File: pthread.tex

package info (click to toggle)
oskit 0.97.20000202-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 58,008 kB
  • ctags: 172,612
  • sloc: ansic: 832,827; asm: 7,640; sh: 3,920; yacc: 3,664; perl: 1,457; lex: 427; makefile: 337; csh: 141; awk: 78
file content (2462 lines) | stat: -rw-r--r-- 79,124 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
%
% Copyright (c) 1996-1999 University of Utah and the Flux Group.
% All rights reserved.
% 
% The University of Utah grants you the right to copy and reproduce this
% document or portions thereof for academic, research, evaluation, and
% personal use only, provided that (1) the title page appears prominently,
% and (2) these copyright and permission notices are retained in all copies.
% To arrange for alternate terms, contact the University of Utah at
% csl-dist@cs.utah.edu or +1-801-585-3271.
%
\label{pthread}

\section{Introduction}

This chapter describes the \posix{} threads module and associated support for
writing multithreaded kernels. At present, threads support is very new and
not every combination of components is known to work; see Section
\ref{pthread-caveats} for a more detailed description of what has been
tested. Section \ref{pthread-api} describes the application program
interface for the core \posix{} threads module, while Section
\ref{pthread-wrappers} contains a discussion of how the threads system
interacts with the device driver framework.

\section{Examples and Caveats}
\label{pthread-caveats}

The sample kernels in the {\tt examples/threads} directory (see Section
\ref{example-kernels}), contain several sample kernels demonstrating the
use of the \posix{} threads module. 

\begin{itemize}
\item	{\tt dphils}:
	A computational example that tests basic \posix{} threads
	operations such as thread creation, mutexes, and conditions.
	Solves the classic Dining Philosophers problem.
\item	{\tt disktest}:
	A contrived disk thrashing program that tests the interaction
	between \posix{} threads and the NetBSD filesystem (see section
	\ref{netbsd-fs}). A number of threads are created, where each one
	creates and copies files in varying block sizes.
\item	{\tt disknet}:
	Another contrived program that builds on the disk thrashing program
	above. Also tested is the interaction bewteen \posix{} threads and
	the BSD network interface. Half of the threads created thrash the
	disk and the other half connect to a server process and send and
	receive data blocks. This program achieves reasonable interleaving
	of work.
\item	{\tt http_proxy}:
	A simplified HTTP proxy daemon that tests the interaction between
	\posix{} threads and the BSD network interface. For each new
	connection request, three threads are created to manage that
	connection and forward data between the client and the server. 
\end{itemize}

This small set of test programs clearly does not test every possible
combination of components. A larger set of test program is in the works. In
addition, not all of the thread-safe adaptors are implemented, so some
components cannot be used in a multithreaded environment. {\em For now, the
\posix{} threads module should be used with caution.} Note that these
examples are compiled and linked against the multithreaded version of the
\freebsd{} C library (see Section \ref{freebsd-libc}), rather than the minimal
C library (Section \ref{libc}). 

\section{POSIX Threads Reference}
\label{pthread-api}

As with most \posix{} threads implementations, this one is slightly
different than others. This section briefly covers the specific interfaces,
but does not describe the semantics of each interface function in great
detail. The reader is advised to consult the \posix{} documentation for a
more complete description. All of these functions, as well as the types
necessary to use them, are defined in the header file {\tt
<oskit/threads/pthread.h>}.

\api{pthread.h}{Thread constants and data structures}
\begin{apidesc}
	This header file defines the following standard symbols.
	\begin{icsymlist}
	\item[PRIORITY_MIN]
		Lowest possible thread scheduling priority.
	\item[PRIORITY_NORMAL]
		Default thread scheduling priority.
	\item[PRIORITY_MAX]
		Highest possible thread scheduling priority.
	\item[SCHED_FIFO]
		The ``first in first out'' thread scheduling policy.
	\item[SCHED_RR]
		The ``round robin'' thread scheduling policy.
	\item[PTHREAD_STACK_MIN]
		The minumum allowed stack size.
	\item[PTHREAD_CREATE_JOINABLE]
		Thread attribute; thread is created joinable.
	\item[PTHREAD_CREATE_DETACHED]
		Thread attribute; thread is created detached.
	\item[PTHREAD_PRIO_NONE]
		Mutex attribute; mutex does not do priority inheritance.
	\item[PTHREAD_PRIO_INHERIT]
		Mutex attribute; mutex does priority inheritance.
	\item[PTHREAD_MUTEX_NORMAL]
		Mutex attribute; normal error checking, no recursion.
	\item[PTHREAD_MUTEX_ERRORCHECK]
		Mutex attribute; extra error checking, no recursion.
	\item[PTHREAD_MUTEX_RECURSIVE]
		Mutex attribute; normal error checking, recursion allowed.
	\item[PTHREAD_MUTEX_DEFAULT]
		Mutex attribute; normal error checking, no recursion.
	\item[PTHREAD_CANCEL_ENABLE]
		Cancelation state; Cancelation state is enabled.
	\item[PTHREAD_CANCEL_DISABLE]
		Cancelation state; Cancelation state is disabled.
	\item[PTHREAD_CANCEL_DEFERRED]
		Cancelation type; Cancelation type deferred,
	\item[PTHREAD_CANCEL_ASYNCHRONOUS]
		Cancelation type; Cancelation type is asynchronous.
	\item[PTHREAD_CANCELED]
		The exit status returned by pthread_join for a canceled thread.
	\item[pthread_t]
		Thread identifier type definition.
	\item[pthread_mutex_t]
		Mutex type definition.
	\item[pthread_cond_t]
		Condition variable type definition.
	\item[pthread_attr_t]
		Thread attributes type definition.
	\item[pthread_attr_default]
		Default thread attributes object.
	\item[pthread_mutexattr_t]
		Mutex attributes type definition.
	\item[pthread_mutexattr_default]
		Default mutex attributes object.
	\item[pthread_condattr_t]
		Condition variable attributes type definition.
	\item[pthread_condattr_default]
		Default condition variable attributes object.
	\item[sched_param_t]
		Type definition for the {\tt pthread_setschedparam}
		interface function.
	\end{icsymlist}
\end{apidesc}

\api{pthread_init}{Initialize the threads system}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void pthread_init(int preemptible);
\end{apisyn}
\begin{apidesc}
	This function initializes the threads system. It should be called
	as the first function in the application's main program function.

	When {\tt pthread_init} returns, the caller is now running within
	the main thread, although on the same stack as when called. One or
	more idle threads have also been created, and are running at low
	priority. At this point, the application is free to use any of the
	pthread interface functions described in this section.

\end{apidesc}
\begin{apiparm}
	\item[preemptible]
		A boolean value specifying whether the threads system
		should use preemption based scheduling. When preemption
		based scheduling is not used, it is up to the application
		to yield the processor using {\tt sched_yield} as necessary.
\end{apiparm}


\api{pthread_attr_init}{Initialize a thread attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_init(pthread_attr_t *attr);
\end{apisyn}
\begin{apidesc}
	Initialize a thread attributes object for use with {\tt
	pthread_create}. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_setprio},
	{\tt pthread_attr_setstacksize}
\end{apirel}


\api{pthread_attr_setdetachstate}{Set the detach state in a thread attributes
                                  object} 
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_setdetachstate(pthread_attr_t *attr,
                                                   int detachstate);
\end{apisyn}
\begin{apidesc}
	Set the thread detach state in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[detachstate]
		Either PTHREAD_CREATE_JOINABLE or PTHREAD_CREATE_DETACHED. 
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EINVAL if {\tt detachstate} is 
	invalid.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_init}
\end{apirel}


\api{pthread_attr_setprio}{Set the priority in a thread attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_setprio(pthread_attr_t *attr, int pri);
\end{apisyn}
\begin{apidesc}
	Set the priority value in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[pri]
		A value between PRIORITY_MIN and PRIORITY_MAX.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EINVAL if {\tt priority} is
	outside the range of PRIORITY_MIN to PRIORITY_MAX.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_init},
	{\tt pthread_attr_setstacksize}
\end{apirel}


\api{pthread_attr_setstackaddr}{Set the stack address in a thread attributes
                                object} 
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_setstackaddr(pthread_attr_t *attr,
                                                 oskit_u32_t stackaddr);
\end{apisyn}
\begin{apidesc}
	Set the stack address in a previously initialized threads attribute
	object, for use with {\tt pthread_create}. The new thread will be
	created using the provided stack. It is necessary to call {\tt
	pthread_attr_setstacksize()} if the size is not {\tt
	PTHREAD_STACK_MIN}.
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[stackaddr]
		The address of the stack.
\end{apiparm}
\begin{apiret}
	Returns zero on success. 
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_init},
        {\tt pthread_attr_setstacksize}
\end{apirel}


\api{pthread_attr_setguardsize}{Set the stack guard size in a thread attributes
                                object} 
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_setguardsize(pthread_attr_t *attr,
                                                 oskit_size_t guardsize);
\end{apisyn}
\begin{apidesc}
	Set the stack guard size in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. This much
	extra space will be allocated at the end of the stack and set as a
	redzone to catch stack overflow. The guard size is rounded up to a
	multiple of the native page size. Stack guards are not created for
	stacks provided with {\tt pthread_attr_setstackaddr}.
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[guardsize]
		A reasonable stack guard size.
\end{apiparm}
\begin{apiret}
	Returns zero on success. 
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_init},
        {\tt pthread_attr_setstackaddr}
\end{apirel}


\api{pthread_attr_setstacksize}{Set the stack size in a thread attributes
                                object} 
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_setstacksize(pthread_attr_t *attr,
                                                 oskit_size_t stacksize);
\end{apisyn}
\begin{apidesc}
	Set the stack size in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[stacksize]
		A reasonable stack size.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EINVAL if {\tt stacksize} is less
	than PTHREAD_STACK_MIN.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_init},
        {\tt pthread_attr_setprio}
\end{apirel}


\api{pthread_attr_setschedpolicy}{Set the scheduling policy in a thread
                                  attributes object} 
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_attr_setschedpolicy(pthread_attr_t *attr,
                                                   int policy);
\end{apisyn}
\begin{apidesc}
	Set the scheduling policy in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[policy]
		Either SCHED_FIFO or SCHED_RR.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EINVAL if {\tt policy} is 
	invalid.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_attr_init}
\end{apirel}


\api{pthread_mutexattr_init}{Initialize a mutex attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutexattr_init(pthread_mutexattr_t *attr);
\end{apisyn}
\begin{apidesc}
	Initialize an mutex attributes object for use with {\tt
	pthread_mutex_init}. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_mutexattr_t} object
		representing the attributes for a mutex initialization.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}, {\tt pthread_mutex_setprotocol}
\end{apirel}


\api{pthread_mutexattr_setprotocol}{Set the protocol attribute of a mutex
                                    attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
                                                     int protocol);
\end{apisyn}
\begin{apidesc}
	Set the protocol in a previously initialized mutex
	attribute object. When a mutex is created with the protocol
	PTHREAD_PRIO_INHERIT, threads that blocked on the mutex will result
	in a transfer of priority from higher to lower priority threads.
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_mutexattr_t} object
		representing the attributes for a mutex initialization.
	\item[protocol]
		Either PTHREAD_PRIO_NONE or PTHREAD_PRIO_INHERIT.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}
\end{apirel}


\api{pthread_mutexattr_settype}{Set the type attribute of a mutex
                                attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutexattr_settype(pthread_mutexattr_t *attr,
                                                 int type);
\end{apisyn}
\begin{apidesc}
	Set the type in a previously initialized mutex
	attribute object. PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
	and PTHREAD_MUTEX_DEFAULT are equivalent. PTHREAD_MUTEX_RECURSIVE
	allows a mutex to be recursively locked.
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_mutexattr_t} object
		representing the attributes for a mutex initialization.
	\item[type]
		One of PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
		PTHREAD_MUTEX_DEFAULT, or PTHREAD_MUTEX_RECURSIVE.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}
\end{apirel}


\api{pthread_condattr_init}{Initialize a condition attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_condattr_init(pthread_condattr_t *attr);
\end{apisyn}
\begin{apidesc}
	Initialize an condition variable attributes object for use with
	{\tt pthread_cond_init}.
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_condattr_t} object
		representing the attributes for a condition variable
		initialization.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_init}
\end{apirel}


\api{pthread_cancel}{Cancel a running thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cancel(pthread_t tid);
\end{apisyn}
\begin{apidesc}
	Cancel the thread specified by {\tt tid}. The thread is marked for
	cancellation, but because of scheduling and device delays, might not
	be acted upon until some future time.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread identifier of the thread to be canceled.
\end{apiparm}
\begin{apiret}
	Returns zero on success. EINVAL if {\tt tid} specifies an invalid
	thread. 
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt pthread_sleep}
\end{apirel}


\api{pthread_cleanup_push}{Push a cancellation cleanup handler routine onto
                           the calling thread's cancellation cleanup stack}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void pthread_cleanup_push(void (*routine)(void *),
                                            void *arg);
\end{apisyn}
\begin{apidesc}
	Push a cancellation cleanup handler routine onto the calling
	thread's cancellation cleanup stack. When requested, the cleanup
	{\tt routine} will be popped from the cancellation stack, and
	invoked with the argument {\tt arg}.
\end{apidesc}
\begin{apiparm}
	\item[routine]
		The cleanup handler routine.
	\item[arg]
		The argument to pass to the cleanup handler routine.
\end{apiparm}
\begin{apirel}
	{\tt pthread_cancel}, {\tt pthread_cleaup_pop} 
\end{apirel}


\api{pthread_setcancelstate}{Set the cancelation state}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void pthread_setcancelstate(int state, int *oldstate);
\end{apisyn}
\begin{apidesc}
	Set the cancel {\tt state} for the current thread, returning the
	old state in {\tt oldstate}. Valid states are either {\tt
	PTHREAD_CANCEL_ENABLE} or {\tt PTHREAD_CANCEL_DISABLE}. This
	routine is async-cancel safe.
\end{apidesc}
\begin{apiparm}
	\item[state]
		New cancel state.
	\item[oldstate]
		Location in which to place the original cancel state.
\end{apiparm}
\begin{apirel}
	{\tt pthread_cancel}, {\tt pthread_setcanceltype} 
\end{apirel}


\api{pthread_setcanceltype}{Set the cancelation type}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void pthread_setcanceltype(int type, int *oldtype);
\end{apisyn}
\begin{apidesc}
	Set the cancel {\tt type} for the current thread, returning the old
	type in {\tt oldtype}. Valid types are either {\tt
	PTHREAD_CANCEL_DEFERRED} or {\tt PTHREAD_CANCEL_ASYNCHRONOUS}.
	This routine is async-cancel safe.
\end{apidesc}
\begin{apiparm}
	\item[type]
		New cancel type.
	\item[oldtype]
		Location in which to place the original cancel type.
\end{apiparm}
\begin{apirel}
	{\tt pthread_cancel}, {\tt pthread_setcancelstate} 
\end{apirel}


\api{pthread_testcancel}{Check for a cancelation point}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void pthread_testcancel(void);
\end{apisyn}
\begin{apidesc}
	Test whether a cancelation is pending, and deliver the cancelation
	if the cancel state is {\tt PTHREAD_CANCEL_ENABLED}.
\end{apidesc}
\begin{apirel}
	{\tt pthread_cancel}, {\tt pthread_setcancelstate}
\end{apirel}



\api{pthread_cond_broadcast}{Wakeup all threads waiting on a condition
                             variable}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cond_broadcast(pthread_cond_t *cond);
\end{apisyn}
\begin{apidesc}
	Wakeup all threads waiting on a condition variable.
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_init}, {\tt pthread_cond_wait},
	{\tt pthread_cond_signal}
\end{apirel}


\api{pthread_cond_destroy}{Destroy a condition variable}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cond_destroy(pthread_cond_t *cond);
\end{apisyn}
\begin{apidesc}
	Destroy a condition variable object. The condition variable should
	be unused, with no threads waiting for it. The memory for the
	object is left intact; it is up to the caller to deallocate it.
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
\end{apiparm}
\begin{apiret}
	Returns zero on success. EINVAL if there are threads still waiting.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_init}
\end{apirel}


\api{pthread_cond_init}{Initialize a condition variable}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cond_init(pthread_cond_t *cond,
                                         pthread_condattr_t *attr);
\end{apisyn}
\begin{apidesc}
	Initialize a condition variable object, using the provided
	condition attributes object. The attributes object may be a NULL
	pointer, in which case {\tt pthread_condattr_default} is used.
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
	\item[attr]
		A pointer to the condition variable attributes object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_destroy}
\end{apirel}


\api{pthread_cond_signal}{Wakeup one thread waiting on a condition variable}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cond_signal(pthread_cond_t *cond);
\end{apisyn}
\begin{apidesc}
	Wakeup the highest priority thread waiting on a condition variable.
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_wait}, {\tt pthread_cond_broadcast}
\end{apirel}


\api{pthread_cond_wait}{Wait on a condition variable}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cond_wait(pthread_cond_t *cond,
					 pthread_mutex_t *mutex);
\end{apisyn}
\begin{apidesc}
	The current thread is made to wait until the condition variable is
	signaled or broadcast. The mutex is released prior to waiting, and
	reacquired before returning. 
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
	\item[mutex]
		A pointer to the mutex object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_signal}, {\tt pthread_cond_broadcast},
	{\tt pthread_cond_timedwait}
\end{apirel}


\api{pthread_cond_timedwait}{Wait on a condition variable with timeout}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_cond_timedwait(pthread_cond_t *cond,
					      pthread_mutex_t *mutex,
                                              oskit_timespec_t *abstime);
\end{apisyn}
\begin{apidesc}
	The current thread is made to wait until the condition variable is
	signaled or broadcast, or until the timeout expires. The mutex is
	released prior to waiting, and reacquired before returning. The
	timeout is given as an absolute time in the future that bounds the
	wait.
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
	\item[mutex]
		A pointer to the mutex object.
	\item[abstime]
		A pointer to an oskit_timespec structure.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns ETIMEDOUT if the timeout expires.
\end{apiret}
\begin{apirel}
	{\tt pthread_cond_signal}, {\tt pthread_cond_broadcast},
	{\tt pthread_cond_wait}
\end{apirel}


\api{pthread_create}{Create a new thread and start it running}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_create(pthread_t *tid,
                                      const pthread_attr_t *attr,
				      void (*function)(void *), void *arg);
\end{apisyn}
\begin{apidesc}
	Create a new thread and schedule it to run. The thread is created
	using the attributes object {\tt attr}, which specifies the initial
	priority, stack size, and detach state. If a NULL attributes
	object is provided, a system default attributes object is used
	instead, specifying that the thread is detachable, has priority
	PRIORITY_NORMAL, and with a reasonable stack size. 

	This call returns immediately, with the thread id stored in the
	location given by {\tt tid}. This thread id should be saved if the
	application wishes to manipulate the thread's state at some future
	time.

	The new thread is scheduled to run. When the thread starts up, it
	will call {\tt void (*function)(void *arg)}.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		A pointer to the location where the thread id should be
		stored. 
	\item[attr]
		A pointer to the thread creation attributes object.
	\item[function]
		The initial function to call when the thread first starts.
	\item[arg]
		The argument to the initial function.
\end{apiparm}
\begin{apiret}
	Returns zero on success, storing the tid of the new thread into
	{\tt *tid}.
\end{apiret}
\begin{apirel}
	{\tt pthread_join}, {\tt pthread_detach}, {\tt pthread_exit}
\end{apirel}


\api{pthread_detach}{Detach a thread from its parent}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_detach(pthread_t tid);
\end{apisyn}
\begin{apidesc}
	The thread specified by {\tt tid} is detached from its parent. If
	the thread has already exited, its resources are released.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread id of the thread being detached.
\end{apiparm}
\begin{apiret}
	Returns zero on success. EINVAL if {\tt tid} refers to a
	non-existent thread.
\end{apiret}
\begin{apirel}
	{\tt pthread_join}, {\tt pthread_create}, {\tt pthread_exit}
\end{apirel}


\api{pthread_exit}{Terminate a thread with status}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_exit(void *status);
\end{apisyn}
\begin{apidesc}
	The current thread is terminated, with its status value made
	available to the parent using {\tt pthread_join}.
\end{apidesc}
\begin{apiparm}
	\item[status]
		The exit status.
\end{apiparm}
\begin{apiret}
	This function does not return.
\end{apiret}
\begin{apirel}
	{\tt pthread_join}, {\tt pthread_create}, {\tt pthread_detach}
\end{apirel}


\api{pthread_join}{Join with a target thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_join(pthread_t tid, void **status);
\end{apisyn}
\begin{apidesc}
	The current thread indicates that it would like to join with the
	target thread specified by {\tt tid}. If the target thread has
	already terminated, its exit status is provided immediately to the
	caller. If the target thread has not yet exited, the caller is made
	to wait. Once the target has exited, all of the threads waiting to
	join with it are woken up, and the target's exit status provided to
	each.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread id of the thread being joined with.
	\item[status]
		A pointer to a location where the target's exit status is
		placed. 
\end{apiparm}
\begin{apiret}
	Returns zero on success, storing the target's exit status in {\tt
	*status}. EINVAL if {\tt tid} refers to a non-existent thread.
\end{apiret}
\begin{apirel}
	{\tt pthread_join}, {\tt pthread_create}, {\tt pthread_detach}
\end{apirel}


\api{pthread_key_create}{Create a thread-specific data key}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_key_create(pthread_ket_t *key,
                                          void (*destructor)(void *));
\end{apisyn}
\begin{apidesc}
	Create a thread-specific key for use with {\tt
	pthread_setspecific}.  If specified, the destructor is called on
	any non-NULL key/value pair when a thread exits.
\end{apidesc}
\begin{apiparm}
	\item[key]
		Address where the new key value should be stored.
	\item[destructor]
		Pointer to the destructor function, which may be NULL.
\end{apiparm}
\begin{apiret}
	Returns zero on success, and stores the new key value at {\tt
	*key}. Returns EAGAIN if the are no more keys available.
\end{apiret}
\begin{apirel}
	{\tt pthread_key_delete}, {\tt pthread_setspecific},
	{\tt pthread_getspecific}
\end{apirel}


\api{pthread_key_delete}{Delete a thread-specific data key}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_key_delete(pthread_ket_t *key);
\end{apisyn}
\begin{apidesc}
	Delete the thread-specific key. Attempts to use a key via {\tt
	pthread_setspecific} or {\tt pthread_getspecific} after it has been
	deleted is undefined.
\end{apidesc}
\begin{apiparm}
	\item[key]
		The key that should be deleted.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EINVAL if {\tt key} refers to an
	invalid key.
\end{apiret}
\begin{apirel}
	{\tt pthread_key_create}, {\tt pthread_setspecific},
	{\tt pthread_getspecific}
\end{apirel}


\api{pthread_setspecific}{Set a thread-specific data value}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_setspecific(pthread_ket_t key,
                                           const void *value);
\end{apisyn}
\begin{apidesc}
	Associate a new thread-specific value with the specified key.
\end{apidesc}
\begin{apiparm}
	\item[key]
		The key that should be set.
	\item[value]
		The new value to associate with the key.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EINVAL if {\tt key} refers to an
	invalid key.
\end{apiret}
\begin{apirel}
	{\tt pthread_key_create}, {\tt pthread_key_delete},
	{\tt pthread_getspecific}
\end{apirel}


\api{pthread_getspecific}{Set a thread-specific data value}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void *pthread_setspecific(pthread_ket_t key);
\end{apisyn}
\begin{apidesc}
	Get the thread-specific value associated the specified key.
\end{apidesc}
\begin{apiparm}
	\item[key]
		The key for the value that should be retrieved.
\end{apiparm}
\begin{apiret}
	Returns the value of the key. Errors always return zero.
\end{apiret}
\begin{apirel}
	{\tt pthread_key_create}, {\tt pthread_key_delete},
	{\tt pthread_setspecific}
\end{apirel}


\api{pthread_mutex_init}{Initialize a mutex object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutex_init(pthread_mutex_t *m,
                                          pthread_mutexattr_t *attr);
\end{apisyn}
\begin{apidesc}
	Initialize a mutex object, using the provided mutex attributes
	object. The attributes object may be a NULL pointer, in which case
	{\tt pthread_mutexattr_default} is used.
\end{apidesc}
\begin{apiparm}
	\item[mutex]
		A pointer to the mutex object.
	\item[attr]
		A pointer to the mutex attributes object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_destroy}, {\tt pthread_mutex_lock},
	{\tt pthread_mutex_unlock}
\end{apirel}


\api{pthread_mutex_destroy}{Destroy a mutex object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutex_destroy(pthread_mutex_t *m);
\end{apisyn}
\begin{apidesc}
	The mutex object is destroyed, although the memory for the object
	is not deallocated. The mutex must not be held.
\end{apidesc}
\begin{apiparm}
	\item[mutex]
		A pointer to the mutex object.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EBUSY if the mutex is still held.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}
\end{apirel}


\api{pthread_mutex_lock}{Lock a unlocked mutex object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutex_lock(pthread_mutex_t *m);
\end{apisyn}
\begin{apidesc}
	Lock a mutex object. If the mutex is currently locked, the thread
	waits (is suspended) for the mutex to become available.
\end{apidesc}
\begin{apiparm}
	\item[mutex]
		A pointer to the mutex object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}, {\tt pthread_mutex_unlock},
	{\tt pthread_mutex_trylock}
\end{apirel}


\api{pthread_mutex_trylock}{Attempt to lock a unlocked mutex object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutex_trylock(pthread_mutex_t *m);
\end{apisyn}
\begin{apidesc}
	Attempt to lock a mutex object. This function always returns
	immediately.
\end{apidesc}
\begin{apiparm}
	\item[mutex]
		A pointer to the mutex object.
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns EBUSY if the mutex object is
	locked. 
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}, {\tt pthread_mutex_unlock},
	{\tt pthread_mutex_lock}
\end{apirel}


\api{pthread_mutex_unlock}{Unlock a mutex object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_mutex_unlock(pthread_mutex_t *m);
\end{apisyn}
\begin{apidesc}
	Unlock a mutex object. If there other threads waiting to acquire
	the mutex, the highest priority thread is woken up and granted the
	mutex. 
\end{apidesc}
\begin{apiparm}
	\item[mutex]
		A pointer to the mutex object.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_mutex_init}, {\tt pthread_mutex_trylock},
	{\tt pthread_mutex_lock}
\end{apirel}


\api{pthread_self}{Return the thread identifier of the current thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto pthread_t pthread_self(void);
\end{apisyn}
\begin{apidesc}
	Return the thread identifier of the current thread.
\end{apidesc}
\begin{apiret}
	Returns the thread identifier.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}
\end{apirel}


\api{pthread_setschedparam}{Set the scheduling parameters for a thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int pthread_setschedparam(pthread_t tid,
                                             int policy,
                                             const struct sched_param *param);
\end{apisyn}
\begin{apidesc}
	Change the scheduling parameters for a thread. The thread's
	scheduling policy and priority are changed. If the change causes a
	thread to have a higher priority than the currently running thread,
	a reschedule operation is performed.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread identifier of the thread whose scheduling
		parameters should be changed.
	\item[policy]
		The new scheduling policy, as defined in {\tt pthread.h}
	\item[param]
		A pointer to the {\tt sched_param_t} object representing
		the new scheduling parameters.
\end{apiparm}
\begin{apiret}
	Returns zero on success. EINVAL if {\tt tid} specifies an invalid
	thread or {\tt policy} specifies an invalid policy.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt sched_yield}, {\tt	pthread_setprio}
\end{apirel}

\api{pthread_sigmask}{examine and change blocked signals}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}
	\\
	\cinclude{signal.h}

	\funcproto int pthread_sigmask(int how,
				const sigset_t *set,
				\outparam sigset_t *oset);
\end{apisyn}
\begin{apidesc}
	Examine or change the per-thread signal mask. This function
	operates identically to the \posix{} function \texttt{sigprocmask},
	but on the current thread.
\end{apidesc}
\begin{apiparm}
	\item[how]
		One of SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK.
	\item[set]
		If not a null pointer, a pointer to the new signal set.
	\item[oset]
		If not a null pointer, a pointer to where the old signal
		set should be stored.
\end{apiparm}
\begin{apiret}
	Returns zero on success. No errors are reported.
\end{apiret}
\begin{apirel}
	{\tt pthread_kill} {\tt sigprocmask}
\end{apirel}

\api{pthread_kill}{send a signal to a thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}
	\\
	\cinclude{signal.h}

	\funcproto int pthread_kill(pthread_t tid, int sig);
\end{apisyn}
\begin{apidesc}
	Send a signal to a specific thread.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread to send the signal to.
	\item[sig]
		The signal to send.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_sigmask}
\end{apirel}

\api{sched_yield}{Yield the processor}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void sched_yield(void);
\end{apisyn}
\begin{apidesc}
	The calling thread voluntarily yields the processor. The highest
	priority thread is chosen for execution.
\end{apidesc}
\begin{apirel}
	{\tt pthread_setprio}, {\tt pthread_setschedparam}
\end{apirel}


\section{Oskit API Extensions}

The following functions are extensions to the \posix{} threads API, and
should be considered extremely non-portable. They are included in the
API as a convenience.

\api{oskit_pthread_sleep}{Sleep for an interval of time}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int oskit_pthread_sleep(oskit_s64_t milliseconds);
\end{apisyn}
\begin{apidesc}
	The calling thread is put to sleep for the number of milliseconds
	specified. The thread will be woken up after the elapsed time, and
	will return ETIMEDOUT. If the timeout is zero, the thread is put to
	sleep forever. The thread may be woken up early, using the
	\texttt{oskit_pthread_wakeup} function, in which case the return
	value is zero.
\end{apidesc}
\begin{apiparm}
	\item[milliseconds]
		The number of milliseconds the thread should sleep for.
\end{apiparm}
\begin{apiret}
	Returns ETIMEDOUT if the timeout expires, or zero if the thread is
	woken up early.
\end{apiret}
\begin{apirel}
	{\tt oskit_pthread_wakeup}
\end{apirel}

\api{oskit_pthread_wakeup}{Wakeup a thread in \texttt{oskit_pthread_sleep}}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int oskit_pthread_wakeup(pthread_t tid);
\end{apisyn}
\begin{apidesc}
	Wakeup a thread that is sleeping in \texttt{oskit_pthread_sleep},
	causing it to return from its sleep before the timeout expires.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread to wakeup.
\end{apiparm}
\begin{apiret}
	Returns zero on success. EINVAL if {\tt tid} specifies an invalid
	thread or the current thread.
\end{apiret}
\begin{apirel}
	{\tt oskit_pthread_sleep}
\end{apirel}

\api{oskit_pthread_setprio}{Change the priority of a thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto int oskit_pthread_setprio(pthread_t tid, int newpri);
\end{apisyn}
\begin{apidesc}
	Change the priority of a thread. If the change causes a thread to
	have a higher priority than the currently running thread, a
	reschedule operation is performed.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The thread identifier of the thread whose priority should
		be changed.
	\item[newpri]
		The new priority, which must be from PRIORITY_MIN to
		PRIORITY_MAX.
\end{apiparm}
\begin{apiret}
	Returns zero on success. EINVAL if {\tt tid} specifies an invalid
	thread or {\tt newpri} specifies an invalid priority.
\end{apiret}
\begin{apirel}
	{\tt pthread_create}, {\tt sched_yield}, {\tt
	pthread_setschedparam}
\end{apirel}



\api{osenv_process_lock}{Lock the process lock}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void osenv_process_lock(void);
\end{apisyn}
\begin{apidesc}
	Attempt to lock the process lock. If the lock cannot be immediately
	granted, the thread is put to sleep until it can be. The process
	lock is provided so that the client operating system can protect
	the device driver framework from concurrent execution. It is
	expected than any entry into the device framework will first take
	the process lock. If the thread executing inside the device driver
	framework blocks by calling {\tt osenv_sleep}, the process lock
	will be released so that another thread may enter it safely. When
	the thread is woken up later, it will take the process lock again
	before returning from the sleep.

	Attempts to recursively lock the process lock will result in a
	panic. This is intended as a debugging measure to prevent
	indiscriminate nesting of components that try to take the lock.
\end{apidesc}
\begin{apirel}
	{\tt osenv_process_unlock}, {\tt osenv_sleep}, {\tt osenv_wakeup}
\end{apirel}

\api{osenv_process_unlock}{Unlock the process lock}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}

	\funcproto void osenv_process_unlock(void);
\end{apisyn}
\begin{apidesc}
	Release the process lock. If another thread is waiting to lock the
	process lock, it will be woken up. The process lock is provided so
	that the client operating system can protect the device driver
	framework from concurrent execution.
\end{apidesc}
\begin{apirel}
	{\tt osenv_process_lock}, {\tt osenv_sleep}, {\tt osenv_wakeup}
\end{apirel}


\section{Thread-safe Adaptors}
\label{pthread-wrappers}

To facilitate the use of the device driver framework within a multithreaded
client operating system, a number of {\em adaptors} are provided. An
adaptor acts as COM interface wrapper on another COM interface. Adaptors
are intended to provide thread-safety with respect to the device driver
framework. The thread system is expected to provide an implementation of a
{\em process lock} that is used to prevent concurrent execution inside the
device driver framework. An adaptor method simply takes the process lock,
calls the appropriate method in the underlying COM interface, and then
releases the process lock when the method returns. If a thread blocks
inside a device driver ({\tt osenv_sleep}), the process lock is
released at that time, allowing another thread to enter the driver set.
When the original thread is woken up, it will reacquire the process lock
before being allowed to return from the sleep. Thus, only one thread is
allowed to operate inside the driver set at a time.

Implementationally, an adaptor is a COM interface that maintains a
reference to the original, non thread-safe COM interface. Operations using
the adaptor behave just like the original, invoking the corresponding
method in the original. It should be noted that the query, addref, and
release methods all operate on the adaptor itself. When the last reference
to an adaptor is released, the reference to the underlying COM interface is
released. As an example, consider the {\tt oskit_dir_t} adaptor as it is
used when mounting the root filesystem in a multithreaded client operating
system. In order to provide a thread-safe implementation to the C library,
the root directory that is passed to {\tt fs_init} is first wrapped up in a
thread-safe adaptor. All subsequent references to the corresponding
filesystem go through the adaptor, and are thus thread-safe. A sample code
fragment follows:

\begin{codefrag}
\footnotesize
\begin{verbatim}
#include <oskit/c/fs.h>
#include <oskit/com/wrapper.h>
#include <oskit/threads/pthread.h>

oskit_error_t
mountroot(oskit_dir_t *fsroot)
{
    oskit_dir_t    *wrappedroot;
    oskit_error_t  err;

    rc = oskit_wrap_dir(fsroot,
                (void (*)(void *))osenv_process_lock, 
                (void (*)(void *))osenv_process_unlock,
                0, &wrappedroot);
    if (rc)
        return rc;

    /* Don't need the root anymore, the wrapper has a ref. */
    oskit_dir_release(fsroot);

    return fs_init(wrappedroot);
}
\end{verbatim}
\end{codefrag}

The adaptor prototypes are found in \texttt{<oskit/com/wrapper.h>}, and have a
common format. Each one takes the COM interface to be wrapped up, and
returns the adaptor. Additional arguments are the process lock and unlock
routines, as well as an optional cookie to be passed to the lock and unlock
routines. It should be noted that the process lock is specific to the
thread implementation, and thus the adaptor interface is intended to be as
generic as possible. For the {\tt pthread} interface, the process lock does
not need a cookie value.

\api{oskit_wrap_socket}{Wrap an {\tt oskit_socket} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_socket(struct oskit_socket *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_socket **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_socket} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_socket} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_socket} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_stream}{Wrap an {\tt oskit_stream} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_stream(struct oskit_stream *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_stream **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_stream} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_stream} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_asyncio}{Wrap an {\tt oskit_asyncio} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_asyncio(struct oskit_asyncio *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_asyncio **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_asyncio} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_asyncio} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_sockio}{Wrap an {\tt oskit_sockio} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_sockio(struct oskit_sockio *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_sockio **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_sockio} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_sockio} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_posixio}{Wrap an {\tt oskit_posixio} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_posixio(struct oskit_posixio *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_posixio **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_posixio} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_posixio} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_file}{Wrap an {\tt oskit_file} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_file(struct oskit_file *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_file **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_file} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_file} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_dir}{Wrap an {\tt oskit_dir} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_dir(struct oskit_dir *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_dir **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_dir} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_dir} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_filesystem}{Wrap an {\tt oskit_filesystem} in a thread-safe
                            adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_filesystem(struct oskit_filesystem *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_filesystem **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_filesystem} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_filesystem} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_openfile}{Wrap an {\tt oskit_openfile} in a thread-safe
                          adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_openfile(struct oskit_openfile *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_openfile **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_dir} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_openfile} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_openfile} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_blkio}{Wrap an {\tt oskit_blkio} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_blkio(struct oskit_blkio *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_blkio **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_blkio} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_blkio} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_blkio} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_wrap_absio}{Wrap an {\tt oskit_absio} in a thread-safe adaptor}
\begin{apisyn}
	\cinclude{oskit/com/wrapper.h}

	\funcproto oskit_error_t
	oskit_wrap_absio(struct oskit_absio *in, 
		void (*lock)(void *), 
		void (*unlock)(void *),
		void *cookie,
		struct oskit_absio **out);
\end{apisyn}
\begin{apidesc}
	Create and return an {\tt oskit_absio} thread-safe adaptor.
\end{apidesc}
\begin{apiparm}
	\item[in]
		The {\tt oskit_absio} COM interface to be wrapped.
	\item[lock]
		The process lock routine.
	\item[unlock]
		The process unlock routine.
	\item[cookie]
		A cookie to be passed to the lock and unlock routines.
	\item[out]
		The {\tt oskit_absio} adaptor COM interface.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\section{InterThread Communication}
\label{pthread-ipc}

This section describes the ``interthread'' communication primitives
provided by the pthread library. 

\api{oskit_ipc_send}{Send a message to another thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/ipc.h}

	\funcproto oskit_error_t
	oskit_ipc_send(pthread_t dst,
		       void *msg, oskit_size_t msg_size, oskit_s32_t timeout);
\end{apisyn}
\begin{apidesc}
	Send a message to another thread. The destination thread is specified
	by its {\tt pthread_t}. The sending thread blocks until the receiving
	thread notices the message and actually initiates a receive
	operation for it. Control returns to the caller only when the
	receiver has initiated the receive.

	The timeout value is currently ignored.
\end{apidesc}
\begin{apiparm}
	\item[dst]
		The {\tt pthread_t} of the destination thread.
	\item[msg]
		The message buffer.
	\item[msg_size]
		The size of the message, in bytes.
	\item[timeout]
		A timeout value. Currently ignored.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_ipc_recv}{Receive a message from a specific thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/ipc.h}

	\funcproto oskit_error_t
	oskit_ipc_recv(pthread_t src,
		       void *msg, oskit_size_t msg_size, oskit_size_t *actual,
		       oskit_s32_t timeout);
\end{apisyn}
\begin{apidesc}
	Receive a message from another thread. The sending thread is
	specified by its {\tt pthread_t}. If the specified sending thread
	has not attempted to send a message to current thread, the thread
	is blocked until such time as the sender initiates a send operation
	to the current thread. However, if the sender is blocked trying to
	send a message to the current thread, the message is immediately
	received and the sender is woken up.

	The timeout value is either zero or non-zero. A zero value means do
	not wait, but simply check to see if a message from the sender is
	pending. A non-zero value means wait forever.
\end{apidesc}
\begin{apiparm}
	\item[src]
		The {\tt pthread_t} of the sending thread.
	\item[msg]
		The message buffer.
	\item[msg_size]
		The size of the message buffer, in bytes.
	\item[actual]
		The location in which to place the number of bytes received.
	\item[timeout]
		A timeout value. Currently only zero and non-zero values
		are legal. zero means no wait, non-zero means wait forever.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_ipc_wait}{Receive a message from any thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/ipc.h}

	\funcproto oskit_error_t
	oskit_ipc_wait(pthread_t *src,
		       void *msg, oskit_size_t msg_size, oskit_size_t *actual,
		       oskit_s32_t timeout);
\end{apisyn}
\begin{apidesc}
	This function operates identically to {\tt oskit_ipc_recv}, except
	that the sending thread does not need to be a specific thread. The
	first thread that attempts to send to the current thread will
	succeed. The {\tt pthread_t} of that thread is returned to the
	caller in {\tt src}.
\end{apidesc}
\begin{apiparm}
	\item[src]
		The location in which to place the {\tt pthread_t} of the
		sending thread. 
	\item[msg]
		The message buffer.
	\item[msg_size]
		The size of the message buffer, in bytes.
	\item[actual]
		The location in which to place the number of bytes received.
	\item[timeout]
		A timeout value. Currently only zero and non-zero values
		are legal. zero means no wait, non-zero means wait forever.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_ipc_call}{make a synchronous IPC call to another thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/ipc.h}

	\funcproto oskit_error_t
	oskit_ipc_call(pthread_t dst,
		       void *sendmsg, oskit_size_t sendmsg_size,
		       void *recvmsg, oskit_size_t recvmsg_size,
		       oskit_size_t *actual, oskit_s32_t timeout);
\end{apisyn}
\begin{apidesc}
	Make a synchronous IPC call to another thread, and wait for a
	reply. The destination thread is specified by its {\tt pthread_t}.
	The sending thread is blocked until the receiving thread replies to
	the IPC using {\tt oskit_ipc_reply}. The send buffer and the reply
	buffer are specified separately, with the actual number bytes
	contained in the reply returned in the location pointed to by {\tt
	actual}.
\end{apidesc}
\begin{apiparm}
	\item[dst]
		The {\tt pthread_t} of the destination thread.
	\item[sendmsg]
		The message buffer to send. 
	\item[sendmsg_size]
		The size of the send message buffer, in bytes.
	\item[recvmsg]
		The message receive buffer.
	\item[recvmsg_size]
		The size of the receive message buffer, in bytes.
	\item[actual]
		The location in which to place the number of bytes
		contained in the reply message.
	\item[timeout]
		A timeout value. Currently ignored.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{oskit_ipc_reply}{reply to a synchronous IPC invocation}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/ipc.h}

	\funcproto oskit_error_t
	oskit_ipc_reply(pthread_t src, void *msg, oskit_size_t msg_size);
\end{apisyn}
\begin{apidesc}
	Reply to a synchronous IPC invocation made with {\tt
	oskit_ipc_call}. The destination thread is specified by its {\tt
	pthread_t}, and it must be blocked in a call operation, waiting for
	the reply message. If the destination thread is canceled before the
	reply is made, this call with return OSKIT_ECANCELED.
\end{apidesc}
\begin{apiparm}
	\item[dst]
		The {\tt pthread_t} of the destination thread.
	\item[msg]
		The message buffer.
	\item[msg_size]
		The size of the message, in bytes.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\section{CPU Inheritance Framework}
\label{cpuinherit}

The {\em CPU Inheritance} framework is a novel processor scheduling system
that allows arbitrary threads to act as schedulers for other threads. When
the C preprocessor symbol \texttt{CPU_INHERIT} is defined, the default
\posix{} scheduler is replaced by a CPU inheritance support module, plus a
number of example schedulers that demonstrate how to write an application
level scheduler using the \oskit{} provided CPU inheritance interface.  The
primary advantage of CPU inheritance scheduling is that widely different
scheduling policies can be implemented, and yet still function properly
together. Additionally, CPU inheritance scheduling neatly addresses the
problem of priority inversion by providing a general interface for
priority inheritance that can be used by either scheduler threads or
arbitrary application threads. In the sections that follow, the CPU
inheritance interface functions are described. The reader is encouraged to
look at the example schedulers in {\tt threads/cpuinherit}.


\api{pthread_sched_become_scheduler}{Become an application level scheduler}

\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto void	pthread_sched_become_scheduler(void);
\end{apisyn}
\begin{apidesc}
	Inform the CPU inheritance framework that the current thread is an
	application level scheduler. Certain initializations are performed
	that allow the current thread to donate its own CPU resources to
	other threads, and to receive scheduling messages regarding threads
	under its controls. Once this call is performed, the thread will
	generally enter a loop waiting for scheduling messages to inform it
	of new threads that it needs to schedule, or changes in the status
	of threads already under its control. For example, when a thread
	blocked on a mutex finally takes the mutex, an {\em unblock}
	message will be sent to that thread's scheduler informing it that
	the thread in question should now be run.
\end{apidesc}


\api{pthread_sched_donate_wait_recv}{Donate CPU time to a thread}
\label{sched-donate-wait-recv}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int pthread_sched_donate_wait_recv(pthread_t tid,
			sched_wakecond_t wakecond, schedmsg_t *msg,
			oskit_s32_t timeout);
\end{apisyn}
\begin{apidesc}
	Donate CPU time to a target thread whose pthread identifier is {\tt
	tid}. The donation will terminate when the thread gives up the CPU,
	or when the \texttt{timeout} value is reached. In this way, a
	scheduler can implement preemptive scheduling by allowing each
	thread to run for a maximum time value, at which time control
	returns to the dontating scheduler.

	The \texttt{wakecond} flag specifies under which circumstances
	control should be returned to the scheduler when the target thread
	blocks. There are currently just two values allowed:
	\begin{icsymlist}
	\item[WAKEUP_ON_BLOCK] Control returns to the scheduler whenever
	the target thread blocks or otherwise gives up the CPU. This allows
	the scheduler to make a new scheduling decision.

	\item[WAKEUP_ON_SWITCH] Control returns to the scheduler's
	scheduler whenever the target thread blocks or otherwise gives up
	the CPU. This is typically used when a scheduler has just one
	thread to schedule, and is not interested in when the target thread
	blocks or unblocks, but only when some other thread wakes up,
	requiring an actual scheduling decision to be made.
	\end{icsymlist}

	The return value indicates how the donation was terminated, and is
	one of the following constants. Its is up to the scheduler to
	determine the course of action. For example, a donation that
	returns a \texttt{SCHEDULE_YIELDED} would typically result in the
	target thread being placed back on the scheduler's run queue so
	that it will be run at some later point.
	\begin{icsymlist}
	\item[SCHEDULE_NOTREADY] The target thread is not ready to receive
	the donation, perhaps because the target thread is blocked.

	\item[SCHEDULE_BLOCKED] The target thread ran and then blocked for
	some reason. The thread should not be run until the scheduler
	receives an \texttt{MSG_SCHED_UNBLOCK} message for the target
	thread.

	\item[SCHEDULE_YIELDED] The target thread ran and then voluntarily
	gave up the CPU. The thread will typically be placed back on the
	run queue for that scheduler.

	\item[SCHEDULE_PREEMPTED] The target thread ran and was then
	preempted by the threads system. The thread will typically be
	placed back on the run queue for that scheduler.

	\item[SCHEDULE_TIMEDOUT] The target thread ran until the
	\texttt{timeout} expired, and was then preempted so that the
	scheduler may pick another thread to run. The thread will typically
	be placed back on the run queue for that scheduler.

	\item[SCHEDULE_MSGRECV] This constant is bitwise or'ed into the
	result value whenever a thread donation terminates and a scheduling
	message was returned in the message block pointed to by
	\texttt{msg}. The scheduler will need to take appropriate action
	based on the both the return value of the donation, and the
	contents of the message. 
	\end{icsymlist}

	Upon return from the donation, it is possible that a scheduling
	message will also be ready. Rather than have the scheduler invoke a
	separate message operation to retrieve the message, the message
	reception operation is combined with the donation. This is
	indicated in the return value when the \texttt{SCHEDULE_MSGRECV}
	bit is set. The format of the message is as follows:

	\begin{codefrag}
	\begin{verbatim}
        typedef struct schedmsg {
	        schedmsg_types_t        type;	
                pthread_t               tid;	
                oskit_u32_t             opaque;	
                oskit_u32_t             opaque2;
        } schedmsg_t;
	\end{verbatim}
	\end{codefrag}

	The message refers to the thread identifed by \texttt{tid}, while
	\texttt{opaque} and \texttt{opaque2} are message specific values.
	Only some message types have associated message values (described
	below).  The message types are as follows:

	\begin{icsymlist}
	\item[MSG_SCHED_NEWTHREAD] A new thread was created for the current
	scheduler. The scheduler for a thread is specified using the thread
	attributes and the texttt{pthread_attr_setscheduler} routine. Once
	the thread is created and ready to be scheduled, a message is sent
	to the specified scheduler so that it may set up the necessary data
	structures, and add the new thread to its run queue. The thread id
	of the new thread is given by the \texttt{tid} field of the
	message. Depending on the scheduler, the \texttt{opaque} and
	\texttt{opaque2} fields may also be valid. 

	\item[MSG_SCHED_UNBLOCK] The thread specified by the \texttt{tid}
	field of the message has been unblocked. The scheduler will
	typically add the thread to its internal run queue so that it will
	be run again. 

	\item[MSG_SCHED_SETSTATE] Alter the scheduling parameters for the
	thread specified by the \texttt{tid} field. This message is sent as
	a result of the application calling \texttt{pthread_sched_setstate}. 
        The \texttt{opaque} and	\texttt{opaque2} fields are obviously
        specific to the scheduler.

	\item[MSG_SCHED_EXITED] The thread specified by the \texttt{tid}
	field of the message has called \texttt{pthread_exit}. The scheduler
	will typically remove the thread from its internal data structures
	and free any associated resources. 
	\end{icsymlist}
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The {\tt pthread_t} of the thread to donate to.
	\item[wakecond]
		The wakeup condition.
	\item[msg]
		A message buffer in which to place a message if one is
		available when the donation ends.
	\item[timeout]
		A timeout value, in milliseconds. The donation will be
		terminated after the time has elapsed.
\end{apiparm}
\begin{apiret}
	The return values are described above.
\end{apiret}
\begin{apirel}
	{\tt pthread_sched_setstate}, {\tt pthread_attr_setscheduler}
\end{apirel}


\api{pthread_sched_message_recv}{Scheduling message receive}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto oskit_error_t pthread_sched_message_recv(schedmsg_t *msg,
			oskit_s32_t timeout);
\end{apisyn}
\begin{apidesc}
	Initiate a scheduling message receive operation. If there are any
	scheduling messages queued on the scheduler's message queue, the
	first message will be dequeued and copied into the message buffer
	pointed to by \texttt{msg}. The format of the message is described
	in Section \ref{sched-donate-wait-recv}. If \texttt{timeout} is
	zero, and no message is ready for delivery, the call will return
	immediately with the error value \texttt{OSKIT_EAGAIN}. If timeout
	is \em{any non-zero} value, the caller will block until a message
	is available. A future release will allow the specification of an
	actual timeout value.
\end{apidesc}
\begin{apiparm}
	\item[msg]
		A message buffer in which to place a message if one is
		available.
	\item[timeout]
		A timeout value, in milliseconds. 
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or \texttt{OSKIT_EAGAIN} if the caller
	specified a non-blocking receive and no message was available.
\end{apiret}
\begin{apirel}
	{\tt pthread_sched_donate_wait_recv}
\end{apirel}


\api{pthread_sched_setstate}{Set the scheduling parameters for a thread}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int	pthread_sched_setstate(pthread_t tid, int opaque);
\end{apisyn}
\begin{apidesc}
	Change the scheduling parameter for the thread specified by
	\texttt{tid}. An scheduler specific \texttt{opaque} value should be
	passed, which is then sent via a scheduling message to the message
	queue of the scheduler responsible for the given thread. This
	interface routine is entirely ad-hoc, and is intended to be used
	until something better is formulated.
\end{apidesc}
\begin{apiparm}
	\item[tid]
		The {\tt pthread_t} of the thread to donate to.
	\item[opaque]
		An opaque value that hopefully makes sense to the thread's
		scheduler. 
\end{apiparm}
\begin{apiret}
	Always returns zero.
\end{apiret}


\api{pthread_cond_donate_wait}{Timed condition wait with CPU donation}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int pthread_cond_donate_wait(pthread_cond_t *c,
		pthread_mutex_t *m, oskit_timespec_t *abstime,
		pthread_t donee_tid);
\end{apisyn}
\begin{apidesc}
	The current thread is made to wait until the condition variable is
	signaled or broadcast, or until the timeout expires. The mutex is
	released prior to waiting, and reacquired before returning. The
	timeout is given as an absolute time in the future that bounds the
	wait.

	In addition to the normal operation for timed conditional wait, the
	caller specifies a thread to which the current thread's CPU time
	should be donated. This allows a thread to wait on a condition, but
	specify that any CPU time that it would have received is donated to
	thread \texttt{donee_tid}.
\end{apidesc}
\begin{apiparm}
	\item[cond]
		A pointer to the condition variable object.
	\item[mutex]
		A pointer to the mutex object.
	\item[abstime]
		A pointer to an oskit_timespec structure.
	\item[donee_tid]
		The \texttt{pthread_t} of the thread to which the current
		thread's CPU time should be donated. 
\end{apiparm}
\begin{apiret}
	Returns zero on success. Returns ETIMEDOUT if the timeout expires.
\end{apiret}


\api{pthread_attr_setscheduler}{Set the scheduler in a thread
					attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int pthread_attr_setscheduler(pthread_attr_t *attr,
			pthread_t tid);
\end{apisyn}
\begin{apidesc}
	Set the scheduler thread in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. Any thread
	created with the given attributes object will have it's scheduler
	thread set to \texttt{tid}. The caller can thus set up an arbitrary
	scheduler and thread hierarchy by using this routine. 
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[tid]
		The \texttt{pthread_t} of the thread that will function as
		the scheduler for new threads.
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_attr_setopaque}
\end{apirel}


\api{pthread_attr_setopaque}{Set the scheduling parameter in a thread
				attributes object}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int pthread_attr_setopaque(pthread_attr_t *attr,
			oskit_u32_t opaque);
\end{apisyn}
\begin{apidesc}
	Set the scheduling parameter in a previously initialized threads
	attribute object, for use with {\tt pthread_create}. This opaque
	value will be passed to the thread's scheduler in the initial
	\texttt{MSG_SCHED_NEWTHREAD} message, after the thread is created
	and ready to be scheduled. The opaque value should make sense to
	the scheduler selected with \texttt{pthread_attr_setscheduler}.
\end{apidesc}
\begin{apiparm}
	\item[attr]
		A pointer to the {\tt pthread_attr_t} object
		representing the attributes for a thread creation.
	\item[opaque]
		An opaque value that hopefully makes sense to the scheduler. 
\end{apiparm}
\begin{apiret}
	Returns zero on success.
\end{apiret}
\begin{apirel}
	{\tt pthread_attr_setscheduler}
\end{apirel}

\subsection{Example Schedulers}
This section briefly describes a number of sample schedulers that are
provided as examples of how to use the CPU Inheritance framework.

\api{create_fixedpri_scheduler}{Create a fixed priority scheduler}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int create_fixedpri_scheduler(pthread_t *tid,
			const pthread_attr_t *attr, int preemptible);
\end{apisyn}
\begin{apidesc}
	Create a new {\em Fixed Priority} scheduler. The \texttt{pthread_t}
	of the new scheduler is returned in \texttt{tid}. The attributes
	structure to use when creating the new thread is \texttt{attr}. The
	\texttt{preemptible} flag indicates whether the new scheduler
	should use time-based preemption to achieve fairness.  Aside from
	the usual attributes that can be specified, the caller may also
	specify the new scheduler's scheduler by using
	\texttt{pthread_attr_setscheduler}. Thus, the caller can set up an
	arbitrary hierarchy of schedulers and threads.

	This fixed priority scheduler roughly corresponds to the \posix{}
	pthread scheduler, and implements both FIFO and round robin
	policies. The standard pthread scheduling interface routines may be
	used when altering the scheduling parameters for threads that are
	scheduled by this scheduler. 
\end{apidesc}
\begin{apiparm}
	\item[tid]
		A pointer to the location where the thread id of the new
		scheduler should be stored. 
	\item[attr]
		A pointer to the thread creation attributes object.
	\item[preemptible]
		A flag indicating whether the new scheduler should use
		time-based preemption.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{create_lotto_scheduler}{Create a lottery scheduler}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int create_lotto_scheduler(pthread_t *tid,
			const pthread_attr_t *attr, int preemptible);
\end{apisyn}
\begin{apidesc}
	Create a new {\em Lottery} scheduler. The \texttt{pthread_t}
	of the new scheduler is returned in \texttt{tid}. The attributes
	structure to use when creating the new thread is \texttt{attr}. The
	\texttt{preemptible} flag indicates whether the new scheduler
	should use time-based preemption to achieve fairness.  Aside from
	the usual attributes that can be specified, the caller may also
	specify the new scheduler's scheduler by using
	\texttt{pthread_attr_setscheduler}. Thus, the caller can set up an
	arbitrary hierarchy of schedulers and threads.

	When creating threads that are scheduled by a Lottery scheduler,
	the caller should set the opaque scheduling parameter in the thread
	creation attributes structure. This opaque value represents a
	{\em ticket} value, and should be an integer (usually a small to
	moderately sized integer). As with any Lottery scheduler, the
	larger the ticket value, the more CPU a thread is likely to
	receive. 
\end{apidesc}
\begin{apiparm}
	\item[tid]
		A pointer to the location where the thread id of the new
		scheduler should be stored. 
	\item[attr]
		A pointer to the thread creation attributes object.
	\item[preemptible]
		A flag indicating whether the new scheduler should use
		time-based preemption.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{create_stride_scheduler}{Create a Stride scheduler}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int create_stride_scheduler(pthread_t *tid,
			const pthread_attr_t *attr, int preemptible);
\end{apisyn}
\begin{apidesc}
	Create a new {\em Stride} scheduler. The \texttt{pthread_t}
	of the new scheduler is returned in \texttt{tid}. The attributes
	structure to use when creating the new thread is \texttt{attr}. The
	\texttt{preemptible} flag indicates whether the new scheduler
	should use time-based preemption to achieve fairness.  Aside from
	the usual attributes that can be specified, the caller may also
	specify the new scheduler's scheduler by using
	\texttt{pthread_attr_setscheduler}. Thus, the caller can set up an
	arbitrary hierarchy of schedulers and threads.

	When creating threads that are scheduled by a Stride scheduler,
	the caller should set the opaque scheduling parameter in the thread
	creation attributes structure. This opaque value represents a
	{\em ticket} value, and should be an integer (usually a small to
	moderately sized integer). As with any Stride scheduler, the
	larger the ticket value, the more CPU a thread is likely to
	receive. 
\end{apidesc}
\begin{apiparm}
	\item[tid]
		A pointer to the location where the thread id of the new
		scheduler should be stored. 
	\item[attr]
		A pointer to the thread creation attributes object.
	\item[preemptible]
		A flag indicating whether the new scheduler should use
		time-based preemption.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}


\api{create_ratemono_scheduler}{Create a Rate Monotonic scheduler}
\begin{apisyn}
	\cinclude{oskit/threads/pthread.h}\\
	\cinclude{oskit/threads/cpuinherit.h}

	\funcproto int create_ratemono_scheduler(pthread_t *tid,
			const pthread_attr_t *attr, int preemptible);
\end{apisyn}
\begin{apidesc}
	Create a new {\em Rate Monotonic} scheduler. The \texttt{pthread_t}
	of the new scheduler is returned in \texttt{tid}. The attributes
	structure to use when creating the new thread is \texttt{attr}. The
	\texttt{preemptible} flag indicates whether the new scheduler
	should use time-based preemption to achieve fairness.  Aside from
	the usual attributes that can be specified, the caller may also
	specify the new scheduler's scheduler by using
	\texttt{pthread_attr_setscheduler}. Thus, the caller can set up an
	arbitrary hierarchy of schedulers and threads.

	When creating threads that are scheduled by a Rate Monotonic
	scheduler, the caller should set the opaque scheduling parameter in
	the thread creation attributes structure. This opaque value
	represents a {\em period}, and is used to create the ordered
	scheduling list. It should be an integer (usually a small to
	moderately sized integer).

	{\em Note that this rate monotonic scheduler is extremely
	simplified, and should be considered strictly as an example of how
	to write a scheduler; it does not implement a proper Rate Monotonic
	scheduling policy.}
\end{apidesc}
\begin{apiparm}
	\item[tid]
		A pointer to the location where the thread id of the new
		scheduler should be stored. 
	\item[attr]
		A pointer to the thread creation attributes object.
	\item[preemptible]
		A flag indicating whether the new scheduler should use
		time-based preemption.
\end{apiparm}
\begin{apiret}
	Returns 0 on success, or an error code specified in
	{\tt <oskit/error.h>}, on error.
\end{apiret}