1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
|
'\" t
.\" Manual page created with latex2man on Tue Aug 28 01:19:13 PDT 2018
.\" NOTE: This file is generated, DO NOT EDIT.
.de Vb
.ft CW
.nf
..
.de Ve
.ft R
.fi
..
.TH "ORPIERC" "5" "28 August 2018" "configuration file for the Orpie calculator " "configuration file for the Orpie calculator "
.SH NAME
orpierc \- is the configuration textfile for the \fIorpie\fP(1)
console calculator.
.PP
.SH INTRODUCTION
CAUTION: while this manpage should be suitable as a quick reference, it may
be subject to miscellaneous shortcomings in typesetting. The definitive
documentation is the user manual provided with Orpie in PDF format.
.PP
Orpie reads a run\-configuration textfile (generally /etc/orpierc or
/usr/local/etc/orpierc) to determine key and command bindings. You can
create a personalized configuration file in $HOME/.orpierc, and select
bindings that match your usage patterns. The recommended procedure is to ``include\&''
the orpierc file provided with Orpie
(see INCLUDING OTHER RCFILES),
and add or remove settings as desired.
.PP
.SH ORPIERC SYNTAX
You may notice that the orpierc syntax is similar to the syntax used in
the configuration file for the Mutt email client (muttrc).
.PP
Within the orpierc file, strings should be enclosed in double quotes (").
A double quote character inside a string may be represented by
\\" \&.
The backslash character must be represented by doubling it
(\\\\).
.PP
.SS INCLUDING OTHER RCFILES
Syntax: include \fIfilename_string\fP
.br
.br
This syntax can be used to include one run\-configuration file within another.
This command could be used to load the default orpierc file (probably
found in /etc/orpierc) within your personalized rcfile,
{/.orpierc}. The filename string should be enclosed in quotes.
.PP
.SS SETTING CONFIGURATION VARIABLES
Syntax: set \fIvariable\fP=\fIvalue_string\fP
.br
.br
Several configuration variables can be set using this syntax; check
the CONFIGURATION VARIABLES description
to see a list. The variables are unquoted, but the values should be quoted strings.
.PP
.SS CREATING KEY BINDINGS
Syntax: bind \fIkey_identifier operation\fP
.br
.br
This command will bind a keypress to execute a calculator operation.
The various operations, which should not be enclosed in quotes,
may be found in
the section on CALCULATOR OPERATIONS.
Key identifiers may be specified by strings that represent a single keypress,
for example "m" (quotes included). The key may be prefixed with
"\\\\C" or "\\\\M"
to represent Control or Meta (Alt) modifiers, respectively; note that the
backslash must be doubled. A number of special keys lack single\-character
representations, so the following strings may be used to represent them:
.TP
.B *
"<esc>"
.TP
.B *
"<tab>"
.TP
.B *
"<enter>"
.TP
.B *
"<return>"
.TP
.B *
"<insert>"
.TP
.B *
"<home>"
.TP
.B *
"<end>"
.TP
.B *
"<pageup>"
.TP
.B *
"<pagedown>"
.TP
.B *
"<space>"
.TP
.B *
"<left>"
.TP
.B *
"<right>"
.TP
.B *
"<up>"
.TP
.B *
"<down>"
.TP
.B *
"<f1>" to "<f12>"
.PP
Due to differences between various terminal emulators, this key identifier syntax may
not be adequate to describe every keypress. As a workaround, Orpie will also accept key
identifiers in octal notation. As an example, you could use
\\024
(do \fInot\fP
enclose it in quotes) to represent Ctrl\-T.
.PP
Orpie includes a secondary executable, orpie\-curses\-keys, that prints out
the key identifiers associated with keypresses. You may find it useful when customizing
orpierc.
.PP
Multiple keys may be bound to the same operation, if desired.
.PP
.SS REMOVING KEY BINDINGS
Syntax:
.br
unbind_function \fIkey_identifier\fP
.br
unbind_command \fIkey_identifier\fP
.br
unbind_edit \fIkey_identifier\fP
.br
unbind_browse \fIkey_identifier\fP
.br
unbind_abbrev \fIkey_identifier\fP
.br
unbind_variable \fIkey_identifier\fP
.br
unbind_integer \fIkey_identifier\fP
.br
.br
These commands will remove key bindings associated with the various entry
modes (functions, commands, editing operations, etc.). The key identifiers
should be defined using the syntax described in the previous section.
.PP
.SS CREATING KEY AUTO\-BINDINGS
Syntax: autobind \fIkey_identifier\fP
.br
.br
In order to make repetitive calculations more pleasant, Orpie offers an automatic key
binding feature. When a function or command is executed using its abbreviation,
one of the keys selected by the autobind syntax will be
automatically bound to that operation (unless the operation has already been bound
to a key). The current set of autobindings can be viewed in the help panel by executing
command_cycle_help (bound to \&'h\&' by default).
.PP
The syntax for the key identifiers is provided in the previous section.
.PP
.SS CREATING OPERATION ABBREVIATIONS
Syntax: abbrev \fIoperation_abbreviation operation\fP
.br
.br
You can use this syntax to set the abbreviations used within Orpie to represent the
various functions and commands. A list of available operations may be found in
the CALCULATOR OPERATIONS section.
The operation abbreviations should be quoted strings, for example "sin"
or "log".
.PP
Orpie performs autocompletion on these abbreviations, allowing you to type
usually just a few letters in order to select the desired command. The order of the
autocompletion matches will be the same as the order in which the abbreviations are
registered by the rcfile\-\-so you may wish to place the more commonly used operation
abbreviations earlier in the list.
.PP
Multiple abbreviations may be bound to the same operation, if desired.
.PP
.SS REMOVING OPERATION ABBREVIATIONS
Syntax: unabbrev \fIoperation_abbreviation\fP
.br
.br
This syntax can be used to remove an operation abbreviation. The operation abbreviations
should be quoted strings, as described in the previous section.
.PP
.SS CREATING MACROS
Syntax: macro \fIkey_identifier macro_string\fP
.br
.br
You can use this syntax to cause a single keypress (the \fIkey_identifier\fP)
to be interpreted as the series of keypresses listed in \fImacro_string\fP\&.
The syntax for defining a keypress is the same as that defined in
the section on CREATING KEY BINDINGS.
The macro string should be a list of whitespace\-separated keypresses, e.g.
"2 <return> 2 +" (including quotes).
.PP
This macro syntax provides a way to create small programs; by way of example,
the default orpierc file includes macros for the base 2 logarithm and the
binary entropy function (bound to L and H, respectively),
as well as ``register\&'' variable shortcuts (<f1> to <f12>).
.PP
Macros may call other macros recursively. However, take care that a macro does
not call \fIitself\fP
recursively; Orpie will not trap the infinite loop.
.PP
Note that operation abbreviations may be accessed within macros. For example,
macro "A" "\&' a b o u t <return>" would bind A to display
the ``about Orpie\&'' screen.
.PP
.SS CREATING UNITS
Syntax:
.br
base_unit \fIunit_symbol preferred_prefix\fP
.br
unit \fIunit_symbol unit_definition\fP
.br
.br
Units are defined in a two\-step process:
.TP
1.
Define a set of orthogonal ``base units.\&'' All other units must be expressible
in terms of these base units. The base units can be given a preferred SI prefix,
which will be used whenever the units are standardized (e.g. via ustand).
The unit symbols and preferred prefixes should all be quoted strings; to prefer
\fIno\fP
prefix, use the empty string ("").
.PP
It is expected that most users will use the fundamental SI units for base units.
.TP
2.
Define all other units in terms of either base units or previously\-defined units.
Again, the unit symbol and unit definition should be quoted strings. The definition
should take the form of a numeric value followed by a units string, e.g.
"2.5_kN*m/s". See
the UNITS FORMATTING section
for more details on the unit string format.
.PP
.SS CREATING CONSTANTS
Syntax: constant \fIconstant_symbol constant_definition\fP
.br
.br
This syntax can be used to define a physical constant. Both the constant symbol
and definition must be quoted strings. The constant definition should be a
numeric constant followed by a units string e.g. "1.60217733e\-19_C".
All units used in the constant definition must already have been defined.
.PP
.SH CONFIGURATION VARIABLES
The following configuration variables may be set as described in the SETTING
CONFIGURATION VARIABLES section.
.TP
.B *
datadir
.br
This variable should be set to the full path of the Orpie data directory,
which will contain the calculator state save file, temporary buffers, etc.
The default directory is
"\\~/.orpie/".
.TP
.B *
editor
.br
This variable may be set to the fullscreen editor of your choice. The default
value is "vi". It is recommended that you choose an editor that offers
horizontal scrolling in place of word wrapping, so that the columns of large
matrices can be properly aligned. (The Vim editor could be used in this fashion
by setting editor to "vim \-c \&'set nowrap\&'".)
.TP
.B *
hide_help
.br
Set this variable to "true" to hide the left help/status panel, or leave
it on the default of "false" to display the help panel.
.TP
.B *
conserve_memory
.br
Set this variable to "true" to minimize memory usage, or leave it on
the default of "false" to improve rendering performance. (By default,
Orpie caches multiple string representations of all stack elements. Very large
integers in particular require significant computation for string representation,
so caching these strings can make display updates much faster.)
.PP
.SH CALCULATOR OPERATIONS
Every calculator operation can be made available to the interface using the syntax
described in
the sections on CREATING KEY BINDINGS and CREATING OPERATION ABBREVIATIONS.
The following is a list of every available operation.
.PP
.SS FUNCTIONS
The following operations are functions\-\-that is, they will consume at least one
argument from the stack. Orpie will generally abort the computation and
provide an informative error message if a function cannot be successfully applied (for
example, if you try to compute the transpose of something that is not a matrix).
.PP
For the exact integer data type, basic arithmetic operations will yield an exact
integer result. Division of two exact integers will yield the quotient of
the division. The more complicated functions will generally promote the integer
to a real number, and as such the arithmetic will no longer be exact.
.TP
.B *
function_10_x
.br
Raise 10 to the power of the last stack element (inverse of function_log10).
.TP
.B *
function_abs
.br
Compute the absolute value of the last stack element.
.TP
.B *
function_acos
.br
Compute the inverse cosine of the last stack element. For real numbers,
The result will be provided either in degrees or radians, depending on
the angle mode of the calculator.
.TP
.B *
function_acosh
.br
Compute the inverse hyperbolic cosine of the last stack element.
.TP
.B *
function_add
.br
Add last two stack elements.
.TP
.B *
function_arg
.br
Compute the argument (phase angle of complex number) of the last stack
element. The value will be provided in either degrees or radians,
depending on the current angle mode of the calculator.
.TP
.B *
function_asin
.br
Compute the inverse sine of the last stack element. For real numbers,
The result will be provided either in degrees or radians, depending on
the angle mode of the calculator.
.TP
.B *
function_asinh
.br
Compute the inverse hyperbolic sine of the last stack element.
.TP
.B *
function_atan
.br
Compute the inverse tangent of the last stack element. For real numbers,
The result will be provided either in degrees or radians, depending on
the angle mode of the calculator.
.TP
.B *
function_atanh
.br
Compute the inverse hyperbolic tangent of the last stack element.
.TP
.B *
function_binomial_coeff
.br
Compute the binomial coefficient (``n choose k\&'') formed by the last two
stack elements. If these arguments are real, the coefficient is computed
using a fast approximation to the log of the gamma function, and therefore
the result is subject to rounding errors. For exact integer arguments,
the coefficient is computed using exact arithmetic; this has the potential
to be a slow operation.
.TP
.B *
function_ceiling
.br
Compute the ceiling of the last stack element.
.TP
.B *
function_convert_units
.br
Convert stack element 2 to an equivalent expression in the units of
element 1. Element 1 should be real\-valued, and its magnitude will
be ignored when computing the conversion.
.TP
.B *
function_cos
.br
Compute the cosine of the last stack element. If the argument is real,
it will be assumed to be either degrees or radians, depending on the
angle mode of the calculator.
.TP
.B *
function_cosh
.br
Compute the hyperbolic cosine of the last stack element.
.TP
.B *
function_conj
.br
Compute the complex conjugate of the last stack element.
.TP
.B *
function_div
.br
Divide element 2 by element 1.
.TP
.B *
function_erf
.br
Compute the error function of the last stack element.
.TP
.B *
function_erfc
.br
Compute the complementary error function of the last stack element.
.TP
.B *
function_eval
.br
Obtain the contents of the variable in the last stack position.
.TP
.B *
function_exp
.br
Evaluate the exponential function of the last stack element.
.TP
.B *
function_factorial
.br
Compute the factorial of the last stack element. For a real argument,
this is computed using a fast approximation to the gamma function,
and therefore the result may be subject to rounding errors (or overflow). For an
exact integer argument, the factorial is computed using exact arithmetic;
this has the potential to be a slow operation.
.TP
.B *
function_floor
.br
Compute the floor of the last stack element.
.TP
.B *
function_gamma
.br
Compute the Euler gamma function of the last stack element.
.TP
.B *
function_gcd
.br
Compute the greatest common divisor of the last two stack elements. This operation
may be applied only to integer type data.
.TP
.B *
function_im
.br
Compute the imaginary part of the last stack element.
.TP
.B *
function_inv
.br
Compute the multiplicative inverse of the last stack element.
.TP
.B *
function_lcm
.br
Compute the least common multiple of the last two stack elements. This
operation may be applied only to integer type data.
.TP
.B *
function_ln
.br
Compute the natural logarithm of the last stack element.
.TP
.B *
function_lngamma
.br
Compute the natural logarithm of the Euler gamma function of the last
stack element.
.TP
.B *
function_log10
.br
Compute the base\-10 logarithm of the last stack element.
.TP
.B *
function_maximum
.br
Find the maximum values of each of the columns of a real NxM matrix,
returning a 1xM matrix as a result.
.TP
.B *
function_minimum
.br
Find the minimum values of each of the columns of a real NxM matrix,
returning a 1xM matrix as a result.
.TP
.B *
function_mean
.br
Compute the sample means of each of the columns of a real NxM matrix,
returning a 1xM matrix as a result.
.TP
.B *
function_mod
.br
Compute element 2 mod element 1. This operation can be applied only
to integer type data.
.TP
.B *
function_mult
.br
Multiply last two stack elements.
.TP
.B *
function_neg
.br
Negate last stack element.
.TP
.B *
function_permutation
.br
Compute the permutation coefficient determined by the last two stack
elements \&'n\&' and \&'k\&': the number of ways of obtaining an ordered subset
of k elements from a set of n elements.
If these arguments are real, the coefficient is computed
using a fast approximation to the log of the gamma function, and therefore
the result is subject to rounding errors. For exact integer arguments,
the coefficient is computed using exact arithmetic; this has the potential
to be a slow operation.
.TP
.B *
function_pow
.br
Raise element 2 to the power of element 1.
.TP
.B *
function_purge
.br
Delete the variable in the last stack position.
.TP
.B *
function_re
.br
Compute the real part of the last stack element.
.TP
.B *
function_sin
.br
Compute the sine of the last stack element. If the argument is real, it
will be assumed to be either degrees or radians, depending on the angle
mode of the calculator.
.TP
.B *
function_sinh
.br
Compute the hyperbolic sine of the last stack element.
.TP
.B *
function_solve_linear
.br
Solve a linear system of the form Ax = b, where A and b are the last
two elements on the stack. A must be a square matrix and b must
be a matrix with one column. This function does not compute inv(A),
but obtains the solution by a more efficient LU decomposition method.
This function is recommended over explicitly computing the inverse,
especially when solving linear systems with relatively large dimension or
with poorly conditioned matrices.
.TP
.B *
function_sq
.br
Square the last stack element.
.TP
.B *
function_sqrt
.br
Compute the square root of the last stack element.
.TP
.B *
function_standardize_units
.br
Convert the last stack element to an equivalent expression using the SI standard
base units (kg, m, s, etc.).
.TP
.B *
function_stdev_unbiased
.br
Compute the unbiased sample standard deviation of each of the columns of a real NxM
matrix, returning a 1xM matrix as a result. (Compare to HP48\&'s sdev
function.)
.TP
.B *
function_stdev_biased
.br
Compute the biased (population) sample standard deviation of each of the columns
of a real NxM matrix, returning a 1xM matrix as a result. (Compare to
HP48\&'s psdev function.)
.TP
.B *
function_store
.br
Store element 2 in (variable) element 1.
.TP
.B *
function_sub
.br
Subtract element 1 from element 2.
.TP
.B *
function_sumsq
.br
Sum the squares of each of the columns of a real NxM matrix, returning a
1xM matrix as a result.
.TP
.B *
function_tan
.br
Compute the tangent of the last stack element. If the argument is real,
it will be assumed to be either degrees or radians, depending on the
angle mode of the calculator.
.TP
.B *
function_tanh
.br
Compute the hyperbolic tangent of the last stack element.
.TP
.B *
function_to_int
.br
Convert a real number to an integer type.
.TP
.B *
function_to_real
.br
Convert an integer type to a real number.
.TP
.B *
function_total
.br
Sum each of the columns of a real NxM matrix, returning a
1xM matrix as a result.
.TP
.B *
function_trace
.br
Compute the trace of a square matrix.
.TP
.B *
function_transpose
.br
Compute the matrix transpose of the last stack element.
.TP
.B *
function_unit_value
.br
Drop the units of the last stack element.
.TP
.B *
function_utpn
.br
Compute the upper tail probability of a normal distribution.
.br
UTPN(m, v, x) = Integrate[ 1/Sqrt[2 Pi v] Exp[\-(m\-y)^2/(2 v)], {y, x, Infinity}]
.TP
.B *
function_var_unbiased
.br
Compute the unbiased sample variance of each of the columns of a real NxM
matrix, returning a 1xM matrix as a result. (Compare to HP48\&'s var
function.)
.TP
.B *
function_var_biased
.br
Compute the biased (population) sample variance of each of the columns of a
real NxM matrix, returning a 1xM matrix as a result. (Compare to HP48\&'s
pvar function.)
.PP
.SS COMMANDS
The following operations are referred to as commands; they differ from functions because
they do not take an argument. Many calculator interface settings are implemented as commands.
.TP
.B *
command_about
.br
Display a nifty ``about Orpie\&'' credits screen.
.TP
.B *
command_begin_abbrev
.br
Begin entry of an operation abbreviation.
.TP
.B *
command_begin_browsing
.br
Enter stack browsing mode.
.TP
.B *
command_begin_constant
.br
Begin entry of a physical constant.
.TP
.B *
command_begin_variable
.br
Begin entry of a variable name.
.TP
.B *
command_bin
.br
Set the base of exact integer representation to 2 (binary).
.TP
.B *
command_clear
.br
Clear all elements from the stack.
.TP
.B *
command_cycle_base
.br
Cycle the base of exact integer representation between 2, 8,
10, and 16 (bin, oct, dec, and hex).
.TP
.B *
command_cycle_help
.br
Cycle through multiple help pages. The first page displays commonly used
bindings, and the second page displays the current autobindings.
.TP
.B *
command_dec
.br
Set the base of exact integer representation to 10 (decimal).
.TP
.B *
command_deg
.br
Set the angle mode to degrees.
.TP
.B *
command_drop
.br
Drop the last element off the stack.
.TP
.B *
command_dup
.br
Duplicate the last stack element.
.TP
.B *
command_enter_pi
.br
Enter 3.1415\&...
on the stack.
.TP
.B *
command_hex
.br
Set the base of exact integer representation to 16 (hexadecimal).
.TP
.B *
command_oct
.br
Set the base of exact integer representation to 8 (octal).
.TP
.B *
command_polar
.br
Set the complex display mode to polar.
.TP
.B *
command_rad
.br
Set the angle mode to radians.
.TP
.B *
command_rand
.br
Generate a random real\-valued number between 0 (inclusive) and 1 (exclusive). The deviates
are uniformly distributed.
.TP
.B *
command_rect
.br
Set the complex display mode to rectangular (cartesian).
.TP
.B *
command_refresh
.br
Refresh the display.
.TP
.B *
command_swap
.br
Swap stack elements 1 and 2.
.TP
.B *
command_quit
.br
Quit Orpie.
.TP
.B *
command_toggle_angle_mode
.br
Toggle the angle mode between degrees and radians.
.TP
.B *
command_toggle_complex_mode
.br
Toggle the complex display mode between rectangular and polar.
.TP
.B *
command_undo
.br
Undo the last calculator operation.
.TP
.B *
command_view
.br
View the last stack element in an external fullscreen editor.
.TP
.B *
command_edit_input
.br
Create a new stack element using an external editor.
.PP
.SS EDIT OPERATIONS
The following operations are related to editing during data entry. These
commands cannot be made available as operation abbreviations, since
abbreviations are not accessible while entering data. These operations should
be made available as single keypresses using the bind keyword.
.TP
.B *
edit_angle
.br
Begin entering the phase angle of a complex number. (Orpie will
assume the angle is in either degrees or radians, depending on
the current angle mode.)
.TP
.B *
edit_backspace
.br
Delete the last character entered.
.TP
.B *
edit_begin_integer
.br
Begin entering an exact integer.
.TP
.B *
edit_begin_units
.br
Begin appending units to a numeric expression.
.TP
.B *
edit_complex
.br
Begin entering a complex number.
.TP
.B *
edit_enter
.br
Enter the data that is currently being edited.
.TP
.B *
edit_matrix
.br
Begin entering a matrix, or begin entering the next
row of a matrix.
.TP
.B *
edit_minus
.br
Enter a minus sign in input.
.TP
.B *
edit_scientific_notation_base
.br
Begin entering the scientific notation exponent of a real number,
or the base of an exact integer.
.TP
.B *
edit_separator
.br
Begin editing the next element of a complex number or
matrix. (This will insert a comma between elements.)
.PP
.SS BROWSING OPERATIONS
The following list of operations is available only in stack browsing mode.
As abbreviations are unavailable while browsing the stack, these operations
should be bound to single keypresses using the bind keyword.
.TP
.B *
browse_echo
.br
Echo the currently selected element to stack level 1.
.TP
.B *
browse_end
.br
Exit stack browsing mode.
.TP
.B *
browse_drop
.br
Drop the currently selected stack element.
.TP
.B *
browse_dropn
.br
Drop all stack elements below the current selection (inclusive).
.TP
.B *
browse_keep
.br
Drop all stack elements \fIexcept\fP
the current selection. (This is
complementary to browse_drop.
.TP
.B *
browse_keepn
.br
Drop all stack elements above the current selection (non\-inclusive). (This
is complementary to browse_dropn.
.TP
.B *
browse_next_line
.br
Move the selection cursor down one line.
.TP
.B *
browse_prev_line
.br
Move the selection cursor up one line.
.TP
.B *
browse_rolldown
.br
Cyclically ``roll\&'' stack elements downward, below the
selected element (inclusive).
.TP
.B *
browse_rollup
.br
Cyclically ``roll\&'' stack elements upward, below the selected
element (inclusive) \&.
.TP
.B *
browse_scroll_left
.br
Scroll the selected element to the left (for viewing very large
entries such as matrices).
.TP
.B *
browse_scroll_right
.br
Scroll the selected element to the right.
.TP
.B *
browse_view
.br
View the currently selected stack element in a fullscreen editor.
.TP
.B *
browse_edit
.br
Edit the currently selected stack element using an external editor.
.PP
.SS ABBREVIATION ENTRY OPERATIONS
The following list of operations is available only while entering a function or
command abbreviation, or while entering a physical constant. These operations must
be bound to single keypresses using
the bind keyword.
.TP
.B *
abbrev_backspace
.br
Delete a character from the abbreviation string.
.TP
.B *
abbrev_enter
.br
Execute the operation associated with the selected abbreviation.
.TP
.B *
abbrev_exit
.br
Cancel abbreviation entry.
.PP
.SS VARIABLE ENTRY OPERATIONS
The following list of operations is available only while entering a variable
name. As abbreviations are unavailable while entering variables, these operations
should be bound to single keypresses using the bind keyword.
.TP
.B *
variable_backspace
.br
Delete a character from the variable name.
.TP
.B *
variable_cancel
.br
Cancel entry of the variable name.
.TP
.B *
variable_complete
.br
Autocomplete the variable name.
.TP
.B *
variable_enter
.br
Enter the variable name on the stack.
.PP
.SS INTEGER ENTRY OPERATIONS
The following operation is available only while entering an integer; it can be
made accessible by binding it to a single keypress using the bind keyword.
.TP
.B *
integer_cancel
.br
Cancel entry of an integer.
.PP
.SH SEE ALSO
\fIorpie\fP(1),
\fIorpie\-curses\-keys\fP(1)
.PP
.SH AUTHOR
This manpage is written by Paul J. Pelzl <pelzlpj@gmail.com>.
.\" NOTE: This file is generated, DO NOT EDIT.
|