1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
/* java.util.zip.DeflaterHuffman
Copyright (C) 2001 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util.zip;
/**
* This is the DeflaterHuffman class.
*
* This class is <i>not</i> thread safe. This is inherent in the API, due
* to the split of deflate and setInput.
*
* @author Jochen Hoenicke
* @date Jan 6, 2000
*/
class DeflaterHuffman
{
private static final int BUFSIZE = 1 << (DeflaterConstants.DEFAULT_MEM_LEVEL + 6);
private static final int LITERAL_NUM = 286;
private static final int DIST_NUM = 30;
private static final int BITLEN_NUM = 19;
private static final int REP_3_6 = 16;
private static final int REP_3_10 = 17;
private static final int REP_11_138 = 18;
private static final int EOF_SYMBOL = 256;
private static final int[] BL_ORDER =
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
private final static String bit4Reverse =
"\000\010\004\014\002\012\006\016\001\011\005\015\003\013\007\017";
class Tree {
short[] freqs;
short[] codes;
byte[] length;
int[] bl_counts;
int minNumCodes, numCodes;
int maxLength;
Tree(int elems, int minCodes, int maxLength) {
this.minNumCodes = minCodes;
this.maxLength = maxLength;
freqs = new short[elems];
bl_counts = new int[maxLength];
}
void reset() {
for (int i = 0; i < freqs.length; i++)
freqs[i] = 0;
codes = null;
length = null;
}
final void writeSymbol(int code)
{
if (DeflaterConstants.DEBUGGING)
{
freqs[code]--;
// System.err.print("writeSymbol("+freqs.length+","+code+"): ");
}
pending.writeBits(codes[code] & 0xffff, length[code]);
}
final void checkEmpty()
{
boolean empty = true;
for (int i = 0; i < freqs.length; i++)
if (freqs[i] != 0)
{
System.err.println("freqs["+i+"] == "+freqs[i]);
empty = false;
}
if (!empty)
throw new InternalError();
System.err.println("checkEmpty suceeded!");
}
void setStaticCodes(short[] stCodes, byte[] stLength)
{
codes = stCodes;
length = stLength;
}
public void buildCodes() {
int numSymbols = freqs.length;
int[] nextCode = new int[maxLength];
int code = 0;
codes = new short[freqs.length];
if (DeflaterConstants.DEBUGGING)
System.err.println("buildCodes: "+freqs.length);
for (int bits = 0; bits < maxLength; bits++)
{
nextCode[bits] = code;
code += bl_counts[bits] << (15 - bits);
if (DeflaterConstants.DEBUGGING)
System.err.println("bits: "+(bits+1)+" count: "+bl_counts[bits]
+" nextCode: "+Integer.toHexString(code));
}
if (DeflaterConstants.DEBUGGING && code != 65536)
throw new RuntimeException("Inconsistent bl_counts!");
for (int i=0; i < numCodes; i++)
{
int bits = length[i];
if (bits > 0)
{
if (DeflaterConstants.DEBUGGING)
System.err.println("codes["+i+"] = rev("
+Integer.toHexString(nextCode[bits-1])+"),"
+bits);
codes[i] = bitReverse(nextCode[bits-1]);
nextCode[bits-1] += 1 << (16 - bits);
}
}
}
private void buildLength(int childs[])
{
this.length = new byte [freqs.length];
int numNodes = childs.length / 2;
int numLeafs = (numNodes + 1) / 2;
int overflow = 0;
for (int i = 0; i < maxLength; i++)
bl_counts[i] = 0;
/* First calculate optimal bit lengths */
int lengths[] = new int[numNodes];
lengths[numNodes-1] = 0;
for (int i = numNodes - 1; i >= 0; i--)
{
if (childs[2*i+1] != -1)
{
int bitLength = lengths[i] + 1;
if (bitLength > maxLength)
{
bitLength = maxLength;
overflow++;
}
lengths[childs[2*i]] = lengths[childs[2*i+1]] = bitLength;
}
else
{
/* A leaf node */
int bitLength = lengths[i];
bl_counts[bitLength - 1]++;
this.length[childs[2*i]] = (byte) lengths[i];
}
}
if (DeflaterConstants.DEBUGGING)
{
System.err.println("Tree "+freqs.length+" lengths:");
for (int i=0; i < numLeafs; i++)
System.err.println("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
+ " len: "+length[childs[2*i]]);
}
if (overflow == 0)
return;
int incrBitLen = maxLength - 1;
do
{
/* Find the first bit length which could increase: */
while (bl_counts[--incrBitLen] == 0)
;
/* Move this node one down and remove a corresponding
* amount of overflow nodes.
*/
do
{
bl_counts[incrBitLen]--;
bl_counts[++incrBitLen]++;
overflow -= 1 << (maxLength - 1 - incrBitLen);
}
while (overflow > 0 && incrBitLen < maxLength - 1);
}
while (overflow > 0);
/* We may have overshot above. Move some nodes from maxLength to
* maxLength-1 in that case.
*/
bl_counts[maxLength-1] += overflow;
bl_counts[maxLength-2] -= overflow;
/* Now recompute all bit lengths, scanning in increasing
* frequency. It is simpler to reconstruct all lengths instead of
* fixing only the wrong ones. This idea is taken from 'ar'
* written by Haruhiko Okumura.
*
* The nodes were inserted with decreasing frequency into the childs
* array.
*/
int nodePtr = 2 * numLeafs;
for (int bits = maxLength; bits != 0; bits--)
{
int n = bl_counts[bits-1];
while (n > 0)
{
int childPtr = 2*childs[nodePtr++];
if (childs[childPtr + 1] == -1)
{
/* We found another leaf */
length[childs[childPtr]] = (byte) bits;
n--;
}
}
}
if (DeflaterConstants.DEBUGGING)
{
System.err.println("*** After overflow elimination. ***");
for (int i=0; i < numLeafs; i++)
System.err.println("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
+ " len: "+length[childs[2*i]]);
}
}
void buildTree()
{
int numSymbols = freqs.length;
/* heap is a priority queue, sorted by frequency, least frequent
* nodes first. The heap is a binary tree, with the property, that
* the parent node is smaller than both child nodes. This assures
* that the smallest node is the first parent.
*
* The binary tree is encoded in an array: 0 is root node and
* the nodes 2*n+1, 2*n+2 are the child nodes of node n.
*/
int[] heap = new int[numSymbols];
int heapLen = 0;
int maxCode = 0;
for (int n = 0; n < numSymbols; n++)
{
int freq = freqs[n];
if (freq != 0)
{
/* Insert n into heap */
int pos = heapLen++;
int ppos;
while (pos > 0 &&
freqs[heap[ppos = (pos - 1) / 2]] > freq) {
heap[pos] = heap[ppos];
pos = ppos;
}
heap[pos] = n;
maxCode = n;
}
}
/* We could encode a single literal with 0 bits but then we
* don't see the literals. Therefore we force at least two
* literals to avoid this case. We don't care about order in
* this case, both literals get a 1 bit code.
*/
while (heapLen < 2)
{
int node = maxCode < 2 ? ++maxCode : 0;
heap[heapLen++] = node;
}
numCodes = Math.max(maxCode + 1, minNumCodes);
int numLeafs = heapLen;
int[] childs = new int[4*heapLen - 2];
int[] values = new int[2*heapLen - 1];
int numNodes = numLeafs;
for (int i = 0; i < heapLen; i++)
{
int node = heap[i];
childs[2*i] = node;
childs[2*i+1] = -1;
values[i] = freqs[node] << 8;
heap[i] = i;
}
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do
{
int first = heap[0];
int last = heap[--heapLen];
/* Propagate the hole to the leafs of the heap */
int ppos = 0;
int path = 1;
while (path < heapLen)
{
if (path + 1 < heapLen
&& values[heap[path]] > values[heap[path+1]])
path++;
heap[ppos] = heap[path];
ppos = path;
path = path * 2 + 1;
}
/* Now propagate the last element down along path. Normally
* it shouldn't go too deep.
*/
int lastVal = values[last];
while ((path = ppos) > 0
&& values[heap[ppos = (path - 1)/2]] > lastVal)
heap[path] = heap[ppos];
heap[path] = last;
int second = heap[0];
/* Create a new node father of first and second */
last = numNodes++;
childs[2*last] = first;
childs[2*last+1] = second;
int mindepth = Math.min(values[first] & 0xff, values[second] & 0xff);
values[last] = lastVal = values[first] + values[second] - mindepth + 1;
/* Again, propagate the hole to the leafs */
ppos = 0;
path = 1;
while (path < heapLen)
{
if (path + 1 < heapLen
&& values[heap[path]] > values[heap[path+1]])
path++;
heap[ppos] = heap[path];
ppos = path;
path = ppos * 2 + 1;
}
/* Now propagate the new element down along path */
while ((path = ppos) > 0
&& values[heap[ppos = (path - 1)/2]] > lastVal)
heap[path] = heap[ppos];
heap[path] = last;
}
while (heapLen > 1);
if (heap[0] != childs.length / 2 - 1)
throw new RuntimeException("Weird!");
buildLength(childs);
}
int getEncodedLength()
{
int len = 0;
for (int i = 0; i < freqs.length; i++)
len += freqs[i] * length[i];
return len;
}
void calcBLFreq(Tree blTree) {
int max_count; /* max repeat count */
int min_count; /* min repeat count */
int count; /* repeat count of the current code */
int curlen = -1; /* length of current code */
int i = 0;
while (i < numCodes)
{
count = 1;
int nextlen = length[i];
if (nextlen == 0)
{
max_count = 138;
min_count = 3;
}
else
{
max_count = 6;
min_count = 3;
if (curlen != nextlen)
{
blTree.freqs[nextlen]++;
count = 0;
}
}
curlen = nextlen;
i++;
while (i < numCodes && curlen == length[i])
{
i++;
if (++count >= max_count)
break;
}
if (count < min_count)
blTree.freqs[curlen] += count;
else if (curlen != 0)
blTree.freqs[REP_3_6]++;
else if (count <= 10)
blTree.freqs[REP_3_10]++;
else
blTree.freqs[REP_11_138]++;
}
}
void writeTree(Tree blTree)
{
int max_count; /* max repeat count */
int min_count; /* min repeat count */
int count; /* repeat count of the current code */
int curlen = -1; /* length of current code */
int i = 0;
while (i < numCodes)
{
count = 1;
int nextlen = length[i];
if (nextlen == 0)
{
max_count = 138;
min_count = 3;
}
else
{
max_count = 6;
min_count = 3;
if (curlen != nextlen)
{
blTree.writeSymbol(nextlen);
count = 0;
}
}
curlen = nextlen;
i++;
while (i < numCodes && curlen == length[i])
{
i++;
if (++count >= max_count)
break;
}
if (count < min_count)
{
while (count-- > 0)
blTree.writeSymbol(curlen);
}
else if (curlen != 0)
{
blTree.writeSymbol(REP_3_6);
pending.writeBits(count - 3, 2);
}
else if (count <= 10)
{
blTree.writeSymbol(REP_3_10);
pending.writeBits(count - 3, 3);
}
else
{
blTree.writeSymbol(REP_11_138);
pending.writeBits(count - 11, 7);
}
}
}
}
DeflaterPending pending;
private Tree literalTree, distTree, blTree;
private short d_buf[];
private byte l_buf[];
private int last_lit;
private int extra_bits;
private static short staticLCodes[];
private static byte staticLLength[];
private static short staticDCodes[];
private static byte staticDLength[];
/**
* Reverse the bits of a 16 bit value.
*/
static short bitReverse(int value) {
return (short) (bit4Reverse.charAt(value & 0xf) << 12
| bit4Reverse.charAt((value >> 4) & 0xf) << 8
| bit4Reverse.charAt((value >> 8) & 0xf) << 4
| bit4Reverse.charAt(value >> 12));
}
static {
/* See RFC 1951 3.2.6 */
/* Literal codes */
staticLCodes = new short[LITERAL_NUM];
staticLLength = new byte[LITERAL_NUM];
int i = 0;
while (i < 144) {
staticLCodes[i] = bitReverse((0x030 + i) << 8);
staticLLength[i++] = 8;
}
while (i < 256) {
staticLCodes[i] = bitReverse((0x190 - 144 + i) << 7);
staticLLength[i++] = 9;
}
while (i < 280) {
staticLCodes[i] = bitReverse((0x000 - 256 + i) << 9);
staticLLength[i++] = 7;
}
while (i < LITERAL_NUM) {
staticLCodes[i] = bitReverse((0x0c0 - 280 + i) << 8);
staticLLength[i++] = 8;
}
/* Distant codes */
staticDCodes = new short[DIST_NUM];
staticDLength = new byte[DIST_NUM];
for (i = 0; i < DIST_NUM; i++) {
staticDCodes[i] = bitReverse(i << 11);
staticDLength[i] = 5;
}
}
public DeflaterHuffman(DeflaterPending pending)
{
this.pending = pending;
literalTree = new Tree(LITERAL_NUM, 257, 15);
distTree = new Tree(DIST_NUM, 1, 15);
blTree = new Tree(BITLEN_NUM, 4, 7);
d_buf = new short[BUFSIZE];
l_buf = new byte [BUFSIZE];
}
public final void reset() {
last_lit = 0;
extra_bits = 0;
literalTree.reset();
distTree.reset();
blTree.reset();
}
private final int l_code(int len) {
if (len == 255)
return 285;
int code = 257;
while (len >= 8)
{
code += 4;
len >>= 1;
}
return code + len;
}
private final int d_code(int distance) {
int code = 0;
while (distance >= 4)
{
code += 2;
distance >>= 1;
}
return code + distance;
}
public void sendAllTrees(int blTreeCodes) {
blTree.buildCodes();
literalTree.buildCodes();
distTree.buildCodes();
pending.writeBits(literalTree.numCodes - 257, 5);
pending.writeBits(distTree.numCodes - 1, 5);
pending.writeBits(blTreeCodes - 4, 4);
for (int rank = 0; rank < blTreeCodes; rank++)
pending.writeBits(blTree.length[BL_ORDER[rank]], 3);
literalTree.writeTree(blTree);
distTree.writeTree(blTree);
if (DeflaterConstants.DEBUGGING)
blTree.checkEmpty();
}
public void compressBlock() {
for (int i = 0; i < last_lit; i++)
{
int litlen = l_buf[i] & 0xff;
int dist = d_buf[i];
if (dist-- != 0)
{
if (DeflaterConstants.DEBUGGING)
System.err.print("["+(dist+1)+","+(litlen+3)+"]: ");
int lc = l_code(litlen);
literalTree.writeSymbol(lc);
int bits = (lc - 261) / 4;
if (bits > 0 && bits <= 5)
pending.writeBits(litlen & ((1 << bits) - 1), bits);
int dc = d_code(dist);
distTree.writeSymbol(dc);
bits = dc / 2 - 1;
if (bits > 0)
pending.writeBits(dist & ((1 << bits) - 1), bits);
}
else
{
if (DeflaterConstants.DEBUGGING)
{
if (litlen > 32 && litlen < 127)
System.err.print("("+(char)litlen+"): ");
else
System.err.print("{"+litlen+"}: ");
}
literalTree.writeSymbol(litlen);
}
}
if (DeflaterConstants.DEBUGGING)
System.err.print("EOF: ");
literalTree.writeSymbol(EOF_SYMBOL);
if (DeflaterConstants.DEBUGGING)
{
literalTree.checkEmpty();
distTree.checkEmpty();
}
}
public void flushStoredBlock(byte[] stored,
int stored_offset, int stored_len,
boolean lastBlock) {
if (DeflaterConstants.DEBUGGING)
System.err.println("Flushing stored block "+ stored_len);
pending.writeBits((DeflaterConstants.STORED_BLOCK << 1)
+ (lastBlock ? 1 : 0), 3);
pending.alignToByte();
pending.writeShort(stored_len);
pending.writeShort(~stored_len);
pending.writeBlock(stored, stored_offset, stored_len);
reset();
}
public void flushBlock(byte[] stored, int stored_offset, int stored_len,
boolean lastBlock) {
literalTree.freqs[EOF_SYMBOL]++;
/* Build trees */
literalTree.buildTree();
distTree.buildTree();
/* Calculate bitlen frequency */
literalTree.calcBLFreq(blTree);
distTree.calcBLFreq(blTree);
/* Build bitlen tree */
blTree.buildTree();
int blTreeCodes = 4;
for (int i = 18; i > blTreeCodes; i--)
{
if (blTree.length[BL_ORDER[i]] > 0)
blTreeCodes = i+1;
}
int opt_len = 14 + blTreeCodes * 3 + blTree.getEncodedLength()
+ literalTree.getEncodedLength() + distTree.getEncodedLength()
+ extra_bits;
int static_len = extra_bits;
for (int i = 0; i < LITERAL_NUM; i++)
static_len += literalTree.freqs[i] * staticLLength[i];
for (int i = 0; i < DIST_NUM; i++)
static_len += distTree.freqs[i] * staticDLength[i];
if (opt_len >= static_len)
{
/* Force static trees */
opt_len = static_len;
}
if (stored_offset >= 0 && stored_len+4 < opt_len >> 3)
{
/* Store Block */
if (DeflaterConstants.DEBUGGING)
System.err.println("Storing, since " + stored_len + " < " + opt_len
+ " <= " + static_len);
flushStoredBlock(stored, stored_offset, stored_len, lastBlock);
}
else if (opt_len == static_len)
{
/* Encode with static tree */
pending.writeBits((DeflaterConstants.STATIC_TREES << 1)
+ (lastBlock ? 1 : 0), 3);
literalTree.setStaticCodes(staticLCodes, staticLLength);
distTree.setStaticCodes(staticDCodes, staticDLength);
compressBlock();
reset();
}
else
{
/* Encode with dynamic tree */
pending.writeBits((DeflaterConstants.DYN_TREES << 1)
+ (lastBlock ? 1 : 0), 3);
sendAllTrees(blTreeCodes);
compressBlock();
reset();
}
}
public final boolean isFull()
{
return last_lit == BUFSIZE;
}
public final boolean tallyLit(int lit)
{
if (DeflaterConstants.DEBUGGING)
{
if (lit > 32 && lit < 127)
System.err.println("("+(char)lit+")");
else
System.err.println("{"+lit+"}");
}
d_buf[last_lit] = 0;
l_buf[last_lit++] = (byte) lit;
literalTree.freqs[lit]++;
return last_lit == BUFSIZE;
}
public final boolean tallyDist(int dist, int len)
{
if (DeflaterConstants.DEBUGGING)
System.err.println("["+dist+","+len+"]");
d_buf[last_lit] = (short) dist;
l_buf[last_lit++] = (byte) (len - 3);
int lc = l_code(len-3);
literalTree.freqs[lc]++;
if (lc >= 265 && lc < 285)
extra_bits += (lc - 261) / 4;
int dc = d_code(dist-1);
distTree.freqs[dc]++;
if (dc >= 4)
extra_bits += dc / 2 - 1;
return last_lit == BUFSIZE;
}
}
|