1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/* @(#)w_pow.c 5.2 93/10/01 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
FUNCTION
<<pow>>, <<powf>>---x to the power y
INDEX
pow
INDEX
powf
ANSI_SYNOPSIS
#include <math.h>
double pow(double <[x]>, double <[y]>);
float pow(float <[x]>, float <[y]>);
TRAD_SYNOPSIS
#include <math.h>
double pow(<[x]>, <[y]>);
double <[x]>, <[y]>;
float pow(<[x]>, <[y]>);
float <[x]>, <[y]>;
DESCRIPTION
<<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>.
@tex
(That is, $x^y$.)
@end tex
RETURNS
On success, <<pow>> and <<powf>> return the value calculated.
When the argument values would produce overflow, <<pow>>
returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the
argument <[x]> passed to <<pow>> or <<powf>> is a negative
noninteger, and <[y]> is also not an integer, then <<errno>>
is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then
<<pow>> and <<powf>> return <<1>>.
You can modify error handling for these functions using <<matherr>>.
PORTABILITY
<<pow>> is ANSI C. <<powf>> is an extension. */
/*
* wrapper pow(x,y) return x**y
*/
#include "fdlibm.h"
#include <errno.h>
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
double pow(double x, double y) /* wrapper pow */
#else
double pow(x,y) /* wrapper pow */
double x,y;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_pow(x,y);
#else
double z;
#ifndef HUGE_VAL
#define HUGE_VAL inf
double inf = 0.0;
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
#endif
struct exception exc;
z=__ieee754_pow(x,y);
if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
if(isnan(x)) {
if(y==0.0) {
/* pow(NaN,0.0) */
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
exc.retval = x;
if (_LIB_VERSION == _IEEE_ ||
_LIB_VERSION == _POSIX_) exc.retval = 1.0;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
} else
return z;
}
if(x==0.0){
if(y==0.0) {
/* pow(0.0,0.0) */
/* error only if _LIB_VERSION == _SVID_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
exc.retval = 0.0;
if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
if(finite(y)&&y<0.0) {
/* 0**neg */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
if (_LIB_VERSION == _SVID_)
exc.retval = 0.0;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
return z;
}
if(!finite(z)) {
if(finite(x)&&finite(y)) {
if(isnan(z)) {
/* neg**non-integral */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
if (_LIB_VERSION == _SVID_)
exc.retval = 0.0;
else
exc.retval = 0.0/0.0; /* X/Open allow NaN */
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
} else {
/* pow(x,y) overflow */
exc.type = OVERFLOW;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
if (_LIB_VERSION == _SVID_) {
exc.retval = HUGE;
y *= 0.5;
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE;
} else {
exc.retval = HUGE_VAL;
y *= 0.5;
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL;
}
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!matherr(&exc)) {
errno = ERANGE;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
}
}
if(z==0.0&&finite(x)&&finite(y)) {
/* pow(x,y) underflow */
exc.type = UNDERFLOW;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
exc.retval = 0.0;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!matherr(&exc)) {
errno = ERANGE;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
return z;
#endif
}
#endif /* defined(_DOUBLE_IS_32BITS) */
|