1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
// (For the moment, we'll implement a few local operators for this complex class - one
// day we'll probably either have a juce complex class, or use the C++11 one)
static FFT::Complex operator+ (FFT::Complex a, FFT::Complex b) noexcept { FFT::Complex c = { a.r + b.r, a.i + b.i }; return c; }
static FFT::Complex operator- (FFT::Complex a, FFT::Complex b) noexcept { FFT::Complex c = { a.r - b.r, a.i - b.i }; return c; }
static FFT::Complex operator* (FFT::Complex a, FFT::Complex b) noexcept { FFT::Complex c = { a.r * b.r - a.i * b.i, a.r * b.i + a.i * b.r }; return c; }
static FFT::Complex& operator+= (FFT::Complex& a, FFT::Complex b) noexcept { a.r += b.r; a.i += b.i; return a; }
//==============================================================================
struct FFT::FFTConfig
{
FFTConfig (int sizeOfFFT, bool isInverse)
: fftSize (sizeOfFFT), inverse (isInverse), twiddleTable ((size_t) sizeOfFFT)
{
for (int i = 0; i < fftSize; ++i)
{
const double phase = (isInverse ? 2.0 : -2.0) * double_Pi * i / fftSize;
twiddleTable[i].r = (float) cos (phase);
twiddleTable[i].i = (float) sin (phase);
}
const int root = (int) std::sqrt ((double) fftSize);
int divisor = 4, n = fftSize;
for (int i = 0; i < numElementsInArray (factors); ++i)
{
while ((n % divisor) != 0)
{
if (divisor == 2) divisor = 3;
else if (divisor == 4) divisor = 2;
else divisor += 2;
if (divisor > root)
divisor = n;
}
n /= divisor;
jassert (divisor == 1 || divisor == 2 || divisor == 4);
factors[i].radix = divisor;
factors[i].length = n;
}
}
void perform (const Complex* input, Complex* output) const noexcept
{
perform (input, output, 1, 1, factors);
}
const int fftSize;
const bool inverse;
struct Factor { int radix, length; };
Factor factors[32];
HeapBlock<Complex> twiddleTable;
void perform (const Complex* input, Complex* output, const int stride, const int strideIn, const Factor* facs) const noexcept
{
const Factor factor (*facs++);
Complex* const originalOutput = output;
const Complex* const outputEnd = output + factor.radix * factor.length;
if (stride == 1 && factor.radix <= 5)
{
for (int i = 0; i < factor.radix; ++i)
perform (input + stride * strideIn * i, output + i * factor.length, stride * factor.radix, strideIn, facs);
butterfly (factor, output, stride);
return;
}
if (factor.length == 1)
{
do
{
*output++ = *input;
input += stride * strideIn;
}
while (output < outputEnd);
}
else
{
do
{
perform (input, output, stride * factor.radix, strideIn, facs);
input += stride * strideIn;
output += factor.length;
}
while (output < outputEnd);
}
butterfly (factor, originalOutput, stride);
}
void butterfly (const Factor factor, Complex* data, const int stride) const noexcept
{
switch (factor.radix)
{
case 1: break;
case 2: butterfly2 (data, stride, factor.length); return;
case 4: butterfly4 (data, stride, factor.length); return;
default: jassertfalse; break;
}
Complex* scratch = static_cast<Complex*> (alloca (sizeof (Complex) * (size_t) factor.radix));
for (int i = 0; i < factor.length; ++i)
{
for (int k = i, q1 = 0; q1 < factor.radix; ++q1)
{
scratch[q1] = data[k];
k += factor.length;
}
for (int k = i, q1 = 0; q1 < factor.radix; ++q1)
{
int twiddleIndex = 0;
data[k] = scratch[0];
for (int q = 1; q < factor.radix; ++q)
{
twiddleIndex += stride * k;
if (twiddleIndex >= fftSize)
twiddleIndex -= fftSize;
data[k] += scratch[q] * twiddleTable[twiddleIndex];
}
k += factor.length;
}
}
}
void butterfly2 (Complex* data, const int stride, const int length) const noexcept
{
Complex* dataEnd = data + length;
const Complex* tw = twiddleTable;
for (int i = length; --i >= 0;)
{
const Complex s (*dataEnd * *tw);
tw += stride;
*dataEnd++ = *data - s;
*data++ += s;
}
}
void butterfly4 (Complex* data, const int stride, const int length) const noexcept
{
const int lengthX2 = length * 2;
const int lengthX3 = length * 3;
const Complex* twiddle1 = twiddleTable;
const Complex* twiddle2 = twiddle1;
const Complex* twiddle3 = twiddle1;
for (int i = length; --i >= 0;)
{
const Complex s0 = data[length] * *twiddle1;
const Complex s1 = data[lengthX2] * *twiddle2;
const Complex s2 = data[lengthX3] * *twiddle3;
const Complex s3 = s0 + s2;
const Complex s4 = s0 - s2;
const Complex s5 = *data - s1;
*data += s1;
data[lengthX2] = *data - s3;
twiddle1 += stride;
twiddle2 += stride * 2;
twiddle3 += stride * 3;
*data += s3;
if (inverse)
{
data[length].r = s5.r - s4.i;
data[length].i = s5.i + s4.r;
data[lengthX3].r = s5.r + s4.i;
data[lengthX3].i = s5.i - s4.r;
}
else
{
data[length].r = s5.r + s4.i;
data[length].i = s5.i - s4.r;
data[lengthX3].r = s5.r - s4.i;
data[lengthX3].i = s5.i + s4.r;
}
++data;
}
}
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (FFTConfig)
};
//==============================================================================
FFT::FFT (int order, bool inverse) : config (new FFTConfig (1 << order, inverse)), size (1 << order) {}
FFT::~FFT() {}
void FFT::perform (const Complex* const input, Complex* const output) const noexcept
{
config->perform (input, output);
}
const size_t maxFFTScratchSpaceToAlloca = 256 * 1024;
void FFT::performRealOnlyForwardTransform (float* d) const noexcept
{
const size_t scratchSize = 16 + sizeof (FFT::Complex) * (size_t) size;
if (scratchSize < maxFFTScratchSpaceToAlloca)
{
performRealOnlyForwardTransform (static_cast<Complex*> (alloca (scratchSize)), d);
}
else
{
HeapBlock<char> heapSpace (scratchSize);
performRealOnlyForwardTransform (reinterpret_cast<Complex*> (heapSpace.getData()), d);
}
}
void FFT::performRealOnlyInverseTransform (float* d) const noexcept
{
const size_t scratchSize = 16 + sizeof (FFT::Complex) * (size_t) size;
if (scratchSize < maxFFTScratchSpaceToAlloca)
{
performRealOnlyInverseTransform (static_cast<Complex*> (alloca (scratchSize)), d);
}
else
{
HeapBlock<char> heapSpace (scratchSize);
performRealOnlyInverseTransform (reinterpret_cast<Complex*> (heapSpace.getData()), d);
}
}
void FFT::performRealOnlyForwardTransform (Complex* scratch, float* d) const noexcept
{
// This can only be called on an FFT object that was created to do forward transforms.
jassert (! config->inverse);
for (int i = 0; i < size; ++i)
{
scratch[i].r = d[i];
scratch[i].i = 0;
}
perform (scratch, reinterpret_cast<Complex*> (d));
}
void FFT::performRealOnlyInverseTransform (Complex* scratch, float* d) const noexcept
{
// This can only be called on an FFT object that was created to do inverse transforms.
jassert (config->inverse);
perform (reinterpret_cast<const Complex*> (d), scratch);
const float scaleFactor = 1.0f / size;
for (int i = 0; i < size; ++i)
{
d[i] = scratch[i].r * scaleFactor;
d[i + size] = scratch[i].i * scaleFactor;
}
}
void FFT::performFrequencyOnlyForwardTransform (float* d) const noexcept
{
performRealOnlyForwardTransform (d);
const int twiceSize = size * 2;
for (int i = 0; i < twiceSize; i += 2)
{
d[i / 2] = juce_hypot (d[i], d[i + 1]);
if (i >= size)
{
d[i] = 0;
d[i + 1] = 0;
}
}
}
|