1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
// $Id: mobile_robot.cpp tdelaet $
// Copyright (C) 2006 Tinne De Laet <first dot last at mech dot kuleuven dot be>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
#include "mobile_robot.h"
using namespace MatrixWrapper;
namespace BFL
{
MobileRobot::MobileRobot():
_state(STATE_SIZE)
{
// initial state
_state(1) = X_0;
_state(2) = Y_0;
_state(3) = THETA_0;
// sys noise
ColumnVector sys_noise_Mu(STATE_SIZE);
sys_noise_Mu(1) = MU_SYSTEM_NOISE_X_ROB;
sys_noise_Mu(2) = MU_SYSTEM_NOISE_Y_ROB;
sys_noise_Mu(3) = MU_SYSTEM_NOISE_THETA_ROB;
SymmetricMatrix sys_noise_Cov(STATE_SIZE);
sys_noise_Cov = 0.0;
sys_noise_Cov(1,1) = SIGMA_SYSTEM_NOISE_X_ROB;
sys_noise_Cov(1,2) = 0.0;
sys_noise_Cov(1,3) = 0.0;
sys_noise_Cov(2,1) = 0.0;
sys_noise_Cov(2,2) = SIGMA_SYSTEM_NOISE_Y_ROB;
sys_noise_Cov(2,3) = 0.0;
sys_noise_Cov(3,1) = 0.0;
sys_noise_Cov(3,2) = 0.0;
sys_noise_Cov(3,3) = SIGMA_SYSTEM_NOISE_THETA_ROB;
_system_Uncertainty = new Gaussian(sys_noise_Mu, sys_noise_Cov);
// create the model
_sys_pdf = new NonLinearAnalyticConditionalGaussianMobile(*_system_Uncertainty);
_sys_model = new AnalyticSystemModelGaussianUncertainty(_sys_pdf);
// meas noise
SymmetricMatrix meas_noise_Cov(MEAS_SIZE);
meas_noise_Cov(1,1) = SIGMA_MEAS_NOISE_ROB;
ColumnVector meas_noise_Mu(MEAS_SIZE);
meas_noise_Mu(1) = MU_MEAS_NOISE_ROB;
_measurement_Uncertainty = new Gaussian(meas_noise_Mu, meas_noise_Cov);
// create matrix _meas_model for linear measurement model
double wall_ct = 2/(sqrt(pow(RICO_WALL,2.0) + 1));
Matrix H(MEAS_SIZE,STATE_SIZE);
H = 0.0;
H(1,1) = wall_ct * RICO_WALL;
H(1,2) = 0 - wall_ct;
H(1,3) = 0.0;
// create the measurement model
_meas_pdf = new LinearAnalyticConditionalGaussian(H, *_measurement_Uncertainty);
_meas_model = new LinearAnalyticMeasurementModelGaussianUncertainty(_meas_pdf);
}
MobileRobot::~MobileRobot()
{
delete _system_Uncertainty;
delete _sys_pdf;
delete _sys_model;
delete _measurement_Uncertainty;
delete _meas_pdf;
delete _meas_model;
}
void
MobileRobot::Move(ColumnVector inputs)
{
_state = _sys_model->Simulate(_state,inputs);
}
ColumnVector
MobileRobot::Measure()
{
return _meas_model->Simulate(_state);
}
ColumnVector
MobileRobot::GetState()
{
return _state;
}
}
|