1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
/*
FUNCTION
<<strtod>>, <<strtodf>>---string to double or float
INDEX
strtod
INDEX
_strtod_r
INDEX
strtodf
ANSI_SYNOPSIS
#include <stdlib.h>
double strtod(const char *<[str]>, char **<[tail]>);
float strtodf(const char *<[str]>, char **<[tail]>);
double _strtod_r(void *<[reent]>,
const char *<[str]>, char **<[tail]>);
TRAD_SYNOPSIS
#include <stdlib.h>
double strtod(<[str]>,<[tail]>)
char *<[str]>;
char **<[tail]>;
float strtodf(<[str]>,<[tail]>)
char *<[str]>;
char **<[tail]>;
double _strtod_r(<[reent]>,<[str]>,<[tail]>)
char *<[reent]>;
char *<[str]>;
char **<[tail]>;
DESCRIPTION
The function <<strtod>> parses the character string <[str]>,
producing a substring which can be converted to a double
value. The substring converted is the longest initial
subsequence of <[str]>, beginning with the first
non-whitespace character, that has the format:
.[+|-]<[digits]>[.][<[digits]>][(e|E)[+|-]<[digits]>]
The substring contains no characters if <[str]> is empty, consists
entirely of whitespace, or if the first non-whitespace
character is something other than <<+>>, <<->>, <<.>>, or a
digit. If the substring is empty, no conversion is done, and
the value of <[str]> is stored in <<*<[tail]>>>. Otherwise,
the substring is converted, and a pointer to the final string
(which will contain at least the terminating null character of
<[str]>) is stored in <<*<[tail]>>>. If you want no
assignment to <<*<[tail]>>>, pass a null pointer as <[tail]>.
<<strtodf>> is identical to <<strtod>> except for its return type.
This implementation returns the nearest machine number to the
input decimal string. Ties are broken by using the IEEE
round-even rule.
The alternate function <<_strtod_r>> is a reentrant version.
The extra argument <[reent]> is a pointer to a reentrancy structure.
RETURNS
<<strtod>> returns the converted substring value, if any. If
no conversion could be performed, 0 is returned. If the
correct value is out of the range of representable values,
plus or minus <<HUGE_VAL>> is returned, and <<ERANGE>> is
stored in errno. If the correct value would cause underflow, 0
is returned and <<ERANGE>> is stored in errno.
Supporting OS subroutines required: <<close>>, <<fstat>>, <<isatty>>,
<<lseek>>, <<read>>, <<sbrk>>, <<write>>.
*/
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991 by AT&T.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/* Please send bug reports to
David M. Gay
AT&T Bell Laboratories, Room 2C-463
600 Mountain Avenue
Murray Hill, NJ 07974-2070
U.S.A.
dmg@research.att.com or research!dmg
*/
#include <string.h>
#include <float.h>
#include <errno.h>
#include "mprec.h"
double
_DEFUN (_strtod_r, (ptr, s00, se),
struct _Jv_reent *ptr _AND
_CONST char *s00 _AND
char **se)
{
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e1, esign, i, j,
k, nd, nd0, nf, nz, nz0, sign;
int digits = 0; /* Number of digits found in fraction part. */
long e;
_CONST char *s, *s0, *s1;
double aadj, aadj1, adj;
long L;
unsigned long y, z;
union double_union rv, rv0;
_Jv_Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
sign = nz0 = nz = 0;
rv.d = 0.;
for (s = s00;; s++)
switch (*s)
{
case '-':
sign = 1;
/* no break */
case '+':
if (*++s)
goto break2;
/* no break */
case 0:
s = s00;
goto ret;
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
case ' ':
continue;
default:
goto break2;
}
break2:
if (*s == '0')
{
digits++;
nz0 = 1;
while (*++s == '0')
digits++;
if (!*s)
goto ret;
}
s0 = s;
y = z = 0;
for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
{
digits++;
if (nd < 9)
y = 10 * y + c - '0';
else if (nd < 16)
z = 10 * z + c - '0';
}
nd0 = nd;
if (c == '.')
{
c = *++s;
if (!nd)
{
for (; c == '0'; c = *++s)
{
digits++;
nz++;
}
if (c > '0' && c <= '9')
{
digits++;
s0 = s;
nf += nz;
nz = 0;
goto have_dig;
}
goto dig_done;
}
for (; c >= '0' && c <= '9'; c = *++s)
{
digits++;
have_dig:
nz++;
if (c -= '0')
{
nf += nz;
for (i = 1; i < nz; i++)
if (nd++ < 9)
y *= 10;
else if (nd <= DBL_DIG + 1)
z *= 10;
if (nd++ < 9)
y = 10 * y + c;
else if (nd <= DBL_DIG + 1)
z = 10 * z + c;
nz = 0;
}
}
}
dig_done:
e = 0;
if (c == 'e' || c == 'E')
{
if (!nd && !nz && !nz0)
{
s = s00;
goto ret;
}
s00 = s;
esign = 0;
switch (c = *++s)
{
case '-':
esign = 1;
case '+':
c = *++s;
}
if (c >= '0' && c <= '9')
{
while (c == '0')
c = *++s;
if (c > '0' && c <= '9')
{
e = c - '0';
s1 = s;
while ((c = *++s) >= '0' && c <= '9')
e = 10 * e + c - '0';
if (s - s1 > 8)
/* Avoid confusion from exponents
* so large that e might overflow.
*/
e = 9999999L;
if (esign)
e = -e;
}
}
else
{
/* No exponent after an 'E' : that's an error. */
ptr->_errno = EINVAL;
e = 0;
s = s00;
goto ret;
}
}
if (!nd)
{
if (!nz && !nz0)
s = s00;
goto ret;
}
e1 = e -= nf;
/* Now we have nd0 digits, starting at s0, followed by a
* decimal point, followed by nd-nd0 digits. The number we're
* after is the integer represented by those digits times
* 10**e */
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
rv.d = y;
if (k > 9)
rv.d = tens[k - 9] * rv.d + z;
bd0 = 0;
if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
&& FLT_ROUNDS == 1
#endif
)
{
if (!e)
goto ret;
if (e > 0)
{
if (e <= Ten_pmax)
{
#ifdef VAX
goto vax_ovfl_check;
#else
/* rv.d = */ rounded_product (rv.d, tens[e]);
goto ret;
#endif
}
i = DBL_DIG - nd;
if (e <= Ten_pmax + i)
{
/* A fancier test would sometimes let us do
* this for larger i values.
*/
e -= i;
rv.d *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
word0 (rv) -= P * Exp_msk1;
/* rv.d = */ rounded_product (rv.d, tens[e]);
if ((word0 (rv) & Exp_mask)
> Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
goto ovfl;
word0 (rv) += P * Exp_msk1;
#else
/* rv.d = */ rounded_product (rv.d, tens[e]);
#endif
goto ret;
}
}
#ifndef Inaccurate_Divide
else if (e >= -Ten_pmax)
{
/* rv.d = */ rounded_quotient (rv.d, tens[-e]);
goto ret;
}
#endif
}
e1 += nd - k;
/* Get starting approximation = rv.d * 10**e1 */
if (e1 > 0)
{
if ((i = e1 & 15))
rv.d *= tens[i];
if (e1 &= ~15)
{
if (e1 > DBL_MAX_10_EXP)
{
ovfl:
ptr->_errno = ERANGE;
/* Force result to IEEE infinity. */
word0 (rv) = Exp_mask;
word1 (rv) = 0;
if (bd0)
goto retfree;
goto ret;
}
if (e1 >>= 4)
{
for (j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
rv.d *= bigtens[j];
/* The last multiplication could overflow. */
word0 (rv) -= P * Exp_msk1;
rv.d *= bigtens[j];
if ((z = word0 (rv) & Exp_mask)
> Exp_msk1 * (DBL_MAX_EXP + Bias - P))
goto ovfl;
if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P))
{
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0 (rv) = Big0;
#ifndef _DOUBLE_IS_32BITS
word1 (rv) = Big1;
#endif
}
else
word0 (rv) += P * Exp_msk1;
}
}
}
else if (e1 < 0)
{
e1 = -e1;
if ((i = e1 & 15))
rv.d /= tens[i];
if (e1 &= ~15)
{
e1 >>= 4;
if (e1 >= 1 << n_bigtens)
goto undfl;
for (j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
rv.d *= tinytens[j];
/* The last multiplication could underflow. */
rv0.d = rv.d;
rv.d *= tinytens[j];
if (!rv.d)
{
rv.d = 2. * rv0.d;
rv.d *= tinytens[j];
if (!rv.d)
{
undfl:
rv.d = 0.;
ptr->_errno = ERANGE;
if (bd0)
goto retfree;
goto ret;
}
#ifndef _DOUBLE_IS_32BITS
word0 (rv) = Tiny0;
word1 (rv) = Tiny1;
#else
word0 (rv) = Tiny1;
#endif
/* The refinement below will clean
* this approximation up.
*/
}
}
}
/* Now the hard part -- adjusting rv to the correct value.*/
/* Put digits into bd: true value = bd * 10^e */
bd0 = s2b (ptr, s0, nd0, nd, y);
for (;;)
{
bd = Balloc (ptr, bd0->_k);
Bcopy (bd, bd0);
bb = d2b (ptr, rv.d, &bbe, &bbbits); /* rv.d = bb * 2^bbe */
bs = i2b (ptr, 1);
if (e >= 0)
{
bb2 = bb5 = 0;
bd2 = bd5 = e;
}
else
{
bb2 = bb5 = -e;
bd2 = bd5 = 0;
}
if (bbe >= 0)
bb2 += bbe;
else
bd2 -= bbe;
bs2 = bb2;
#ifdef Sudden_Underflow
#ifdef IBM
j = 1 + 4 * P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
j = P + 1 - bbbits;
#endif
#else
i = bbe + bbbits - 1; /* logb(rv.d) */
if (i < Emin) /* denormal */
j = bbe + (P - Emin);
else
j = P + 1 - bbbits;
#endif
bb2 += j;
bd2 += j;
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
if (i > 0)
{
bb2 -= i;
bd2 -= i;
bs2 -= i;
}
if (bb5 > 0)
{
bs = pow5mult (ptr, bs, bb5);
bb1 = mult (ptr, bs, bb);
Bfree (ptr, bb);
bb = bb1;
}
if (bb2 > 0)
bb = lshift (ptr, bb, bb2);
if (bd5 > 0)
bd = pow5mult (ptr, bd, bd5);
if (bd2 > 0)
bd = lshift (ptr, bd, bd2);
if (bs2 > 0)
bs = lshift (ptr, bs, bs2);
delta = diff (ptr, bb, bd);
dsign = delta->_sign;
delta->_sign = 0;
i = cmp (delta, bs);
if (i < 0)
{
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
break;
delta = lshift (ptr, delta, Log2P);
if (cmp (delta, bs) > 0)
goto drop_down;
break;
}
if (i == 0)
{
/* exactly half-way between */
if (dsign)
{
if ((word0 (rv) & Bndry_mask1) == Bndry_mask1
&& word1 (rv) == 0xffffffff)
{
/*boundary case -- increment exponent*/
word0 (rv) = (word0 (rv) & Exp_mask)
+ Exp_msk1
#ifdef IBM
| Exp_msk1 >> 4
#endif
;
#ifndef _DOUBLE_IS_32BITS
word1 (rv) = 0;
#endif
break;
}
}
else if (!(word0 (rv) & Bndry_mask) && !word1 (rv))
{
drop_down:
/* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
L = word0 (rv) & Exp_mask;
#ifdef IBM
if (L < Exp_msk1)
#else
if (L <= Exp_msk1)
#endif
goto undfl;
L -= Exp_msk1;
#else
L = (word0 (rv) & Exp_mask) - Exp_msk1;
#endif
word0 (rv) = L | Bndry_mask1;
#ifndef _DOUBLE_IS_32BITS
word1 (rv) = 0xffffffff;
#endif
#ifdef IBM
goto cont;
#else
break;
#endif
}
#ifndef ROUND_BIASED
if (!(word1 (rv) & LSB))
break;
#endif
if (dsign)
rv.d += ulp (rv.d);
#ifndef ROUND_BIASED
else
{
rv.d -= ulp (rv.d);
#ifndef Sudden_Underflow
if (!rv.d)
goto undfl;
#endif
}
#endif
break;
}
if ((aadj = ratio (delta, bs)) <= 2.)
{
if (dsign)
aadj = aadj1 = 1.;
else if (word1 (rv) || word0 (rv) & Bndry_mask)
{
#ifndef Sudden_Underflow
if (word1 (rv) == Tiny1 && !word0 (rv))
goto undfl;
#endif
aadj = 1.;
aadj1 = -1.;
}
else
{
/* special case -- power of FLT_RADIX to be */
/* rounded down... */
if (aadj < 2. / FLT_RADIX)
aadj = 1. / FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
}
}
else
{
aadj *= 0.5;
aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
switch (FLT_ROUNDS)
{
case 2: /* towards +infinity */
aadj1 -= 0.5;
break;
case 0: /* towards 0 */
case 3: /* towards -infinity */
aadj1 += 0.5;
}
#else
if (FLT_ROUNDS == 0)
aadj1 += 0.5;
#endif
}
y = word0 (rv) & Exp_mask;
/* Check for overflow */
if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
{
rv0.d = rv.d;
word0 (rv) -= P * Exp_msk1;
adj = aadj1 * ulp (rv.d);
rv.d += adj;
if ((word0 (rv) & Exp_mask) >=
Exp_msk1 * (DBL_MAX_EXP + Bias - P))
{
if (word0 (rv0) == Big0 && word1 (rv0) == Big1)
goto ovfl;
#ifdef _DOUBLE_IS_32BITS
word0 (rv) = Big1;
#else
word0 (rv) = Big0;
word1 (rv) = Big1;
#endif
goto cont;
}
else
word0 (rv) += P * Exp_msk1;
}
else
{
#ifdef Sudden_Underflow
if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
{
rv0.d = rv.d;
word0 (rv) += P * Exp_msk1;
adj = aadj1 * ulp (rv.d);
rv.d += adj;
#ifdef IBM
if ((word0 (rv) & Exp_mask) < P * Exp_msk1)
#else
if ((word0 (rv) & Exp_mask) <= P * Exp_msk1)
#endif
{
if (word0 (rv0) == Tiny0
&& word1 (rv0) == Tiny1)
goto undfl;
word0 (rv) = Tiny0;
word1 (rv) = Tiny1;
goto cont;
}
else
word0 (rv) -= P * Exp_msk1;
}
else
{
adj = aadj1 * ulp (rv.d);
rv.d += adj;
}
#else
/* Compute adj so that the IEEE rounding rules will
* correctly round rv.d + adj in some half-way cases.
* If rv.d * ulp(rv.d) is denormalized (i.e.,
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
* trouble from bits lost to denormalization;
* example: 1.2e-307 .
*/
if (y <= (P - 1) * Exp_msk1 && aadj >= 1.)
{
aadj1 = (double) (int) (aadj + 0.5);
if (!dsign)
aadj1 = -aadj1;
}
adj = aadj1 * ulp (rv.d);
rv.d += adj;
#endif
}
z = word0 (rv) & Exp_mask;
if (y == z)
{
/* Can we stop now? */
L = aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (dsign || word1 (rv) || word0 (rv) & Bndry_mask)
{
if (aadj < .4999999 || aadj > .5000001)
break;
}
else if (aadj < .4999999 / FLT_RADIX)
break;
}
cont:
Bfree (ptr, bb);
Bfree (ptr, bd);
Bfree (ptr, bs);
Bfree (ptr, delta);
}
retfree:
Bfree (ptr, bb);
Bfree (ptr, bd);
Bfree (ptr, bs);
Bfree (ptr, bd0);
Bfree (ptr, delta);
ret:
if (se)
*se = (char *) s;
if (digits == 0)
ptr->_errno = EINVAL;
return sign ? -rv.d : rv.d;
}
|