1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*
* Copyright (c) 1995-1998 University of Utah and the Flux Group.
* All rights reserved.
*
* This file is part of the Flux OSKit. The OSKit is free software, also known
* as "open source;" you can redistribute it and/or modify it under the terms
* of the GNU General Public License (GPL), version 2, as published by the Free
* Software Foundation (FSF). To explore alternate licensing terms, contact
* the University of Utah at csl-dist@cs.utah.edu or +1-801-585-3271.
*
* The OSKit is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GPL for more details. You should have
* received a copy of the GPL along with the OSKit; see the file COPYING. If
* not, write to the FSF, 59 Temple Place #330, Boston, MA 02111-1307, USA.
*/
#include <oskit/x86/pc/rtc.h>
#include <oskit/x86/pc/phys_lmm.h>
#include <oskit/x86/pc/dos_io.h>
#include <oskit/x86/types.h>
#include <oskit/x86/multiboot.h>
#include <oskit/x86/base_cpu.h>
#include <oskit/x86/base_vm.h>
#include <oskit/exec/exec.h>
#include <oskit/exec/a.out.h>
#include <oskit/c/malloc.h>
#include <oskit/c/string.h>
#include <oskit/c/stdio.h>
#include <oskit/c/fcntl.h>
#include <oskit/c/assert.h>
#include <oskit/lmm.h>
#include "boot.h"
struct multiboot_info *boot_info;
static struct multiboot_module *boot_mods;
struct multiboot_header boot_kern_hdr;
void *boot_kern_image;
static dos_fd_t boot_kern_fd;
static unsigned boot_kern_ofs;
static struct exec_info boot_kern_info;
static
int kimg_read(void *handle, oskit_addr_t file_ofs, void *buf,
oskit_size_t size, oskit_size_t *out_actual)
{
oskit_addr_t newpos;
int rc;
rc = dos_seek(boot_kern_fd, boot_kern_ofs + file_ofs, 0, &newpos);
if (rc != 0)
return rc;
return dos_read(boot_kern_fd, buf, size, out_actual);
}
static
int kimg_read_exec_1(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
if (!(section_type & EXEC_SECTYPE_ALLOC))
return 0;
assert(mem_size > 0);
if (mem_addr < boot_kern_hdr.load_addr)
boot_kern_hdr.load_addr = mem_addr;
if (mem_addr+file_size > boot_kern_hdr.load_end_addr)
boot_kern_hdr.load_end_addr = mem_addr+file_size;
if (mem_addr+mem_size > boot_kern_hdr.bss_end_addr)
boot_kern_hdr.bss_end_addr = mem_addr+mem_size;
return 0;
}
static
int kimg_read_exec_2(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
oskit_size_t actual;
int rc;
if (!(section_type & EXEC_SECTYPE_ALLOC))
return 0;
assert(mem_size > 0);
assert(mem_addr >= boot_kern_hdr.load_addr);
assert(mem_addr+file_size <= boot_kern_hdr.load_end_addr);
assert(mem_addr+mem_size <= boot_kern_hdr.bss_end_addr);
rc = kimg_read(handle, file_ofs,
boot_kern_image + mem_addr - boot_kern_hdr.load_addr,
file_size, &actual);
if (rc != 0)
return rc;
if (actual != file_size)
return EX_CORRUPT;
return 0;
}
static void load_kernel(int argc, char **argv)
{
static char search[MULTIBOOT_SEARCH+sizeof(struct multiboot_header)];
struct multiboot_header *h;
oskit_size_t actual;
int i, err;
/* Scan for the multiboot_header. */
kimg_read(0, 0, search, sizeof(search), &actual);
for (i = 0; ; i += 4)
{
if (i >= MULTIBOOT_SEARCH)
panic("kernel image has no multiboot_header");
h = (struct multiboot_header*)(search + i);
if (h->magic == MULTIBOOT_MAGIC
&& !(h->magic + h->flags + h->checksum))
break;
}
if (h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO)
panic("unknown multiboot_header flag bits %08x",
h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO);
boot_kern_hdr = *h;
if (h->flags & MULTIBOOT_AOUT_KLUDGE)
{
/*
* Allocate memory and load the kernel into it.
* We do this before reserving the memory
* for the final kernel location,
* because the code in boot_start.c
* to copy the kernel to its final location
* can handle overlapping sources and destinations,
* and this way we may not need as much memory during bootup.
*/
boot_kern_image = mustmalloc(h->load_end_addr - h->load_addr);
kimg_read(0, i + h->load_addr - h->header_addr, boot_kern_image,
h->load_end_addr - h->load_addr, &actual);
assert(actual == h->load_end_addr - h->load_addr);
}
else
{
/*
* No a.out-kludge information available;
* attempt to interpret the exec header instead,
* using the simple interpreter in libexec.a.
* Perform the "load" in two passes.
* In the first pass,
* find the number of sections the load image contains
* and reserve the physical memory containing each section.
* Also, initialize the boot_kern_hdr
* to reflect the extent of the image.
* In the second pass, load the sections into a temporary area
* that can be copied to the final location
* all at once by do_boot.S.
*/
boot_kern_hdr.load_addr = 0xffffffff;
boot_kern_hdr.load_end_addr = 0;
boot_kern_hdr.bss_end_addr = 0;
if ((err = exec_load(kimg_read, kimg_read_exec_1, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 1: error code %d", err);
boot_kern_hdr.entry = boot_kern_info.entry;
/*
* Allocate memory to load the kernel into.
* It's OK to malloc this
* before reserving the memory the kernel will occupy,
* because do_boot.S can deal with
* overlapping source and destination.
*/
assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
boot_kern_image = mustmalloc(boot_kern_hdr.load_end_addr -
boot_kern_hdr.load_addr);
if ((err = exec_load(kimg_read, kimg_read_exec_2, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 2: error code %d", err);
assert(boot_kern_hdr.entry == boot_kern_info.entry);
}
/*
* Reserve the memory that the kernel will eventually occupy.
* All malloc calls after this are guaranteed
* to stay out of this region.
*/
lmm_remove_free(&malloc_lmm,
(void *)phystokv(boot_kern_hdr.load_addr),
phystokv(boot_kern_hdr.bss_end_addr)
- phystokv(boot_kern_hdr.load_addr));
printf("kernel at %08x-%08x text+data %d bss %d\n",
boot_kern_hdr.load_addr, boot_kern_hdr.bss_end_addr,
boot_kern_hdr.load_end_addr - boot_kern_hdr.load_addr,
boot_kern_hdr.bss_end_addr - boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
if (boot_kern_hdr.load_addr < 0x1000)
panic("kernel wants to be loaded too low!");
#if 0
if (boot_kern_hdr.bss_end_addr > phys_mem_max)
panic("kernel wants to be loaded beyond available physical memory!");
#endif
if ((boot_kern_hdr.load_addr < 0x100000)
&& (boot_kern_hdr.bss_end_addr > 0xa0000))
panic("kernel wants to be loaded on top of I/O space!");
boot_info = (struct multiboot_info*)mustcalloc(sizeof(*boot_info), 1);
/* Build a command line to pass to the kernel. */
#if 0
init_cmdline();
#endif
/*
* Find the extended memory available to the kernel we're loading.
* Note that although we ourselves (the DOS boot loader)
* use only the memory that DOS and the BIOS say is available,
* we use the values in NVRAM to pass to the kernel we're loading.
* This is because we must be a good citizen in the DOS environment
* since we rely on DOS I/O services to load the kernel,
* but once the kernel is loaded, it can blow away DOS completely
* and use all available memory for its own purposes.
*/
boot_info->flags |= MULTIBOOT_MEMORY;
boot_info->mem_lower = (rtcin(RTC_BASEHI) << 8) | rtcin(RTC_BASELO);
boot_info->mem_upper = (rtcin(RTC_DEXTHI) << 8) | rtcin(RTC_DEXTLO);
printf("Memory reported by NVRAM: %d lower %d upper\n",
boot_info->mem_lower, boot_info->mem_upper);
}
/*
* Check for a self-contained boot image attached to our executable,
* and if one exists, boot it.
*/
static void boot_self_contained(int argc, char **argv)
{
struct loadhdr
{
unsigned magic;
unsigned tabsize;
};
struct loadmod
{
oskit_addr_t mod_start;
oskit_addr_t mod_end;
oskit_addr_t string_start;
oskit_addr_t string_end;
};
dos_fd_t exe_fd;
unsigned short exehdr[3];
oskit_size_t size, actual, newpos;
unsigned off;
struct loadhdr loadhdr;
struct loadmod *loadmods;
int loadnmods;
int i;
/* Open our executable file. */
if (dos_open(argv[0], O_RDONLY, 0, &exe_fd))
return;
/*
* Read the first part of the EXE header,
* to find out how long the original EXE file is.
*/
if (dos_read(exe_fd, exehdr, sizeof(exehdr), &actual)
|| (actual != sizeof(exehdr))
|| (exehdr[0] != 0x5a4d))
return;
off = (unsigned)exehdr[2] * 512;
if (exehdr[1] != 0)
off -= 512 - exehdr[1];
/* Read the boot image digest header, if there is one. */
if (dos_seek(exe_fd, off, SEEK_SET, &newpos)
|| (newpos != off)
|| (dos_read(exe_fd, &loadhdr, sizeof(loadhdr), &actual))
|| (actual != sizeof(loadhdr))
|| (loadhdr.magic != 0xf00baabb)
|| (loadhdr.tabsize == 0))
return;
/*
* OK, there's definitely a self-contained boot image here,
* so now we're committed to using it.
* From now on we don't return from this function.
*/
/* Read the boot modules array */
loadnmods = loadhdr.tabsize / sizeof(struct loadmod);
size = loadnmods * sizeof(struct loadmod);
loadmods = mustmalloc(size);
if (dos_read(exe_fd, loadmods, size, &actual)
|| (actual != size))
goto corrupt;
/* Load the kernel image */
boot_kern_fd = exe_fd;
boot_kern_ofs = off + loadmods[0].mod_start;
load_kernel(argc, argv);
/* Initialize the boot module entries in the boot_info. */
boot_info->flags |= MULTIBOOT_MODS;
boot_info->mods_count = loadnmods-1;
boot_mods = (struct multiboot_module*)mustcalloc(
boot_info->mods_count * sizeof(*boot_mods), 1);
boot_info->mods_addr = kvtophys(boot_mods);
for (i = 0; i < boot_info->mods_count; i++)
{
struct loadmod *lm = &loadmods[1+i];
struct multiboot_module *bm = &boot_mods[i];
void *modaddr;
char *modstring;
/* Load the boot module */
assert(lm->mod_end > lm->mod_start);
size = lm->mod_end - lm->mod_start;
modaddr = mustmalloc(size);
if (dos_seek(exe_fd, off + lm->mod_start, SEEK_SET, &newpos)
|| (newpos != off + lm->mod_start)
|| dos_read(exe_fd, modaddr, size, &actual)
|| (actual != size))
goto corrupt;
bm->mod_start = kvtophys(modaddr);
bm->mod_end = bm->mod_start + size;
/* Also provide the string associated with the module. */
assert(lm->string_end > lm->string_start);
size = lm->string_end - lm->string_start;
modstring = mustmalloc(size);
if (dos_seek(exe_fd, off + lm->string_start, SEEK_SET, &newpos)
|| (newpos != off + lm->string_start)
|| dos_read(exe_fd, modstring, size, &actual)
|| (actual != size))
goto corrupt;
bm->string = kvtophys(modstring);
bm->reserved = 0;
}
/* Just boot it! */
boot_start(boot_info);
corrupt:
panic("corrupt boot image");
}
void main(int argc, char **argv)
{
/* Try to boot a self-contained boot image first */
boot_self_contained(argc, argv);
panic("dosboot currently only supports self-contained images");
}
|