m_values.size() - 1), bucket_entry::truncate_hash(hash));
        
        
        return std::make_pair(std::prev(end()), true);
    }
    
    /**
     * Insert the element before insert_position.
     */
    template<class K, class... Args>
    std::pair<iterator, bool> insert_at_position_impl(typename values_container_type::const_iterator insert_position,
                                                      const K& key, Args&&... value_type_args) 
    {
        const std::size_t hash = hash_key(key);
        
        std::size_t ibucket = bucket_for_hash(hash); 
        std::size_t dist_from_ideal_bucket = 0;
        
        while(!m_buckets[ibucket].empty() && dist_from_ideal_bucket <= distance_from_ideal_bucket(ibucket)) {
            if(m_buckets[ibucket].truncated_hash() == bucket_entry::truncate_hash(hash) && 
               compare_keys(key, KeySelect()(m_values[m_buckets[ibucket].index()]))) 
            {
                return std::make_pair(begin() + m_buckets[ibucket].index(), false);
            }
            
            ibucket = next_bucket(ibucket);
            dist_from_ideal_bucket++;
        }
        
        if(size() >= max_size()) {
            TSL_OH_THROW_OR_TERMINATE(std::length_error, "We reached the maximum size for the hash table.");
        }
        
        
        if(grow_on_high_load()) {
            ibucket = bucket_for_hash(hash);
            dist_from_ideal_bucket = 0;
        }
        
        
        const index_type index_insert_position = index_type(std::distance(m_values.cbegin(), insert_position));
        
#ifdef TSL_OH_NO_CONTAINER_EMPLACE_CONST_ITERATOR
        m_values.emplace(m_values.begin() + std::distance(m_values.cbegin(), insert_position), std::forward<Args>(value_type_args)...);
#else        
        m_values.emplace(insert_position, std::forward<Args>(value_type_args)...);
#endif        

        insert_index(ibucket, dist_from_ideal_bucket, 
                     index_insert_position, bucket_entry::truncate_hash(hash));
        
        /*
         * The insertion didn't happend at the end of the m_values container, 
         * we need to shift the indexes in m_buckets_data.
         */
        if(index_insert_position != m_values.size() - 1) {
            shift_indexes_in_buckets(index_insert_position + 1, 1);
        }
        
        return std::make_pair(iterator(m_values.begin() + index_insert_position), true);
    }
    
    void insert_index(std::size_t ibucket, std::size_t dist_from_ideal_bucket, 
                      index_type index_insert, truncated_hash_type hash_insert) noexcept
    {
        while(!m_buckets[ibucket].empty()) {
            const std::size_t distance = distance_from_ideal_bucket(ibucket);
            if(dist_from_ideal_bucket > distance) {
                std::swap(index_insert, m_buckets[ibucket].index_ref());
                std::swap(hash_insert, m_buckets[ibucket].truncated_hash_ref());
                
                dist_from_ideal_bucket = distance;
            }

            
            ibucket = next_bucket(ibucket);
            dist_from_ideal_bucket++;
            
            
            if(dist_from_ideal_bucket > REHASH_ON_HIGH_NB_PROBES__NPROBES && !m_grow_on_next_insert &&
               load_factor() >= REHASH_ON_HIGH_NB_PROBES__MIN_LOAD_FACTOR)
            {
                // We don't want to grow the map now as we need this method to be noexcept.
                // Do it on next insert.
                m_grow_on_next_insert = true;
            }
        }
        
        
        m_buckets[ibucket].set_index(index_insert);
        m_buckets[ibucket].set_hash(hash_insert); 
    }
    
    std::size_t distance_from_ideal_bucket(std::size_t ibucket) const noexcept {
        const std::size_t ideal_bucket = bucket_for_hash(m_buckets[ibucket].truncated_hash());
        
        if(ibucket >= ideal_bucket) {
            return ibucket - ideal_bucket;
        }
        // If the bucket is smaller than the ideal bucket for the value, there was a wrapping at the end of the 
        // bucket array due to the modulo.
        else {
            return (bucket_count() + ibucket) - ideal_bucket;
        }
    }
    
    std::size_t next_bucket(std::size_t index) const noexcept {
        tsl_oh_assert(index < m_buckets_data.size());
        
        index++;
        return (index < m_buckets_data.size())?index:0;
    }
    
    std::size_t bucket_for_hash(std::size_t hash) const noexcept {
        return hash & m_hash_mask;
    }    
    
    std::size_t iterator_to_index(const_iterator it) const noexcept {
        const auto dist = std::distance(cbegin(), it);
        tsl_oh_assert(dist >= 0);
        
        return std::size_t(dist);
    }
    
    /**
     * Return true if the map has been rehashed.
     */
    bool grow_on_high_load() {
        if(m_grow_on_next_insert || size() >= m_load_threshold) {
            rehash_impl(std::max(size_type(1), bucket_count() * 2));
            m_grow_on_next_insert = false;
            
            return true;
        }
        else {
            return false;
        }
    }
    
    template<class Serializer>
    void serialize_impl(Serializer& serializer) const {
        const slz_size_type version = SERIALIZATION_PROTOCOL_VERSION;
        serializer(version);
        
        const slz_size_type nb_elements = m_values.size();
        serializer(nb_elements);
        
        const slz_size_type bucket_count = m_buckets_data.size();
        serializer(bucket_count);
        
        const float max_load_factor = m_max_load_factor;
        serializer(max_load_factor);
        
        
        for(const value_type& value: m_values) {
            serializer(value);
        }
        
        for(const bucket_entry& bucket: m_buckets_data) {
            bucket.serialize(serializer);
        }
    }
    
    template<class Deserializer>
    void deserialize_impl(Deserializer& deserializer, bool hash_compatible) {
        tsl_oh_assert(m_buckets_data.empty()); // Current hash table must be empty
        
        const slz_size_type version = deserialize_value<slz_size_type>(deserializer);
        // For now we only have one version of the serialization protocol. 
        // If it doesn't match there is a problem with the file.
        if(version != SERIALIZATION_PROTOCOL_VERSION) {
            TSL_OH_THROW_OR_TERMINATE(std::runtime_error, "Can't deserialize the ordered_map/set. "
                                                          "The protocol version header is invalid.");
        }
        
        const slz_size_type nb_elements = deserialize_value<slz_size_type>(deserializer);
        const slz_size_type bucket_count_ds = deserialize_value<slz_size_type>(deserializer);
        const float max_load_factor = deserialize_value<float>(deserializer);

        if(max_load_factor < MAX_LOAD_FACTOR__MINIMUM || max_load_factor > MAX_LOAD_FACTOR__MAXIMUM) {
            TSL_OH_THROW_OR_TERMINATE(std::runtime_error, "Invalid max_load_factor. Check that the serializer "
                                                          "and deserializer support floats correctly as they "
                                                          "can be converted implicitly to ints.");
        }
        
        
        this->max_load_factor(max_load_factor);
        
        if(bucket_count_ds == 0) {
            tsl_oh_assert(nb_elements == 0);
            return;
        }
        
        
        if(!hash_compatible) {
            reserve(numeric_cast<size_type>(nb_elements, "Deserialized nb_elements is too big."));
            for(slz_size_type el = 0; el < nb_elements; el++) {
                insert(deserialize_value<value_type>(deserializer));
            }
        }
        else {
            m_buckets_data.reserve(numeric_cast<size_type>(bucket_count_ds, "Deserialized bucket_count is too big."));
            m_buckets = m_buckets_data.data(),
            m_hash_mask = m_buckets_data.capacity() - 1; 
            
            reserve_space_for_values(numeric_cast<size_type>(nb_elements, "Deserialized nb_elements is too big."));
            for(slz_size_type el = 0; el < nb_elements; el++) {
                m_values.push_back(deserialize_value<value_type>(deserializer));
            }
            
            for(slz_size_type b = 0; b < bucket_count_ds; b++) {
                m_buckets_data.push_back(bucket_entry::deserialize(deserializer));
            }
        }
    }
    
    static std::size_t round_up_to_power_of_two(std::size_t value) {
        if(is_power_of_two(value)) {
            return value;
        }
        
        if(value == 0) {
            return 1;
        }
        
        --value;
        for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
            value |= value >> i;
        }
        
        return value + 1;
    }
    
    static constexpr bool is_power_of_two(std::size_t value) {
        return value != 0 && (value & (value - 1)) == 0;
    }

    
public:
    static const size_type DEFAULT_INIT_BUCKETS_SIZE = 0;
    static constexpr float DEFAULT_MAX_LOAD_FACTOR = 0.75f;

private:    
    static constexpr float MAX_LOAD_FACTOR__MINIMUM = 0.1f;
    static constexpr float MAX_LOAD_FACTOR__MAXIMUM = 0.95f;

    static const size_type REHASH_ON_HIGH_NB_PROBES__NPROBES = 128;
    static constexpr float REHASH_ON_HIGH_NB_PROBES__MIN_LOAD_FACTOR = 0.15f;
    
    /**
     * Protocol version currenlty used for serialization.
     */
    static const slz_size_type SERIALIZATION_PROTOCOL_VERSION = 1;
    
    /**
     * Return an always valid pointer to an static empty bucket_entry with last_bucket() == true.
     */            
    bucket_entry* static_empty_bucket_ptr() {
        static bucket_entry empty_bucket;
        return &empty_bucket;
    }
    
private:
    buckets_container_type m_buckets_data;
    
    /**
     * Points to m_buckets_data.data() if !m_buckets_data.empty() otherwise points to static_empty_bucket_ptr.
     * This variable is useful to avoid the cost of checking if m_buckets_data is empty when trying 
     * to find an element.
     * 
     * TODO Remove m_buckets_data and only use a pointer+size instead of a pointer+vector to save some space in the ordered_hash object.
     */
    bucket_entry* m_buckets;
    
    size_type m_hash_mask;
    
    values_container_type m_values;
    
    size_type m_load_threshold;
    float m_max_load_factor;
    
    bool m_grow_on_next_insert;
};


} // end namespace detail_ordered_hash

} // end namespace tsl

#endif