1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
/*
* Copyright (c) 1994-1999 University of Utah and the Flux Group.
*
* This file is part of the OSKit Linux Boot Loader, which is free software,
* also known as "open source;" you can redistribute it and/or modify it under
* the terms of the GNU General Public License (GPL), version 2, as published
* by the Free Software Foundation (FSF).
*
* The OSKit is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GPL for more details. You should have
* received a copy of the GPL along with the OSKit; see the file COPYING. If
* not, write to the FSF, 59 Temple Place #330, Boston, MA 02111-1307, USA.
*/
/*
* misc.c
*
* This is a collection of several routines from gzip-1.0.3
* adapted for Linux.
*
* malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
* puts by Nick Holloway 1993
*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <oskit/debug.h>
#include <oskit/lmm.h>
#include <oskit/exec/exec.h>
#include <oskit/x86/base_vm.h>
#include <oskit/x86/base_trap.h>
#include <oskit/x86/pc/base_i16.h>
#include <oskit/x86/pc/phys_lmm.h>
#include "gzip.h"
#include "lzw.h"
#include <linux/config.h>
#include <linux/segment.h>
#define fcalloc calloc
/*
* These are set up by the setup-routine at boot-time:
*/
struct screen_info {
unsigned char orig_x;
unsigned char orig_y;
unsigned char unused1[2];
unsigned short orig_video_page;
unsigned char orig_video_mode;
unsigned char orig_video_cols;
unsigned short orig_video_ega_ax;
unsigned short orig_video_ega_bx;
unsigned short orig_video_ega_cx;
unsigned char orig_video_lines;
};
/*
* This is set up by the setup-routine at boot-time
*/
#define EXT_MEM_K (*(unsigned short *)0x90002)
#define DRIVE_INFO (*(struct drive_info *)0x90080)
#define SCREEN_INFO (*(struct screen_info *)0x90000)
#define RAMDISK_SIZE (*(unsigned short *)0x901F8)
#define ORIG_ROOT_DEV (*(unsigned short *)0x901FC)
#define AUX_DEVICE_INFO (*(unsigned char *)0x901FF)
#define EOF -1
DECLARE(uch, inbuf, INBUFSIZ);
DECLARE(uch, outbuf, OUTBUFSIZ+OUTBUF_EXTRA);
DECLARE(uch, window, WSIZE);
unsigned outcnt;
unsigned insize;
unsigned inptr;
static char *input_data;
static int input_len;
static int input_ptr;
int method, exit_code, part_nb, last_member;
int test = 0;
int force = 0;
int verbose = 1;
long bytes_in, bytes_out;
int to_stdout = 0;
int hard_math = 0;
void (*work)(int inf, int outf);
void makecrc(void);
struct outbuf {
struct outbuf *next;
unsigned size;
char data[0];
};
static struct outbuf *first_out, *last_out;
local int get_method(int);
extern ulg crc_32_tab[]; /* crc table, defined below */
/* ===========================================================================
* Run a set of bytes through the crc shift register. If s is a NULL
* pointer, then initialize the crc shift register contents instead.
* Return the current crc in either case.
*/
ulg updcrc(s, n)
uch *s; /* pointer to bytes to pump through */
unsigned n; /* number of bytes in s[] */
{
register ulg c; /* temporary variable */
static ulg crc = (ulg)0xffffffffL; /* shift register contents */
if (s == NULL) {
c = 0xffffffffL;
} else {
c = crc;
while (n--) {
c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
}
}
crc = c;
return c ^ 0xffffffffL; /* (instead of ~c for 64-bit machines) */
}
/* ===========================================================================
* Clear input and output buffers
*/
void clear_bufs()
{
outcnt = 0;
insize = inptr = 0;
bytes_in = bytes_out = 0L;
}
/* ===========================================================================
* Fill the input buffer. This is called only when the buffer is empty
* and at least one byte is really needed.
*/
int fill_inbuf()
{
int len, i;
/* Read as much as possible */
insize = 0;
do {
len = INBUFSIZ-insize;
if (len > (input_len-input_ptr+1)) len=input_len-input_ptr+1;
if (len == 0 || len == EOF) break;
for (i=0;i<len;i++) inbuf[insize+i] = input_data[input_ptr+i];
insize += len;
input_ptr += len;
} while (insize < INBUFSIZ);
if (insize == 0) {
error("unable to fill buffer\n");
}
bytes_in += (ulg)insize;
inptr = 1;
return inbuf[0];
}
/* ===========================================================================
* Write the output window window[0..outcnt-1] and update crc and bytes_out.
* (Used for the decompressed data only.)
*/
void flush_window()
{
struct outbuf *buf;
if (outcnt == 0) return;
updcrc(window, outcnt);
/*
* Stash the data in a dynamically allocated output buffer,
* and chain it onto the list of output buffers.
*/
buf = malloc(sizeof(*buf) + outcnt);
if (last_out == NULL)
first_out = last_out = buf;
else
last_out = last_out->next = buf;
buf->next = NULL;
buf->size = outcnt;
memcpy(buf->data, window, outcnt);
bytes_out += (ulg)outcnt;
outcnt = 0;
}
/*
* Code to compute the CRC-32 table. Borrowed from
* gzip-1.0.3/makecrc.c.
*/
ulg crc_32_tab[256];
void
makecrc(void)
{
/* Not copyrighted 1990 Mark Adler */
unsigned long c; /* crc shift register */
unsigned long e; /* polynomial exclusive-or pattern */
int i; /* counter for all possible eight bit values */
int k; /* byte being shifted into crc apparatus */
/* terms of polynomial defining this crc (except x^32): */
static int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
/* Make exclusive-or pattern from polynomial */
e = 0;
for (i = 0; i < sizeof(p)/sizeof(int); i++)
e |= 1L << (31 - p[i]);
crc_32_tab[0] = 0;
for (i = 1; i < 256; i++)
{
c = 0;
for (k = i | 256; k != 1; k >>= 1)
{
c = c & 1 ? (c >> 1) ^ e : c >> 1;
if (k & 1)
c ^= e;
}
crc_32_tab[i] = c;
}
}
void error(char *x)
{
panic(x);
}
#include "boot.h"
static struct multiboot_info *boot_info;
static struct multiboot_module *boot_mods;
struct multiboot_header boot_kern_hdr;
void *boot_kern_image;
static struct exec_info boot_kern_info;
struct zmod
{
oskit_addr_t start, end;
oskit_addr_t cmdline;
};
struct zhdr
{
int magic;
struct zmod zmods[0];
};
static struct zhdr *z;
static oskit_size_t zread(oskit_addr_t file_ofs, void *buf, oskit_size_t size)
{
struct outbuf *obuf;
oskit_size_t actual = 0;
oskit_size_t bsize;
for (obuf = first_out; obuf != NULL && size > 0; obuf = obuf->next) {
if (file_ofs >= obuf->size) {
file_ofs -= obuf->size;
continue;
}
bsize = obuf->size - file_ofs;
if (bsize > size)
bsize = size;
memcpy(buf, obuf->data + file_ofs, bsize);
file_ofs = 0;
buf += bsize;
size -= bsize;
actual += bsize;
}
return actual;
}
static
int kimg_read(void *handle, oskit_addr_t file_ofs, void *buf,
oskit_size_t size, oskit_size_t *out_actual)
{
*out_actual = zread(z->zmods[0].start + file_ofs, buf, size);
return 0;
}
static
int kimg_read_exec_1(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
if (!(section_type & EXEC_SECTYPE_ALLOC))
return 0;
assert(mem_size > 0);
if (mem_addr < boot_kern_hdr.load_addr)
boot_kern_hdr.load_addr = mem_addr;
if (mem_addr+file_size > boot_kern_hdr.load_end_addr)
boot_kern_hdr.load_end_addr = mem_addr+file_size;
if (mem_addr+mem_size > boot_kern_hdr.bss_end_addr)
boot_kern_hdr.bss_end_addr = mem_addr+mem_size;
return 0;
}
static
int kimg_read_exec_2(void *handle, oskit_addr_t file_ofs, oskit_size_t file_size,
oskit_addr_t mem_addr, oskit_size_t mem_size,
exec_sectype_t section_type)
{
oskit_size_t actual;
if (!(section_type & EXEC_SECTYPE_ALLOC))
return 0;
assert(mem_size > 0);
assert(mem_addr >= boot_kern_hdr.load_addr);
assert(mem_addr+file_size <= boot_kern_hdr.load_end_addr);
assert(mem_addr+mem_size <= boot_kern_hdr.bss_end_addr);
kimg_read(handle, file_ofs,
(void*)boot_kern_image + mem_addr - boot_kern_hdr.load_addr,
file_size, &actual);
assert(actual == file_size);
return 0;
}
static void load_kernel(void)
{
static char search[MULTIBOOT_SEARCH+sizeof(struct multiboot_header)];
struct multiboot_header *h;
oskit_size_t actual;
int i, err;
/* Scan for the multiboot_header. */
kimg_read(0, 0, search, sizeof(search), &actual);
for (i = 0; ; i += 4)
{
if (i >= MULTIBOOT_SEARCH)
panic("kernel image has no multiboot_header");
h = (struct multiboot_header*)(search + i);
if (h->magic == MULTIBOOT_MAGIC
&& !(h->magic + h->flags + h->checksum))
break;
}
if (h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO)
panic("unknown multiboot_header flag bits %08x",
h->flags & MULTIBOOT_MUSTKNOW & ~MULTIBOOT_MEMORY_INFO);
boot_kern_hdr = *h;
if (h->flags & MULTIBOOT_AOUT_KLUDGE) {
/*
* Allocate memory and load the kernel into it.
* We do this before reserving the memory
* for the final kernel location,
* because the code in boot_start.c
* to copy the kernel to its final location
* can handle overlapping sources and destinations,
* and this way we may not need as much memory during bootup.
*/
boot_kern_image = mustmalloc(h->load_end_addr - h->load_addr);
kimg_read(0, i + h->load_addr - h->header_addr, boot_kern_image,
h->load_end_addr - h->load_addr, &actual);
assert(actual == h->load_end_addr - h->load_addr);
} else {
/*
* No a.out-kludge information available;
* attempt to interpret the exec header instead,
* using the simple interpreter in libexec.a.
* Perform the "load" in two passes.
* In the first pass,
* find the number of sections the load image contains
* and reserve the physical memory containing each section.
* Also, initialize the boot_kern_hdr
* to reflect the extent of the image.
* In the second pass, load the sections into a temporary area
* that can be copied to the final location
* all at once by do_boot.S.
*/
boot_kern_hdr.load_addr = 0xffffffff;
boot_kern_hdr.load_end_addr = 0;
boot_kern_hdr.bss_end_addr = 0;
if ((err = exec_load(kimg_read, kimg_read_exec_1, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 1: error code %d", err);
boot_kern_hdr.entry = boot_kern_info.entry;
/*
* Allocate memory to load the kernel into.
* It's OK to malloc this
* before reserving the memory the kernel will occupy,
* because do_boot.S can deal with
* overlapping source and destination.
*/
assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
boot_kern_image = mustmalloc(boot_kern_hdr.load_end_addr -
boot_kern_hdr.load_addr);
if ((err = exec_load(kimg_read, kimg_read_exec_2, 0,
&boot_kern_info)) != 0)
panic("cannot load kernel image 2: error code %d", err);
assert(boot_kern_hdr.entry == boot_kern_info.entry);
}
/*
* Reserve the memory that the kernel will eventually occupy.
* All malloc calls after this are guaranteed
* to stay out of this region.
*/
lmm_remove_free(&malloc_lmm,
(void *)phystokv(boot_kern_hdr.load_addr),
phystokv(boot_kern_hdr.bss_end_addr)
- phystokv(boot_kern_hdr.load_addr));
printf("kernel at %08x-%08x text+data %d bss %d\n",
boot_kern_hdr.load_addr, boot_kern_hdr.bss_end_addr,
boot_kern_hdr.load_end_addr - boot_kern_hdr.load_addr,
boot_kern_hdr.bss_end_addr - boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_addr < boot_kern_hdr.load_end_addr);
assert(boot_kern_hdr.load_end_addr < boot_kern_hdr.bss_end_addr);
if (boot_kern_hdr.load_addr < 0x1000)
panic("kernel wants to be loaded too low!");
#if 0
if (boot_kern_hdr.bss_end_addr > phys_mem_max)
panic("kernel wants to be loaded beyond available physical memory!");
#endif
if ((boot_kern_hdr.load_addr < 0x100000)
&& (boot_kern_hdr.bss_end_addr > 0xa0000))
panic("kernel wants to be loaded on top of I/O space!");
}
static void init_boot_info(void)
{
int i;
/* Allocate memory for the boot_info structure and modules array. */
boot_info = (struct multiboot_info*)mustcalloc(sizeof(*boot_info), 1);
for (i = 1; z->zmods[i].start; i++);
boot_info->mods_count = i-1;
boot_mods = (struct multiboot_module*)mustcalloc(
boot_info->mods_count * sizeof(*boot_mods), 1);
boot_info->mods_addr = kvtophys(boot_mods);
/* Fill in the upper and lower memory size fields in the boot_info. */
boot_info->flags |= MULTIBOOT_MEMORY;
{
static struct trap_state ts;
/* Find the top of lower memory (up to 640K). */
ts.trapno = 0x12;
base_real_int(&ts);
boot_info->mem_lower = ts.eax & 0xFFFF;
/* Find the top of extended memory (up to 64MB). */
ts.trapno = 0x15;
ts.eax = 0x8800;
base_real_int(&ts);
boot_info->mem_upper = ts.eax & 0xFFFF;
}
/* Build the kernel command line. */
if (*((unsigned short*)phystokv(0x90020)) == 0xA33F) /* CL_MAGIC */
{
void *src = (void*)phystokv(0x90000 +
*((unsigned short*)phystokv(0x90022)));
void *dest = mustcalloc(2048, 1);
boot_info->cmdline = kvtophys(dest);
memcpy(dest, src, 2048);
boot_info->flags |= MULTIBOOT_CMDLINE;
}
/* Initialize each boot module entry. */
for (i = 0; i < boot_info->mods_count; i++)
{
struct zmod *zm = &z->zmods[1+i];
void *modbuf;
oskit_size_t size = zm->end - zm->start;
/* Allocate memory to load the module into. */
modbuf = mustmalloc(size);
boot_mods[i].mod_start = kvtophys(modbuf);
boot_mods[i].mod_end = boot_mods[i].mod_start + size;
/* Load it */
zread(zm->start, modbuf, size);
/* Also provide the string associated with the module. */
{
char *oldstring = first_out->data + zm->cmdline;
char *newstring = mustmalloc(strlen(oldstring)+1);
strcpy(newstring, oldstring);
boot_mods[i].string = kvtophys(newstring);
}
}
if (i)
boot_info->flags |= MULTIBOOT_MODS;
}
void main(int argc, char **argv)
{
extern char edata[];
/* Find the zipped boot module package. */
input_data = (char*)phystokv(DEF_SYSSEG*16 + ((oskit_addr_t)edata - 5*512));
input_len = (DEF_INITSEG - DEF_SYSSEG)*16;
ALLOC(uch, inbuf, INBUFSIZ);
ALLOC(uch, outbuf, OUTBUFSIZ+OUTBUF_EXTRA);
ALLOC(uch, window, WSIZE);
exit_code = 0;
test = 0;
input_ptr = 0;
part_nb = 0;
clear_bufs();
makecrc();
method = get_method(0);
work(0, 0);
z = (struct zhdr*)first_out->data;
if (z->magic != 0xf00baabb)
panic("bad magic value in compressed boot module set");
if (z->zmods[0].start == 0)
panic("compressed boot module set contains no modules");
if (first_out->size < z->zmods[0].start)
panic("not enough data decompressed in first block");
load_kernel();
init_boot_info();
boot_start(boot_info);
}
void idt_irq_init()
{
}
/* ========================================================================
* Check the magic number of the input file and update ofname if an
* original name was given and to_stdout is not set.
* Return the compression method, -1 for error, -2 for warning.
* Set inptr to the offset of the next byte to be processed.
* This function may be called repeatedly for an input file consisting
* of several contiguous gzip'ed members.
* IN assertions: there is at least one remaining compressed member.
* If the member is a zip file, it must be the only one.
*/
local int get_method(in)
int in; /* input file descriptor */
{
uch flags;
char magic[2]; /* magic header */
magic[0] = (char)get_byte();
magic[1] = (char)get_byte();
method = -1; /* unknown yet */
part_nb++; /* number of parts in gzip file */
last_member = 0;
/* assume multiple members in gzip file except for record oriented I/O */
if (memcmp(magic, GZIP_MAGIC, 2) == 0
|| memcmp(magic, OLD_GZIP_MAGIC, 2) == 0) {
work = unzip;
method = (int)get_byte();
flags = (uch)get_byte();
if ((flags & ENCRYPTED) != 0)
error("Input is encrypted\n");
if ((flags & CONTINUATION) != 0)
error("Multi part input\n");
if ((flags & RESERVED) != 0) {
error("Input has invalid flags\n");
exit_code = ERROR;
if (force <= 1) return -1;
}
(ulg)get_byte(); /* Get timestamp */
((ulg)get_byte()) << 8;
((ulg)get_byte()) << 16;
((ulg)get_byte()) << 24;
(void)get_byte(); /* Ignore extra flags for the moment */
(void)get_byte(); /* Ignore OS type for the moment */
if ((flags & EXTRA_FIELD) != 0) {
unsigned len = (unsigned)get_byte();
len |= ((unsigned)get_byte())<<8;
while (len--) (void)get_byte();
}
/* Get original file name if it was truncated */
if ((flags & ORIG_NAME) != 0) {
if (to_stdout || part_nb > 1) {
/* Discard the old name */
while (get_byte() != 0) /* null */ ;
} else {
} /* to_stdout */
} /* orig_name */
/* Discard file comment if any */
if ((flags & COMMENT) != 0) {
while (get_byte() != 0) /* null */ ;
}
} else
error("unknown compression method");
return method;
}
|