1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
/*
* Copyright (c) 1995-1996, 1998, 1999 University of Utah and the Flux Group.
* All rights reserved.
*
* This file is part of the Flux OSKit. The OSKit is free software, also known
* as "open source;" you can redistribute it and/or modify it under the terms
* of the GNU General Public License (GPL), version 2, as published by the Free
* Software Foundation (FSF). To explore alternate licensing terms, contact
* the University of Utah at csl-dist@cs.utah.edu or +1-801-585-3271.
*
* The OSKit is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GPL for more details. You should have
* received a copy of the GPL along with the OSKit; see the file COPYING. If
* not, write to the FSF, 59 Temple Place #330, Boston, MA 02111-1307, USA.
*/
#include <oskit/x86/pc/rtc.h> /* RTC_BASEHI */
#include <oskit/x86/pc/phys_lmm.h> /* phys_lmm_add */
#include <oskit/x86/types.h> /* oskit_addr_t */
#include <oskit/x86/multiboot.h> /* multiboot structs */
#include <oskit/x86/base_cpu.h> /* base_cpu_setup */
#include <oskit/x86/base_vm.h> /* kvtophys */
#include <oskit/exec/exec.h> /* exec_load */
#include <oskit/exec/a.out.h> /* struct exec */
#include <oskit/c/malloc.h> /* malloc_reserve */
#include <oskit/c/string.h> /* memcpy */
#include <oskit/c/stdio.h> /* printf */
#include <oskit/c/assert.h> /* assert */
#include <oskit/lmm.h> /* lmm_remove_free */
#include <oskit/clientos.h>
#include "reboot.h"
#include "boottype.h"
#include "boot.h"
#define CMDLINEBMOD "bootadapter_cmdline"
static oskit_addr_t phys_mem_lower;
static oskit_addr_t phys_mem_upper;
static struct multiboot_info *boot_info;
static struct multiboot_module *boot_mods;
struct multiboot_header boot_kern_hdr;
void *boot_kern_image;
static struct exec_info boot_kern_info;
extern struct lmod
{
void *start;
void *end;
char *string;
} boot_modules[];
static oskit_addr_t symaddr;
static oskit_size_t symsize;
static oskit_addr_t straddr;
static oskit_size_t strsize;
/* Find the extended memory available and add it to malloc's free list. */
static void grab_ext_mem(void)
{
extern char _end[];
oskit_addr_t free_bot, free_top;
/*
* Find lower and upper bounds of physical memory.
* We look in the NVRAM to find the size of base memory and
* use extended_mem_size() to find the size of extended memory.
*/
phys_mem_lower = (rtcin(RTC_BASEHI) << 8) | rtcin(RTC_BASELO);
phys_mem_upper = extended_mem_size();
/* Figure out how much mem is actually free. */
free_bot = kvtophys(_end);
free_top = 1024*phys_mem_upper;
free_top += 0x100000; /* skip 1M of I/O and ROM */
assert(free_bot > 0x100000);
assert(free_bot < free_top);
/* Add it to the free list. */
phys_lmm_init();
phys_lmm_add(free_bot, free_top - free_bot);
printf("using extended memory %08x-%08x\n", free_bot, free_top);
}
/*
* Unlike the Linux boot mechanism, the older Mach and BSD systems
* do not have any notion of a general command line,
* only a fixed, kludgy (and diverging) set of flags and values.
* Here we make a best-effort attempt
* to piece together a sane Linux-style command line
* from the boothowto and bootdev values provided by the boot loader.
* Naturally, the interpretation changes depending on who loaded us;
* that's what the boottype is for (see crt0.S).
*
* The command line is in a special format understood by the oskit
* multiboot startup code (see base_multiboot_init_cmdline.c).
* Basically, the format separates booting-options and environment
* variable settings from normal args to pass to main(). The format is like
* progname [<booting-options and foo=bar> --] <args to main>
* For example
* kernel DISPLAY=host:0 -d -- -rf foo bar
*
* We allow a special command-line bootmod and place it after the "--".
*/
static void init_cmdline(void)
{
char *buf;
char *major;
struct lmod *lm;
/* Look for a bsd bootadapter command line bootmod.
*
* We wait and copy the contents of the command line bmod
* _after_ the standard command line, so it's contents can
* override the defaults.
*/
for (lm = &boot_modules[0]; lm->start; lm++) {
if (!strcmp(CMDLINEBMOD, lm->string))
break;
}
/*
* There are a max of 8 arguments, 3 bytes each,
* plus the "root= " line (max length 12 bytes),
* plus the "-- " (length 3 bytes),
* plus the prog-name at the front, in this case, "kernel " (7 bytes),
* plus the null byte at the end.
*
* so, (8 * 3) + 12 + 3 + 7 + 1 = 47
*
* If there's a command line bmod, we add in space for it.
*/
buf = mustcalloc((47 + (lm->start ? lm->end - lm->start : 0) *
sizeof(char)), 1);
/* We don't have a better choice, really. */
strcpy(buf, "kernel ");
/* First handle the option flags.
Just supply the flags as they would appear on the command line
of the Mach or BSD reboot command line,
and let the kernel handle or ignore them as appropriate. */
if (boothowto & RB_ASKNAME)
strcat(buf, "-a ");
if (boothowto & RB_SINGLE)
strcat(buf, "-s ");
if (boothowto & RB_DFLTROOT)
strcat(buf, "-r ");
if (boothowto & RB_HALT)
strcat(buf, "-b ");
if (boottype == BOOTTYPE_MACH)
{
/* These were determined from what the command-line parser does
in boot.c in the original Mach boot loader. */
if (boothowto & MACH_RB_KDB)
strcat(buf, "-d ");
}
else
{
/* These were determined from what the command-line parser does
in boot.c in the FreeBSD 2.0 boot loader. */
if (boothowto & BSD_RB_KDB)
strcat(buf, "-d ");
if (boothowto & BSD_RB_CONFIG)
strcat(buf, "-c ");
/* This isn't quite right, as -h is used by FreeBSD to
* toggle the RB_SERIAL bit, not just to set it */
if (boothowto & BSD_RB_SERIAL)
strcat(buf, "-h ");
/* This relies on Utah hack in the bootblocks */
if (boothowto & BSD_RB_FASTCONSOLE)
strcat(buf, "-f ");
}
/* Now indicate the root device with a "root=" option. */
major = 0;
if (boottype == BOOTTYPE_MACH)
{
static char *devs[] = {"hd", "fd", "wt", "sd", "ha"};
if (B_TYPE(bootdev) < sizeof(devs)/sizeof(devs[0]))
major = devs[B_TYPE(bootdev)];
}
else
{
static char *devs[] = {"wd", "hd", "fd", "wt", "sd"};
if (B_TYPE(bootdev) < sizeof(devs)/sizeof(devs[0]))
major = devs[B_TYPE(bootdev)];
}
if (major)
{
sprintf(buf + strlen(buf), "root=%s%ld%c ",
major, B_UNIT(bootdev),
'a' + (char)B_PARTITION(bootdev));
}
/* Everything after this will be passed directly to main. */
strcat(buf, "-- ");
/* Deal with a command line bmod, if we've got one. */
if (lm->start) {
strncat(buf, lm->start, lm->end - lm->start);
/*
* Move all the entries after ours down one spot (to
* preserve bootmod ordering).
*/
while ((lm + 1)->start)
*lm = *(++lm);
/*
* Zero out the last entry's start address,
* since a zero starting address signifies the end of
* the boot_modules array.
*/
lm->start = 0;
}
/* Insert the command line into the boot_info structure. */
boot_info->cmdline = (oskit_addr_t)kvtophys(buf);
boot_info->flags |= MULTIBOOT_CMDLINE;
}
static
int kimg_read(void *handle, oskit_addr_t file_ofs, void *buf, oskit_size_t size, oskit_size_t *out_actual)
{
/* XXX limit length */
memcpy(buf, boot_modules[0].start + file_ofs, size);
*out_actual = size;
return 0;
}
static
int kimg_read_exec_1(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
if (!(section_type & EXEC_SECTYPE_ALLOC))
return 0;
assert(mem_size > 0);
if (mem_addr < boot_kern_hdr.load_addr)
boot_kern_hdr.load_addr = mem_addr;
if (mem_addr+file_size > boot_kern_hdr.load_end_addr)
boot_kern_hdr.load_end_addr = mem_addr+file_size;
if (mem_addr+mem_size > boot_kern_hdr.bss_end_addr)
boot_kern_hdr.bss_end_addr = mem_addr+mem_size;
return 0;
}
static
int kimg_read_exec_2(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
if (!(section_type & EXEC_SECTYPE_ALLOC))
return 0;
assert(mem_size > 0);
assert(mem_addr >= boot_kern_hdr.load_addr);
assert(mem_addr+file_size <= boot_kern_hdr.load_end_addr);
assert(mem_addr+mem_size <= boot_kern_hdr.bss_end_addr);
memcpy(boot_kern_image + mem_addr - boot_kern_hdr.load_addr,
boot_modules[0].start + file_ofs, file_size);
return 0;
}
/*
* Callback for reading the symbol table.
*/
static
int kimg_read_exec_3(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
if (section_type & EXEC_SECTYPE_AOUT_SYMTAB) {
symaddr = (oskit_addr_t)boot_modules[0].start + file_ofs;
symsize = file_size;
}
else if (section_type & EXEC_SECTYPE_AOUT_STRTAB) {
straddr = (oskit_addr_t)boot_modules[0].start + file_ofs;
strsize = file_size;
}
return 0;
}
static void init_symtab(struct multiboot_header *h)
{
int err;
void *symtab;
/*
* XXX we only deal with aoutly files.
*/
if (! (h->flags & MULTIBOOT_AOUT_KLUDGE))
return;
/*
* Figure out where the symtab is.
*/
if ((err = exec_load(kimg_read, kimg_read_exec_3, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 3: error code %d", err);
/*
* Copy the symtab into non-conflicting memory.
* We assume the strtab is right after the symtab.
* In a.out the first word of the strtab is the size,
* for the symtab we add size info in our copy.
*/
symtab = mustmalloc(sizeof(oskit_size_t) + symsize + strsize);
*((oskit_size_t *)symtab) = symsize;
memcpy(symtab + sizeof(oskit_size_t), (void *)symaddr, symsize + strsize);
/*
* Register the symtab in the boot_info.
*/
boot_info->flags |= MULTIBOOT_AOUT_SYMS;
boot_info->syms.a.tabsize = symsize + sizeof(oskit_size_t);
boot_info->syms.a.strsize = strsize;
boot_info->syms.a.addr = (oskit_addr_t)kvtophys(symtab);
printf("symtab at %#x, %d bytes; strtab at %#x, %d bytes\n",
symaddr, symsize,
straddr, strsize);
}
/*
* This is the C entry point.
*
* An interesting alternate implementation of this would be to cons up
* a multiboot_info struct and pass it to base_multiboot_main,
* which would call a `main' routine and we could act like we are a
* MultiBoot kernel instead of a BSD one.
* This would allow us to share more code with the other oskit libs.
*/
void raw_start(void)
{
struct multiboot_header *h;
int i, err;
printf("MultiBoot->BSD boot adaptor (compiled %s)\n", __DATE__);
base_cpu_setup();
/* Get some memory to work in. */
grab_ext_mem();
oskit_clientos_init();
if (boot_modules[0].start == 0)
panic("This boot image contains no boot modules!?!?");
/* Scan for the multiboot_header. */
for (i = 0; ; i += 4)
{
if (i >= MULTIBOOT_SEARCH)
panic("kernel image has no multiboot_header");
h = (struct multiboot_header*)(boot_modules[0].start+i);
if (h->magic == MULTIBOOT_MAGIC
&& !(h->magic + h->flags + h->checksum))
break;
}
if (h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO)
panic("unknown multiboot_header flag bits %08x",
h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO);
boot_kern_hdr = *h;
if (h->flags & MULTIBOOT_AOUT_KLUDGE)
{
boot_kern_image = (void*)h + h->load_addr - h->header_addr;
}
else
{
/*
* No a.out-kludge information available;
* attempt to interpret the exec header instead,
* using the simple interpreter in libexec.a.
*/
/* Perform the "load" in two passes.
In the first pass, find the number of sections the load image contains
and reserve the physical memory containing each section.
Also, initialize the boot_kern_hdr to reflect the extent of the image.
In the second pass, load the sections into a temporary area
that can be copied to the final location all at once by do_boot.S. */
boot_kern_hdr.load_addr = 0xffffffff;
boot_kern_hdr.load_end_addr = 0;
boot_kern_hdr.bss_end_addr = 0;
if ((err = exec_load(kimg_read, kimg_read_exec_1, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 1: error code %d", err);
boot_kern_hdr.entry = boot_kern_info.entry;
/* It's OK to malloc this before reserving the memory the kernel will occupy,
because do_boot.S can deal with overlapping source and destination. */
assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
boot_kern_image = malloc(boot_kern_hdr.load_end_addr - boot_kern_hdr.load_addr);
if ((err = exec_load(kimg_read, kimg_read_exec_2, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 2: error code %d", err);
assert(boot_kern_hdr.entry == boot_kern_info.entry);
}
/*
* Reserve the memory that the kernel will eventually occupy.
* All malloc calls after this are guaranteed
* to stay out of this region.
*/
lmm_remove_free(&malloc_lmm,
(void *)phystokv(boot_kern_hdr.load_addr),
phystokv(boot_kern_hdr.bss_end_addr)
- phystokv(boot_kern_hdr.load_addr));
printf("kernel at %08x-%08x text+data %d bss %d\n",
boot_kern_hdr.load_addr, boot_kern_hdr.bss_end_addr,
boot_kern_hdr.load_end_addr - boot_kern_hdr.load_addr,
boot_kern_hdr.bss_end_addr - boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
if (boot_kern_hdr.load_addr < 0x1000)
panic("kernel wants to be loaded too low!");
#if 0
if (boot_kern_hdr.bss_end_addr > phys_mem_max)
panic("kernel wants to be loaded beyond available physical memory!");
#endif
if ((boot_kern_hdr.load_addr < 0x100000)
&& (boot_kern_hdr.bss_end_addr > 0xa0000))
panic("kernel wants to be loaded on top of I/O space!");
boot_info = (struct multiboot_info*)mustcalloc(sizeof(*boot_info), 1);
/* Build a command line to pass to the kernel. */
init_cmdline();
/* Add memory information */
boot_info->flags |= MULTIBOOT_MEMORY;
boot_info->mem_upper = phys_mem_upper;
boot_info->mem_lower = phys_mem_lower;
/* Indicate to the kernel which BIOS disk device we booted from.
The Mach and BSD boot loaders obscure this information somewhat;
we have to extract it from the mangled bootdev value.
We assume that any unit other than floppy means BIOS hard drive.
XXX If we boot from FreeBSD's netboot, we shouldn't set this. */
boot_info->flags |= MULTIBOOT_BOOT_DEVICE;
if (boottype == BOOTTYPE_MACH)
boot_info->boot_device[0] = B_TYPE(bootdev) == 1 ? 0 : 0x80;
else
boot_info->boot_device[0] = B_TYPE(bootdev) == 2 ? 0 : 0x80;
boot_info->boot_device[0] += B_UNIT(bootdev);
boot_info->boot_device[1] = 0xff;
boot_info->boot_device[2] = B_PARTITION(bootdev);
boot_info->boot_device[3] = 0xff;
/* Find the symbol table to supply to the kernel, if possible. */
init_symtab(h);
/* Initialize the boot module entries in the boot_info. */
for (i = 1; boot_modules[i].start; i++);
boot_info->mods_count = i-1;
if (boot_info->mods_count > 0) {
boot_info->flags |= MULTIBOOT_MODS;
boot_mods = (struct multiboot_module*)mustcalloc(
boot_info->mods_count * sizeof(*boot_mods), 1);
boot_info->mods_addr = kvtophys(boot_mods);
}
for (i = 0; i < boot_info->mods_count; i++)
{
struct lmod *lm = &boot_modules[1+i];
struct multiboot_module *bm = &boot_mods[i];
assert(lm->end >= lm->start);
/* Try to leave the boot module where it is and pass its address. */
bm->mod_start = kvtophys(lm->start);
bm->mod_end = kvtophys(lm->end);
/* However, if the current location of the boot module
overlaps with the final location of the kernel image,
we have to move the boot module somewhere else. */
if ((bm->mod_start < boot_kern_hdr.bss_end_addr)
&& (bm->mod_end > boot_kern_hdr.load_addr))
{
oskit_size_t size = lm->end - lm->start;
void *newaddr = mustmalloc(size);
printf("moving boot module %d from %08x to %08x\n",
i, kvtophys(lm->start), kvtophys(newaddr));
memcpy(newaddr, lm->start, size);
bm->mod_start = kvtophys(newaddr);
bm->mod_end = bm->mod_start + size;
}
/* Also provide the string associated with the module. */
#ifdef DEBUG
printf("lm->string '%s'\n", lm->string);
#endif
{
char *newstring = mustmalloc(strlen(lm->string)+1);
strcpy(newstring, lm->string);
bm->string = kvtophys(newstring);
}
bm->reserved = 0;
}
boot_start(boot_info);
}
|