File: misc.c

package info (click to toggle)
oskit 0.97.20000202-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 58,008 kB
  • ctags: 172,612
  • sloc: ansic: 832,827; asm: 7,640; sh: 3,920; yacc: 3,664; perl: 1,457; lex: 427; makefile: 337; csh: 141; awk: 78
file content (629 lines) | stat: -rw-r--r-- 17,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/*
 * Copyright (c) 1994-1999 University of Utah and the Flux Group.
 * 
 * This file is part of the OSKit Linux Boot Loader, which is free software,
 * also known as "open source;" you can redistribute it and/or modify it under
 * the terms of the GNU General Public License (GPL), version 2, as published
 * by the Free Software Foundation (FSF).
 * 
 * The OSKit is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GPL for more details.  You should have
 * received a copy of the GPL along with the OSKit; see the file COPYING.  If
 * not, write to the FSF, 59 Temple Place #330, Boston, MA 02111-1307, USA.
 */

/*
 * misc.c
 * 
 * This is a collection of several routines from gzip-1.0.3 
 * adapted for Linux.
 *
 * malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
 * puts by Nick Holloway 1993
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

#include <oskit/debug.h>
#include <oskit/lmm.h>
#include <oskit/exec/exec.h>
#include <oskit/x86/base_vm.h>
#include <oskit/x86/base_trap.h>
#include <oskit/x86/pc/base_i16.h>
#include <oskit/x86/pc/phys_lmm.h>

#include "gzip.h"
#include "lzw.h"

#include <linux/config.h>
#include <linux/segment.h>

#define fcalloc calloc

/*
 * These are set up by the setup-routine at boot-time:
 */

struct screen_info {
	unsigned char  orig_x;
	unsigned char  orig_y;
	unsigned char  unused1[2];
	unsigned short orig_video_page;
	unsigned char  orig_video_mode;
	unsigned char  orig_video_cols;
	unsigned short orig_video_ega_ax;
	unsigned short orig_video_ega_bx;
	unsigned short orig_video_ega_cx;
	unsigned char  orig_video_lines;
};

/*
 * This is set up by the setup-routine at boot-time
 */
#define EXT_MEM_K (*(unsigned short *)0x90002)
#define DRIVE_INFO (*(struct drive_info *)0x90080)
#define SCREEN_INFO (*(struct screen_info *)0x90000)
#define RAMDISK_SIZE (*(unsigned short *)0x901F8)
#define ORIG_ROOT_DEV (*(unsigned short *)0x901FC)
#define AUX_DEVICE_INFO (*(unsigned char *)0x901FF)

#define EOF -1

DECLARE(uch, inbuf, INBUFSIZ);
DECLARE(uch, outbuf, OUTBUFSIZ+OUTBUF_EXTRA);
DECLARE(uch, window, WSIZE);

unsigned outcnt;
unsigned insize;
unsigned inptr;

static char *input_data;
static int input_len;
static int input_ptr;

int method, exit_code, part_nb, last_member;
int test = 0;
int force = 0;
int verbose = 1;
long bytes_in, bytes_out;

int to_stdout = 0;
int hard_math = 0;

void (*work)(int inf, int outf);
void makecrc(void);

struct outbuf {
	struct outbuf *next;
	unsigned size;
	char data[0];
};
static struct outbuf *first_out, *last_out;

local int get_method(int);

extern ulg crc_32_tab[];   /* crc table, defined below */

/* ===========================================================================
 * Run a set of bytes through the crc shift register.  If s is a NULL
 * pointer, then initialize the crc shift register contents instead.
 * Return the current crc in either case.
 */
ulg updcrc(s, n)
    uch *s;                 /* pointer to bytes to pump through */
    unsigned n;             /* number of bytes in s[] */
{
    register ulg c;         /* temporary variable */

    static ulg crc = (ulg)0xffffffffL; /* shift register contents */

    if (s == NULL) {
	c = 0xffffffffL;
    } else {
	c = crc;
	while (n--) {
	    c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
	}
    }
    crc = c;
    return c ^ 0xffffffffL;       /* (instead of ~c for 64-bit machines) */
}

/* ===========================================================================
 * Clear input and output buffers
 */
void clear_bufs()
{
    outcnt = 0;
    insize = inptr = 0;
    bytes_in = bytes_out = 0L;
}

/* ===========================================================================
 * Fill the input buffer. This is called only when the buffer is empty
 * and at least one byte is really needed.
 */
int fill_inbuf()
{
    int len, i;

    /* Read as much as possible */
    insize = 0;
    do {
	len = INBUFSIZ-insize;
	if (len > (input_len-input_ptr+1)) len=input_len-input_ptr+1;
        if (len == 0 || len == EOF) break;

        for (i=0;i<len;i++) inbuf[insize+i] = input_data[input_ptr+i];
	insize += len;
	input_ptr += len;
    } while (insize < INBUFSIZ);

    if (insize == 0) {
	error("unable to fill buffer\n");
    }
    bytes_in += (ulg)insize;
    inptr = 1;
    return inbuf[0];
}

/* ===========================================================================
 * Write the output window window[0..outcnt-1] and update crc and bytes_out.
 * (Used for the decompressed data only.)
 */
void flush_window()
{
	struct outbuf *buf;

	if (outcnt == 0) return;
	updcrc(window, outcnt);

	/*
	 * Stash the data in a dynamically allocated output buffer,
	 * and chain it onto the list of output buffers.
	 */
	buf = malloc(sizeof(*buf) + outcnt);
	if (last_out == NULL)
		first_out = last_out = buf;
	else
		last_out = last_out->next = buf;
	buf->next = NULL;
	buf->size = outcnt;
	memcpy(buf->data, window, outcnt);

	bytes_out += (ulg)outcnt;
	outcnt = 0;
}

/*
 * Code to compute the CRC-32 table. Borrowed from 
 * gzip-1.0.3/makecrc.c.
 */

ulg crc_32_tab[256];

void
makecrc(void)
{
/* Not copyrighted 1990 Mark Adler	*/

  unsigned long c;      /* crc shift register */
  unsigned long e;      /* polynomial exclusive-or pattern */
  int i;                /* counter for all possible eight bit values */
  int k;                /* byte being shifted into crc apparatus */

  /* terms of polynomial defining this crc (except x^32): */
  static int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};

  /* Make exclusive-or pattern from polynomial */
  e = 0;
  for (i = 0; i < sizeof(p)/sizeof(int); i++)
    e |= 1L << (31 - p[i]);

  crc_32_tab[0] = 0;

  for (i = 1; i < 256; i++)
  {
    c = 0;
    for (k = i | 256; k != 1; k >>= 1)
    {
      c = c & 1 ? (c >> 1) ^ e : c >> 1;
      if (k & 1)
        c ^= e;
    }
    crc_32_tab[i] = c;
  }
}

void error(char *x)
{
	panic(x);
}

#include "boot.h"

static struct multiboot_info *boot_info;
static struct multiboot_module *boot_mods;

struct multiboot_header boot_kern_hdr;
void *boot_kern_image;
static struct exec_info boot_kern_info;

struct zmod
{
	oskit_addr_t start, end;
	oskit_addr_t cmdline;
};
struct zhdr
{
	int magic;
	struct zmod zmods[0];
};

static struct zhdr *z;

static oskit_size_t zread(oskit_addr_t file_ofs, void *buf, oskit_size_t size)
{
	struct outbuf *obuf;
	oskit_size_t actual = 0;
	oskit_size_t bsize;

	for (obuf = first_out; obuf != NULL && size > 0; obuf = obuf->next) {
		if (file_ofs >= obuf->size) {
			file_ofs -= obuf->size;
			continue;
		}
		bsize = obuf->size - file_ofs;
		if (bsize > size)
			bsize = size;
		memcpy(buf, obuf->data + file_ofs, bsize);
		file_ofs = 0;
		buf += bsize;
		size -= bsize;
		actual += bsize;
	}

	return actual;
}

static
int kimg_read(void *handle, oskit_addr_t file_ofs, void *buf,
		oskit_size_t size, oskit_size_t *out_actual)
{
	*out_actual = zread(z->zmods[0].start + file_ofs, buf, size);
	return 0;
}

static
int kimg_read_exec_1(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
		     oskit_addr_t mem_addr, oskit_size_t mem_size,
		     exec_sectype_t section_type)
{
	if (!(section_type & EXEC_SECTYPE_ALLOC))
		return 0;

	assert(mem_size > 0);
	if (mem_addr < boot_kern_hdr.load_addr)
		boot_kern_hdr.load_addr = mem_addr;
	if (mem_addr+file_size > boot_kern_hdr.load_end_addr)
		boot_kern_hdr.load_end_addr = mem_addr+file_size;
	if (mem_addr+mem_size > boot_kern_hdr.bss_end_addr)
		boot_kern_hdr.bss_end_addr = mem_addr+mem_size;

	return 0;
}

static
int kimg_read_exec_2(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
		     oskit_addr_t mem_addr, oskit_size_t mem_size,
		     exec_sectype_t section_type)
{
	oskit_size_t actual;

	if (!(section_type & EXEC_SECTYPE_ALLOC))
		return 0;

	assert(mem_size > 0);
	assert(mem_addr >= boot_kern_hdr.load_addr);
	assert(mem_addr+file_size <= boot_kern_hdr.load_end_addr);
	assert(mem_addr+mem_size <= boot_kern_hdr.bss_end_addr);

	kimg_read(handle, file_ofs,
		  (void*)boot_kern_image + mem_addr - boot_kern_hdr.load_addr,
		  file_size, &actual);

	assert(actual == file_size);

	return 0;
}

static void load_kernel(void)
{
	static char search[MULTIBOOT_SEARCH+sizeof(struct multiboot_header)];
	struct multiboot_header *h;
	oskit_size_t actual;
	int i, err;

	/* Scan for the multiboot_header.  */
	kimg_read(0, 0, search, sizeof(search), &actual);
	for (i = 0; ; i += 4)
	{
		if (i >= MULTIBOOT_SEARCH)
			panic("kernel image has no multiboot_header");
		h = (struct multiboot_header*)(search + i);
		if (h->magic == MULTIBOOT_MAGIC
		    && !(h->magic + h->flags + h->checksum))
			break;
	}
	if (h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO)
		panic("unknown multiboot_header flag bits %08x",
			h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO);
	boot_kern_hdr = *h;

	if (h->flags & MULTIBOOT_AOUT_KLUDGE) {

		/*
		 * Allocate memory and load the kernel into it.
		 * We do this before reserving the memory
		 * for the final kernel location,
		 * because the code in boot_start.c
		 * to copy the kernel to its final location
		 * can handle overlapping sources and destinations,
		 * and this way we may not need as much memory during bootup.
		 */
		boot_kern_image = mustmalloc(h->load_end_addr - h->load_addr);
		kimg_read(0, i + h->load_addr - h->header_addr, boot_kern_image,
			  h->load_end_addr - h->load_addr, &actual);
		assert(actual == h->load_end_addr - h->load_addr);

	} else {
		/*
		 * No a.out-kludge information available;
		 * attempt to interpret the exec header instead,
		 * using the simple interpreter in libexec.a.
		 * Perform the "load" in two passes.
		 * In the first pass,
		 * find the number of sections the load image contains
		 * and reserve the physical memory containing each section.
		 * Also, initialize the boot_kern_hdr
		 * to reflect the extent of the image.
		 * In the second pass, load the sections into a temporary area
		 * that can be copied to the final location
		 * all at once by do_boot.S.
		 */

		boot_kern_hdr.load_addr = 0xffffffff;
		boot_kern_hdr.load_end_addr = 0;
		boot_kern_hdr.bss_end_addr = 0;

		if ((err = exec_load(kimg_read, kimg_read_exec_1, 0,
				     &boot_kern_info)) != 0)
			panic("cannot load kernel image 1: error code %d", err);
		boot_kern_hdr.entry = boot_kern_info.entry;

		/*
		 * Allocate memory to load the kernel into.
		 * It's OK to malloc this
		 * before reserving the memory the kernel will occupy,
		 * because do_boot.S can deal with
		 * overlapping source and destination.
		 */
		assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
		assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
		boot_kern_image = mustmalloc(boot_kern_hdr.load_end_addr -
					     boot_kern_hdr.load_addr);

		if ((err = exec_load(kimg_read, kimg_read_exec_2, 0,
				     &boot_kern_info)) != 0)
			panic("cannot load kernel image 2: error code %d", err);
		assert(boot_kern_hdr.entry == boot_kern_info.entry);
	}

	/*
	 * Reserve the memory that the kernel will eventually occupy.
	 * All malloc calls after this are guaranteed
	 * to stay out of this region.
	 */
	lmm_remove_free(&malloc_lmm,
			(void *)phystokv(boot_kern_hdr.load_addr),
			phystokv(boot_kern_hdr.bss_end_addr)
			- phystokv(boot_kern_hdr.load_addr));

	printf("kernel at %08x-%08x text+data %d bss %d\n",
		boot_kern_hdr.load_addr, boot_kern_hdr.bss_end_addr,
		boot_kern_hdr.load_end_addr - boot_kern_hdr.load_addr,
		boot_kern_hdr.bss_end_addr - boot_kern_hdr.load_end_addr);
	assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
	assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
	if (boot_kern_hdr.load_addr < 0x1000)
		panic("kernel wants to be loaded too low!");
#if 0
	if (boot_kern_hdr.bss_end_addr > phys_mem_max)
		panic("kernel wants to be loaded beyond available physical memory!");
#endif
	if ((boot_kern_hdr.load_addr < 0x100000)
	    && (boot_kern_hdr.bss_end_addr > 0xa0000))
		panic("kernel wants to be loaded on top of I/O space!");
}

static void init_boot_info(void)
{
	int i;

	/* Allocate memory for the boot_info structure and modules array.  */
	boot_info = (struct multiboot_info*)mustcalloc(sizeof(*boot_info), 1);
	for (i = 1; z->zmods[i].start; i++);
	boot_info->mods_count = i-1;
	boot_mods = (struct multiboot_module*)mustcalloc(
		boot_info->mods_count * sizeof(*boot_mods), 1);
	boot_info->mods_addr = kvtophys(boot_mods);

	/* Fill in the upper and lower memory size fields in the boot_info.  */
	boot_info->flags |= MULTIBOOT_MEMORY;
	{
		static struct trap_state ts;

		/* Find the top of lower memory (up to 640K).  */
		ts.trapno = 0x12;
		base_real_int(&ts);
		boot_info->mem_lower = ts.eax & 0xFFFF;

		/* Find the top of extended memory (up to 64MB).  */
		ts.trapno = 0x15;
		ts.eax = 0x8800;
		base_real_int(&ts);
		boot_info->mem_upper = ts.eax & 0xFFFF;
	}

	/* Build the kernel command line.  */
	if (*((unsigned short*)phystokv(0x90020)) == 0xA33F) /* CL_MAGIC */
	{
		void *src = (void*)phystokv(0x90000 +
			*((unsigned short*)phystokv(0x90022)));
		void *dest = mustcalloc(2048, 1);
		boot_info->cmdline = kvtophys(dest);
		memcpy(dest, src, 2048);
		boot_info->flags |= MULTIBOOT_CMDLINE;
	}

	/* Initialize each boot module entry.  */
	for (i = 0; i < boot_info->mods_count; i++)
	{
		struct zmod *zm = &z->zmods[1+i];
		void *modbuf;
		oskit_size_t size = zm->end - zm->start;

		/* Allocate memory to load the module into.  */
		modbuf = mustmalloc(size);
		boot_mods[i].mod_start = kvtophys(modbuf);
		boot_mods[i].mod_end = boot_mods[i].mod_start + size;

		/* Load it */
		zread(zm->start, modbuf, size);

		/* Also provide the string associated with the module.  */
		{
			char *oldstring = first_out->data + zm->cmdline;
			char *newstring = mustmalloc(strlen(oldstring)+1);
			strcpy(newstring, oldstring);
			boot_mods[i].string = kvtophys(newstring);
		}
	}
	if (i)
		boot_info->flags |= MULTIBOOT_MODS;
}

void main(int argc, char **argv)
{
	extern char edata[];

	/* Find the zipped boot module package.  */
	input_data = (char*)phystokv(DEF_SYSSEG*16 + ((oskit_addr_t)edata - 5*512));
	input_len = (DEF_INITSEG - DEF_SYSSEG)*16;

	ALLOC(uch, inbuf, INBUFSIZ);
	ALLOC(uch, outbuf, OUTBUFSIZ+OUTBUF_EXTRA);
	ALLOC(uch, window, WSIZE);

	exit_code = 0;
	test = 0;
	input_ptr = 0;
	part_nb = 0;

	clear_bufs();
	makecrc();

	method = get_method(0);

	work(0, 0);

	z = (struct zhdr*)first_out->data;
	if (z->magic != 0xf00baabb)
		panic("bad magic value in compressed boot module set");
	if (z->zmods[0].start == 0)
		panic("compressed boot module set contains no modules");
	if (first_out->size < z->zmods[0].start)
		panic("not enough data decompressed in first block");

	load_kernel();
	init_boot_info();
	boot_start(boot_info);
}

void idt_irq_init()
{
}

/* ========================================================================
 * Check the magic number of the input file and update ofname if an
 * original name was given and to_stdout is not set.
 * Return the compression method, -1 for error, -2 for warning.
 * Set inptr to the offset of the next byte to be processed.
 * This function may be called repeatedly for an input file consisting
 * of several contiguous gzip'ed members.
 * IN assertions: there is at least one remaining compressed member.
 *   If the member is a zip file, it must be the only one.
 */
local int get_method(in)
    int in;        /* input file descriptor */
{
    uch flags;
    char magic[2]; /* magic header */

    magic[0] = (char)get_byte();
    magic[1] = (char)get_byte();

    method = -1;                 /* unknown yet */
    part_nb++;                   /* number of parts in gzip file */
    last_member = 0;
    /* assume multiple members in gzip file except for record oriented I/O */

    if (memcmp(magic, GZIP_MAGIC, 2) == 0
        || memcmp(magic, OLD_GZIP_MAGIC, 2) == 0) {

	work = unzip;
	method = (int)get_byte();
	flags  = (uch)get_byte();
	if ((flags & ENCRYPTED) != 0)
	    error("Input is encrypted\n");
	if ((flags & CONTINUATION) != 0)
	       error("Multi part input\n");
	if ((flags & RESERVED) != 0) {
	    error("Input has invalid flags\n");
	    exit_code = ERROR;
	    if (force <= 1) return -1;
	}
	(ulg)get_byte();	/* Get timestamp */
	((ulg)get_byte()) << 8;
	((ulg)get_byte()) << 16;
	((ulg)get_byte()) << 24;

	(void)get_byte();  /* Ignore extra flags for the moment */
	(void)get_byte();  /* Ignore OS type for the moment */

	if ((flags & EXTRA_FIELD) != 0) {
	    unsigned len = (unsigned)get_byte();
	    len |= ((unsigned)get_byte())<<8;
	    while (len--) (void)get_byte();
	}

	/* Get original file name if it was truncated */
	if ((flags & ORIG_NAME) != 0) {
	    if (to_stdout || part_nb > 1) {
		/* Discard the old name */
		while (get_byte() != 0) /* null */ ;
	    } else {
	    } /* to_stdout */
	} /* orig_name */

	/* Discard file comment if any */
	if ((flags & COMMENT) != 0) {
	    while (get_byte() != 0) /* null */ ;
	}
    } else
	error("unknown compression method");
    return method;
}