File: juce_FFT.cpp

package info (click to toggle)
osmid 0.8.0~repack-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 5,960 kB
  • sloc: cpp: 69,544; ansic: 5,781; java: 3,000; sh: 41; makefile: 6
file content (303 lines) | stat: -rw-r--r-- 9,742 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*
  ==============================================================================

   This file is part of the JUCE library.
   Copyright (c) 2017 - ROLI Ltd.

   JUCE is an open source library subject to commercial or open-source
   licensing.

   The code included in this file is provided under the terms of the ISC license
   http://www.isc.org/downloads/software-support-policy/isc-license. Permission
   To use, copy, modify, and/or distribute this software for any purpose with or
   without fee is hereby granted provided that the above copyright notice and
   this permission notice appear in all copies.

   JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
   EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
   DISCLAIMED.

  ==============================================================================
*/

// (For the moment, we'll implement a few local operators for this complex class - one
// day we'll probably either have a juce complex class, or use the C++11 one)
static FFT::Complex operator+ (FFT::Complex a, FFT::Complex b) noexcept     { FFT::Complex c = { a.r + b.r, a.i + b.i }; return c; }
static FFT::Complex operator- (FFT::Complex a, FFT::Complex b) noexcept     { FFT::Complex c = { a.r - b.r, a.i - b.i }; return c; }
static FFT::Complex operator* (FFT::Complex a, FFT::Complex b) noexcept     { FFT::Complex c = { a.r * b.r - a.i * b.i, a.r * b.i + a.i * b.r }; return c; }
static FFT::Complex& operator+= (FFT::Complex& a, FFT::Complex b) noexcept  { a.r += b.r; a.i += b.i; return a; }

//==============================================================================
struct FFT::FFTConfig
{
    FFTConfig (int sizeOfFFT, bool isInverse)
        : fftSize (sizeOfFFT), inverse (isInverse), twiddleTable ((size_t) sizeOfFFT)
    {
        for (int i = 0; i < fftSize; ++i)
        {
            const double phase = (isInverse ? 2.0 : -2.0) * double_Pi * i / fftSize;
            twiddleTable[i].r = (float) cos (phase);
            twiddleTable[i].i = (float) sin (phase);
        }

        const int root = (int) std::sqrt ((double) fftSize);
        int divisor = 4, n = fftSize;

        for (int i = 0; i < numElementsInArray (factors); ++i)
        {
            while ((n % divisor) != 0)
            {
                if (divisor == 2)       divisor = 3;
                else if (divisor == 4)  divisor = 2;
                else                    divisor += 2;

                if (divisor > root)
                    divisor = n;
            }

            n /= divisor;

            jassert (divisor == 1 || divisor == 2 || divisor == 4);
            factors[i].radix = divisor;
            factors[i].length = n;
        }
    }

    void perform (const Complex* input, Complex* output) const noexcept
    {
        perform (input, output, 1, 1, factors);
    }

    const int fftSize;
    const bool inverse;

    struct Factor { int radix, length; };
    Factor factors[32];
    HeapBlock<Complex> twiddleTable;

    void perform (const Complex* input, Complex* output, const int stride, const int strideIn, const Factor* facs) const noexcept
    {
        const Factor factor (*facs++);
        Complex* const originalOutput = output;
        const Complex* const outputEnd = output + factor.radix * factor.length;

        if (stride == 1 && factor.radix <= 5)
        {
            for (int i = 0; i < factor.radix; ++i)
                perform (input + stride * strideIn * i, output + i * factor.length, stride * factor.radix, strideIn, facs);

            butterfly (factor, output, stride);
            return;
        }

        if (factor.length == 1)
        {
            do
            {
                *output++ = *input;
                input += stride * strideIn;
            }
            while (output < outputEnd);
        }
        else
        {
            do
            {
                perform (input, output, stride * factor.radix, strideIn, facs);
                input += stride * strideIn;
                output += factor.length;
            }
            while (output < outputEnd);
        }

        butterfly (factor, originalOutput, stride);
    }

    void butterfly (const Factor factor, Complex* data, const int stride) const noexcept
    {
        switch (factor.radix)
        {
            case 1:   break;
            case 2:   butterfly2 (data, stride, factor.length); return;
            case 4:   butterfly4 (data, stride, factor.length); return;
            default:  jassertfalse; break;
        }

        Complex* scratch = static_cast<Complex*> (alloca (sizeof (Complex) * (size_t) factor.radix));

        for (int i = 0; i < factor.length; ++i)
        {
            for (int k = i, q1 = 0; q1 < factor.radix; ++q1)
            {
                scratch[q1] = data[k];
                k += factor.length;
            }

            for (int k = i, q1 = 0; q1 < factor.radix; ++q1)
            {
                int twiddleIndex = 0;
                data[k] = scratch[0];

                for (int q = 1; q < factor.radix; ++q)
                {
                    twiddleIndex += stride * k;

                    if (twiddleIndex >= fftSize)
                        twiddleIndex -= fftSize;

                    data[k] += scratch[q] * twiddleTable[twiddleIndex];
                }

                k += factor.length;
            }
        }
    }

    void butterfly2 (Complex* data, const int stride, const int length) const noexcept
    {
        Complex* dataEnd = data + length;
        const Complex* tw = twiddleTable;

        for (int i = length; --i >= 0;)
        {
            const Complex s (*dataEnd * *tw);
            tw += stride;
            *dataEnd++ = *data - s;
            *data++ += s;
        }
    }

    void butterfly4 (Complex* data, const int stride, const int length) const noexcept
    {
        const int lengthX2 = length * 2;
        const int lengthX3 = length * 3;

        const Complex* twiddle1 = twiddleTable;
        const Complex* twiddle2 = twiddle1;
        const Complex* twiddle3 = twiddle1;

        for (int i = length; --i >= 0;)
        {
            const Complex s0 = data[length]   * *twiddle1;
            const Complex s1 = data[lengthX2] * *twiddle2;
            const Complex s2 = data[lengthX3] * *twiddle3;
            const Complex s3 = s0 + s2;
            const Complex s4 = s0 - s2;
            const Complex s5 = *data - s1;
            *data += s1;
            data[lengthX2] = *data - s3;
            twiddle1 += stride;
            twiddle2 += stride * 2;
            twiddle3 += stride * 3;
            *data += s3;

            if (inverse)
            {
                data[length].r   = s5.r - s4.i;
                data[length].i   = s5.i + s4.r;
                data[lengthX3].r = s5.r + s4.i;
                data[lengthX3].i = s5.i - s4.r;
            }
            else
            {
                data[length].r   = s5.r + s4.i;
                data[length].i   = s5.i - s4.r;
                data[lengthX3].r = s5.r - s4.i;
                data[lengthX3].i = s5.i + s4.r;
            }

            ++data;
        }
    }

    JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (FFTConfig)
};


//==============================================================================
FFT::FFT (int order, bool inverse)  : config (new FFTConfig (1 << order, inverse)), size (1 << order) {}
FFT::~FFT() {}

void FFT::perform (const Complex* const input, Complex* const output) const noexcept
{
    config->perform (input, output);
}

const size_t maxFFTScratchSpaceToAlloca = 256 * 1024;

void FFT::performRealOnlyForwardTransform (float* d) const noexcept
{
    const size_t scratchSize = 16 + sizeof (FFT::Complex) * (size_t) size;

    if (scratchSize < maxFFTScratchSpaceToAlloca)
    {
        performRealOnlyForwardTransform (static_cast<Complex*> (alloca (scratchSize)), d);
    }
    else
    {
        HeapBlock<char> heapSpace (scratchSize);
        performRealOnlyForwardTransform (reinterpret_cast<Complex*> (heapSpace.getData()), d);
    }
}

void FFT::performRealOnlyInverseTransform (float* d) const noexcept
{
    const size_t scratchSize = 16 + sizeof (FFT::Complex) * (size_t) size;

    if (scratchSize < maxFFTScratchSpaceToAlloca)
    {
        performRealOnlyInverseTransform (static_cast<Complex*> (alloca (scratchSize)), d);
    }
    else
    {
        HeapBlock<char> heapSpace (scratchSize);
        performRealOnlyInverseTransform (reinterpret_cast<Complex*> (heapSpace.getData()), d);
    }
}

void FFT::performRealOnlyForwardTransform (Complex* scratch, float* d) const noexcept
{
    // This can only be called on an FFT object that was created to do forward transforms.
    jassert (! config->inverse);

    for (int i = 0; i < size; ++i)
    {
        scratch[i].r = d[i];
        scratch[i].i = 0;
    }

    perform (scratch, reinterpret_cast<Complex*> (d));
}

void FFT::performRealOnlyInverseTransform (Complex* scratch, float* d) const noexcept
{
    // This can only be called on an FFT object that was created to do inverse transforms.
    jassert (config->inverse);

    perform (reinterpret_cast<const Complex*> (d), scratch);

    const float scaleFactor = 1.0f / size;

    for (int i = 0; i < size; ++i)
    {
        d[i]        = scratch[i].r * scaleFactor;
        d[i + size] = scratch[i].i * scaleFactor;
    }
}

void FFT::performFrequencyOnlyForwardTransform (float* d) const noexcept
{
    performRealOnlyForwardTransform (d);
    const int twiceSize = size * 2;

    for (int i = 0; i < twiceSize; i += 2)
    {
        d[i / 2] = juce_hypot (d[i], d[i + 1]);

        if (i >= size)
        {
            d[i] = 0;
            d[i + 1] = 0;
        }
    }
}