1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/**
* Orthanc - A Lightweight, RESTful DICOM Store
* Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
* Department, University Hospital of Liege, Belgium
* Copyright (C) 2017-2023 Osimis S.A., Belgium
* Copyright (C) 2024-2024 Orthanc Team SRL, Belgium
* Copyright (C) 2021-2024 Sebastien Jodogne, ICTEAM UCLouvain, Belgium
*
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
**/
#include "GdcmImageDecoder.h"
#include <Compatibility.h>
#include <gdcmImageReader.h>
#include <gdcmImageApplyLookupTable.h>
#include <gdcmImageChangePlanarConfiguration.h>
#include <gdcmImageChangePhotometricInterpretation.h>
#include <stdexcept>
#include <boost/iostreams/stream.hpp>
#include <boost/iostreams/device/array.hpp>
namespace OrthancPlugins
{
struct GdcmImageDecoder::PImpl
{
const void* dicom_;
size_t size_;
gdcm::ImageReader reader_;
std::unique_ptr<gdcm::ImageApplyLookupTable> lut_;
std::unique_ptr<gdcm::ImageChangePhotometricInterpretation> photometric_;
std::unique_ptr<gdcm::ImageChangePlanarConfiguration> interleaved_;
std::string decoded_;
PImpl(const void* dicom,
size_t size) :
dicom_(dicom),
size_(size)
{
}
const gdcm::DataSet& GetDataSet() const
{
return reader_.GetFile().GetDataSet();
}
const gdcm::Image& GetImage() const
{
if (interleaved_.get() != NULL)
{
return interleaved_->GetOutput();
}
if (lut_.get() != NULL)
{
return lut_->GetOutput();
}
if (photometric_.get() != NULL)
{
return photometric_->GetOutput();
}
return reader_.GetImage();
}
void Decode()
{
// Change photometric interpretation or apply LUT, if required
{
const gdcm::Image& image = GetImage();
if (image.GetPixelFormat().GetSamplesPerPixel() == 1 &&
image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::PALETTE_COLOR)
{
lut_.reset(new gdcm::ImageApplyLookupTable());
lut_->SetInput(image);
if (!lut_->Apply())
{
throw std::runtime_error( "GDCM cannot apply the lookup table");
}
}
else if (image.GetPixelFormat().GetSamplesPerPixel() == 1)
{
if (image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::MONOCHROME1 &&
image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::MONOCHROME2)
{
photometric_.reset(new gdcm::ImageChangePhotometricInterpretation());
photometric_->SetInput(image);
photometric_->SetPhotometricInterpretation(gdcm::PhotometricInterpretation::MONOCHROME2);
if (!photometric_->Change() ||
GetImage().GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::MONOCHROME2)
{
throw std::runtime_error("GDCM cannot change the photometric interpretation");
}
}
}
else
{
if (image.GetPixelFormat().GetSamplesPerPixel() == 3 &&
image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::RGB &&
image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::YBR_FULL &&
(image.GetTransferSyntax() != gdcm::TransferSyntax::JPEG2000Lossless ||
image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::YBR_RCT))
{
photometric_.reset(new gdcm::ImageChangePhotometricInterpretation());
photometric_->SetInput(image);
photometric_->SetPhotometricInterpretation(gdcm::PhotometricInterpretation::RGB);
if (!photometric_->Change() ||
GetImage().GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::RGB)
{
throw std::runtime_error("GDCM cannot change the photometric interpretation");
}
}
}
}
// Possibly convert planar configuration to interleaved
{
const gdcm::Image& image = GetImage();
if (image.GetPlanarConfiguration() != 0 &&
image.GetPixelFormat().GetSamplesPerPixel() != 1)
{
interleaved_.reset(new gdcm::ImageChangePlanarConfiguration());
interleaved_->SetInput(image);
if (!interleaved_->Change() ||
GetImage().GetPlanarConfiguration() != 0)
{
throw std::runtime_error("GDCM cannot change the planar configuration to interleaved");
}
}
}
}
};
GdcmImageDecoder::GdcmImageDecoder(const void* dicom,
size_t size) :
pimpl_(new PImpl(dicom, size))
{
// Setup a stream to the memory buffer
using namespace boost::iostreams;
basic_array_source<char> source(reinterpret_cast<const char*>(dicom), size);
stream<basic_array_source<char> > stream(source);
// Parse the DICOM instance using GDCM
pimpl_->reader_.SetStream(stream);
if (!pimpl_->reader_.Read())
{
throw std::runtime_error("Bad file format");
}
pimpl_->Decode();
}
OrthancPluginPixelFormat GdcmImageDecoder::GetFormat() const
{
const gdcm::Image& image = pimpl_->GetImage();
if (image.GetPixelFormat().GetSamplesPerPixel() == 1 &&
(image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::MONOCHROME1 ||
image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::MONOCHROME2))
{
switch (image.GetPixelFormat())
{
case gdcm::PixelFormat::UINT16:
return OrthancPluginPixelFormat_Grayscale16;
case gdcm::PixelFormat::INT16:
return OrthancPluginPixelFormat_SignedGrayscale16;
case gdcm::PixelFormat::UINT8:
return OrthancPluginPixelFormat_Grayscale8;
default:
throw std::runtime_error("Unsupported pixel format");
}
}
else if (image.GetPixelFormat().GetSamplesPerPixel() == 3 &&
(image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::RGB ||
image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::YBR_FULL ||
image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::YBR_RCT))
{
switch (image.GetPixelFormat())
{
case gdcm::PixelFormat::UINT8:
return OrthancPluginPixelFormat_RGB24;
case gdcm::PixelFormat::UINT16:
#if ORTHANC_PLUGINS_VERSION_IS_ABOVE(1, 3, 1)
return OrthancPluginPixelFormat_RGB48;
#else
throw std::runtime_error("RGB48 pixel format is only supported if compiled against Orthanc SDK >= 1.3.1");
#endif
default:
break;
}
}
throw std::runtime_error("Unsupported pixel format");
}
unsigned int GdcmImageDecoder::GetWidth() const
{
return pimpl_->GetImage().GetColumns();
}
unsigned int GdcmImageDecoder::GetHeight() const
{
return pimpl_->GetImage().GetRows();
}
unsigned int GdcmImageDecoder::GetFramesCount() const
{
return pimpl_->GetImage().GetDimension(2);
}
size_t GdcmImageDecoder::GetBytesPerPixel(OrthancPluginPixelFormat format)
{
switch (format)
{
case OrthancPluginPixelFormat_Grayscale8:
return 1;
case OrthancPluginPixelFormat_Grayscale16:
case OrthancPluginPixelFormat_SignedGrayscale16:
return 2;
case OrthancPluginPixelFormat_RGB24:
return 3;
#if ORTHANC_PLUGINS_VERSION_IS_ABOVE(1, 3, 1)
case OrthancPluginPixelFormat_RGB48:
return 6;
#endif
default:
throw std::runtime_error("Unsupport pixel format");
}
}
static void ConvertYbrToRgb(uint8_t rgb[3],
const uint8_t ybr[3])
{
// http://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.3.html#sect_C.7.6.3.1.2
// https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion
// TODO - Check out the outcome of Mathieu's discussion about
// truncation of YCbCr-to-RGB conversion:
// https://groups.google.com/forum/#!msg/comp.protocols.dicom/JHuGeyWbTz8/ARoTWrJzAQAJ
const float Y = ybr[0];
const float Cb = ybr[1];
const float Cr = ybr[2];
const float result[3] = {
Y + 1.402f * (Cr - 128.0f),
Y - 0.344136f * (Cb - 128.0f) - 0.714136f * (Cr - 128.0f),
Y + 1.772f * (Cb - 128.0f)
};
for (uint8_t i = 0; i < 3 ; i++)
{
if (result[i] < 0)
{
rgb[i] = 0;
}
else if (result[i] > 255)
{
rgb[i] = 255;
}
else
{
rgb[i] = static_cast<uint8_t>(result[i]);
}
}
}
static void FixPhotometricInterpretation(const OrthancImage& image,
gdcm::PhotometricInterpretation interpretation)
{
switch (interpretation)
{
case gdcm::PhotometricInterpretation::MONOCHROME1:
case gdcm::PhotometricInterpretation::MONOCHROME2:
case gdcm::PhotometricInterpretation::RGB:
return;
case gdcm::PhotometricInterpretation::YBR_FULL:
{
// Fix for Osimis issue WVB-319: Some images are not loading in US_MF
uint32_t width = image.GetWidth();
uint32_t height = image.GetHeight();
uint32_t pitch = image.GetPitch();
uint8_t* buffer = reinterpret_cast<uint8_t*>(image.GetBuffer());
if (image.GetPixelFormat() != OrthancPluginPixelFormat_RGB24 ||
pitch < 3 * width)
{
throw std::runtime_error("Internal error");
}
for (uint32_t y = 0; y < height; y++)
{
uint8_t* p = buffer + y * pitch;
for (uint32_t x = 0; x < width; x++, p += 3)
{
const uint8_t ybr[3] = { p[0], p[1], p[2] };
uint8_t rgb[3];
ConvertYbrToRgb(rgb, ybr);
p[0] = rgb[0];
p[1] = rgb[1];
p[2] = rgb[2];
}
}
return;
}
default:
throw std::runtime_error("Unsupported output photometric interpretation");
}
}
OrthancPluginImage* GdcmImageDecoder::Decode(unsigned int frameIndex) const
{
unsigned int frames = GetFramesCount();
unsigned int width = GetWidth();
unsigned int height = GetHeight();
OrthancPluginPixelFormat format = GetFormat();
size_t bpp = GetBytesPerPixel(format);
if (frameIndex >= frames)
{
throw std::runtime_error("Inexistent frame index");
}
std::string& decoded = pimpl_->decoded_;
OrthancImage target(format, width, height);
if (width == 0 ||
height == 0)
{
return target.Release();
}
if (decoded.empty())
{
decoded.resize(pimpl_->GetImage().GetBufferLength());
if (!pimpl_->GetImage().GetBuffer(&decoded[0]))
{
throw std::runtime_error("Image not properly decoded to a memory buffer");
}
}
const void* sourceBuffer = &decoded[0];
if (target.GetPitch() == bpp * width &&
frames == 1)
{
assert(decoded.size() == target.GetPitch() * target.GetHeight());
memcpy(target.GetBuffer(), sourceBuffer, decoded.size());
}
else
{
size_t targetPitch = target.GetPitch();
size_t sourcePitch = width * bpp;
const uint8_t* a = (reinterpret_cast<const uint8_t*>(decoded.c_str()) +
sourcePitch * height * frameIndex);
uint8_t* b = reinterpret_cast<uint8_t*>(target.GetBuffer());
for (uint32_t y = 0; y < height; y++)
{
memcpy(b, a, sourcePitch);
a += sourcePitch;
b += targetPitch;
}
}
FixPhotometricInterpretation(target, pimpl_->GetImage().GetPhotometricInterpretation());
return target.Release();
}
}
|