1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/*
This file sets up some handy mathematical typdefs and functions.
*/
//==============================================================================
// Definitions for the int8, int16, int32, int64 and pointer_sized_int types.
/** A platform-independent 8-bit signed integer type. */
typedef signed char int8;
/** A platform-independent 8-bit unsigned integer type. */
typedef unsigned char uint8;
/** A platform-independent 16-bit signed integer type. */
typedef signed short int16;
/** A platform-independent 16-bit unsigned integer type. */
typedef unsigned short uint16;
/** A platform-independent 32-bit signed integer type. */
typedef signed int int32;
/** A platform-independent 32-bit unsigned integer type. */
typedef unsigned int uint32;
#if JUCE_MSVC
/** A platform-independent 64-bit integer type. */
typedef __int64 int64;
/** A platform-independent 64-bit unsigned integer type. */
typedef unsigned __int64 uint64;
#else
/** A platform-independent 64-bit integer type. */
typedef long long int64;
/** A platform-independent 64-bit unsigned integer type. */
typedef unsigned long long uint64;
#endif
#ifndef DOXYGEN
/** A macro for creating 64-bit literals.
Historically, this was needed to support portability with MSVC6, and is kept here
so that old code will still compile, but nowadays every compiler will support the
LL and ULL suffixes, so you should use those in preference to this macro.
*/
#define literal64bit(longLiteral) (longLiteral##LL)
#endif
#if JUCE_64BIT
/** A signed integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
typedef int64 pointer_sized_int;
/** An unsigned integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
typedef uint64 pointer_sized_uint;
#elif JUCE_MSVC
/** A signed integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
typedef _W64 int pointer_sized_int;
/** An unsigned integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
typedef _W64 unsigned int pointer_sized_uint;
#else
/** A signed integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
typedef int pointer_sized_int;
/** An unsigned integer type that's guaranteed to be large enough to hold a pointer without truncating it. */
typedef unsigned int pointer_sized_uint;
#endif
#if JUCE_WINDOWS && ! JUCE_MINGW
typedef pointer_sized_int ssize_t;
#endif
//==============================================================================
// Some indispensable min/max functions
/** Returns the larger of two values. */
template <typename Type>
Type jmax (const Type a, const Type b) { return (a < b) ? b : a; }
/** Returns the larger of three values. */
template <typename Type>
Type jmax (const Type a, const Type b, const Type c) { return (a < b) ? ((b < c) ? c : b) : ((a < c) ? c : a); }
/** Returns the larger of four values. */
template <typename Type>
Type jmax (const Type a, const Type b, const Type c, const Type d) { return jmax (a, jmax (b, c, d)); }
/** Returns the smaller of two values. */
template <typename Type>
Type jmin (const Type a, const Type b) { return (b < a) ? b : a; }
/** Returns the smaller of three values. */
template <typename Type>
Type jmin (const Type a, const Type b, const Type c) { return (b < a) ? ((c < b) ? c : b) : ((c < a) ? c : a); }
/** Returns the smaller of four values. */
template <typename Type>
Type jmin (const Type a, const Type b, const Type c, const Type d) { return jmin (a, jmin (b, c, d)); }
/** Remaps a normalised value (between 0 and 1) to a target range.
This effectively returns (targetRangeMin + value0To1 * (targetRangeMax - targetRangeMin)).
*/
template <typename Type>
Type jmap (Type value0To1, Type targetRangeMin, Type targetRangeMax)
{
return targetRangeMin + value0To1 * (targetRangeMax - targetRangeMin);
}
/** Remaps a value from a source range to a target range. */
template <typename Type>
Type jmap (Type sourceValue, Type sourceRangeMin, Type sourceRangeMax, Type targetRangeMin, Type targetRangeMax)
{
jassert (sourceRangeMax != sourceRangeMin); // mapping from a range of zero will produce NaN!
return targetRangeMin + ((targetRangeMax - targetRangeMin) * (sourceValue - sourceRangeMin)) / (sourceRangeMax - sourceRangeMin);
}
/** Scans an array of values, returning the minimum value that it contains. */
template <typename Type>
Type findMinimum (const Type* data, int numValues)
{
if (numValues <= 0)
return Type();
Type result (*data++);
while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
{
const Type& v = *data++;
if (v < result) result = v;
}
return result;
}
/** Scans an array of values, returning the maximum value that it contains. */
template <typename Type>
Type findMaximum (const Type* values, int numValues)
{
if (numValues <= 0)
return Type();
Type result (*values++);
while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
{
const Type& v = *values++;
if (result < v) result = v;
}
return result;
}
/** Scans an array of values, returning the minimum and maximum values that it contains. */
template <typename Type>
void findMinAndMax (const Type* values, int numValues, Type& lowest, Type& highest)
{
if (numValues <= 0)
{
lowest = Type();
highest = Type();
}
else
{
Type mn (*values++);
Type mx (mn);
while (--numValues > 0) // (> 0 rather than >= 0 because we've already taken the first sample)
{
const Type& v = *values++;
if (mx < v) mx = v;
if (v < mn) mn = v;
}
lowest = mn;
highest = mx;
}
}
//==============================================================================
/** Constrains a value to keep it within a given range.
This will check that the specified value lies between the lower and upper bounds
specified, and if not, will return the nearest value that would be in-range. Effectively,
it's like calling jmax (lowerLimit, jmin (upperLimit, value)).
Note that it expects that lowerLimit <= upperLimit. If this isn't true,
the results will be unpredictable.
@param lowerLimit the minimum value to return
@param upperLimit the maximum value to return
@param valueToConstrain the value to try to return
@returns the closest value to valueToConstrain which lies between lowerLimit
and upperLimit (inclusive)
@see jmin, jmax, jmap
*/
template <typename Type>
Type jlimit (Type lowerLimit,
Type upperLimit,
Type valueToConstrain) noexcept
{
jassert (lowerLimit <= upperLimit); // if these are in the wrong order, results are unpredictable..
return (valueToConstrain < lowerLimit) ? lowerLimit
: ((upperLimit < valueToConstrain) ? upperLimit
: valueToConstrain);
}
/** Returns true if a value is at least zero, and also below a specified upper limit.
This is basically a quicker way to write:
@code valueToTest >= 0 && valueToTest < upperLimit
@endcode
*/
template <typename Type1, typename Type2>
bool isPositiveAndBelow (Type1 valueToTest, Type2 upperLimit) noexcept
{
jassert (Type1() <= static_cast<Type1> (upperLimit)); // makes no sense to call this if the upper limit is itself below zero..
return Type1() <= valueToTest && valueToTest < static_cast<Type1> (upperLimit);
}
template <typename Type>
bool isPositiveAndBelow (int valueToTest, Type upperLimit) noexcept
{
jassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero..
return static_cast<unsigned int> (valueToTest) < static_cast<unsigned int> (upperLimit);
}
/** Returns true if a value is at least zero, and also less than or equal to a specified upper limit.
This is basically a quicker way to write:
@code valueToTest >= 0 && valueToTest <= upperLimit
@endcode
*/
template <typename Type1, typename Type2>
bool isPositiveAndNotGreaterThan (Type1 valueToTest, Type2 upperLimit) noexcept
{
jassert (Type1() <= static_cast<Type1> (upperLimit)); // makes no sense to call this if the upper limit is itself below zero..
return Type1() <= valueToTest && valueToTest <= static_cast<Type1> (upperLimit);
}
template <typename Type>
bool isPositiveAndNotGreaterThan (int valueToTest, Type upperLimit) noexcept
{
jassert (upperLimit >= 0); // makes no sense to call this if the upper limit is itself below zero..
return static_cast<unsigned int> (valueToTest) <= static_cast<unsigned int> (upperLimit);
}
//==============================================================================
/** Handy function for avoiding unused variables warning. */
template <typename Type1>
void ignoreUnused (const Type1&) noexcept {}
template <typename Type1, typename Type2>
void ignoreUnused (const Type1&, const Type2&) noexcept {}
template <typename Type1, typename Type2, typename Type3>
void ignoreUnused (const Type1&, const Type2&, const Type3&) noexcept {}
template <typename Type1, typename Type2, typename Type3, typename Type4>
void ignoreUnused (const Type1&, const Type2&, const Type3&, const Type4&) noexcept {}
/** Handy function for getting the number of elements in a simple const C array.
E.g.
@code
static int myArray[] = { 1, 2, 3 };
int numElements = numElementsInArray (myArray) // returns 3
@endcode
*/
template <typename Type, int N>
int numElementsInArray (Type (&array)[N])
{
ignoreUnused (array);
(void) sizeof (0[array]); // This line should cause an error if you pass an object with a user-defined subscript operator
return N;
}
//==============================================================================
// Some useful maths functions that aren't always present with all compilers and build settings.
/** Using juce_hypot is easier than dealing with the different types of hypot function
that are provided by the various platforms and compilers. */
template <typename Type>
Type juce_hypot (Type a, Type b) noexcept
{
#if JUCE_MSVC
return static_cast<Type> (_hypot (a, b));
#else
return static_cast<Type> (hypot (a, b));
#endif
}
#ifndef DOXYGEN
template <>
inline float juce_hypot (float a, float b) noexcept
{
#if JUCE_MSVC
return _hypotf (a, b);
#else
return hypotf (a, b);
#endif
}
#endif
/** 64-bit abs function. */
inline int64 abs64 (const int64 n) noexcept
{
return (n >= 0) ? n : -n;
}
#if JUCE_MSVC && ! defined (DOXYGEN) // The MSVC libraries omit these functions for some reason...
template<typename Type> Type asinh (Type x) { return std::log (x + std::sqrt (x * x + (Type) 1)); }
template<typename Type> Type acosh (Type x) { return std::log (x + std::sqrt (x * x - (Type) 1)); }
template<typename Type> Type atanh (Type x) { return (std::log (x + (Type) 1) - std::log (((Type) 1) - x)) / (Type) 2; }
#endif
//==============================================================================
/** Commonly used mathematical constants */
template <typename FloatType>
struct MathConstants
{
/** A predefined value for Pi */
static const FloatType pi;
/** A predfined value for Euler's number */
static const FloatType euler;
};
template <typename FloatType>
const FloatType MathConstants<FloatType>::pi = static_cast<FloatType> (3.141592653589793238L);
template <typename FloatType>
const FloatType MathConstants<FloatType>::euler = static_cast<FloatType> (2.71828182845904523536L);
/** A predefined value for Pi, at double-precision.
@see float_Pi
*/
const double double_Pi = MathConstants<double>::pi;
/** A predefined value for Pi, at single-precision.
@see double_Pi
*/
const float float_Pi = MathConstants<float>::pi;
/** Converts an angle in degrees to radians. */
inline float degreesToRadians (float degrees) noexcept { return degrees * (float_Pi / 180.0f); }
/** Converts an angle in degrees to radians. */
inline double degreesToRadians (double degrees) noexcept { return degrees * (double_Pi / 180.0); }
/** Converts an angle in radians to degrees. */
inline float radiansToDegrees (float radians) noexcept { return radians * (180.0f / float_Pi); }
/** Converts an angle in radians to degrees. */
inline double radiansToDegrees (double radians) noexcept { return radians * (180.0 / double_Pi); }
//==============================================================================
/** The isfinite() method seems to vary between platforms, so this is a
platform-independent function for it.
*/
template <typename NumericType>
bool juce_isfinite (NumericType) noexcept
{
return true; // Integer types are always finite
}
template <>
inline bool juce_isfinite (float value) noexcept
{
#if JUCE_WINDOWS && ! JUCE_MINGW
return _finite (value) != 0;
#else
return std::isfinite (value);
#endif
}
template <>
inline bool juce_isfinite (double value) noexcept
{
#if JUCE_WINDOWS && ! JUCE_MINGW
return _finite (value) != 0;
#else
return std::isfinite (value);
#endif
}
//==============================================================================
#if JUCE_MSVC
#pragma optimize ("t", off)
#ifndef __INTEL_COMPILER
#pragma float_control (precise, on, push)
#endif
#endif
/** Fast floating-point-to-integer conversion.
This is faster than using the normal c++ cast to convert a float to an int, and
it will round the value to the nearest integer, rather than rounding it down
like the normal cast does.
Note that this routine gets its speed at the expense of some accuracy, and when
rounding values whose floating point component is exactly 0.5, odd numbers and
even numbers will be rounded up or down differently.
*/
template <typename FloatType>
int roundToInt (const FloatType value) noexcept
{
#ifdef __INTEL_COMPILER
#pragma float_control (precise, on, push)
#endif
union { int asInt[2]; double asDouble; } n;
n.asDouble = ((double) value) + 6755399441055744.0;
#if JUCE_BIG_ENDIAN
return n.asInt [1];
#else
return n.asInt [0];
#endif
}
inline int roundToInt (int value) noexcept
{
return value;
}
#if JUCE_MSVC
#ifndef __INTEL_COMPILER
#pragma float_control (pop)
#endif
#pragma optimize ("", on) // resets optimisations to the project defaults
#endif
/** Fast floating-point-to-integer conversion.
This is a slightly slower and slightly more accurate version of roundDoubleToInt(). It works
fine for values above zero, but negative numbers are rounded the wrong way.
*/
inline int roundToIntAccurate (double value) noexcept
{
#ifdef __INTEL_COMPILER
#pragma float_control (pop)
#endif
return roundToInt (value + 1.5e-8);
}
/** Fast floating-point-to-integer conversion.
This is faster than using the normal c++ cast to convert a double to an int, and
it will round the value to the nearest integer, rather than rounding it down
like the normal cast does.
Note that this routine gets its speed at the expense of some accuracy, and when
rounding values whose floating point component is exactly 0.5, odd numbers and
even numbers will be rounded up or down differently. For a more accurate conversion,
see roundDoubleToIntAccurate().
*/
inline int roundDoubleToInt (double value) noexcept
{
return roundToInt (value);
}
/** Fast floating-point-to-integer conversion.
This is faster than using the normal c++ cast to convert a float to an int, and
it will round the value to the nearest integer, rather than rounding it down
like the normal cast does.
Note that this routine gets its speed at the expense of some accuracy, and when
rounding values whose floating point component is exactly 0.5, odd numbers and
even numbers will be rounded up or down differently.
*/
inline int roundFloatToInt (float value) noexcept
{
return roundToInt (value);
}
//==============================================================================
/** Truncates a positive floating-point number to an unsigned int.
This is generally faster than static_cast<unsigned int> (std::floor (x))
but it only works for positive numbers small enough to be represented as an
unsigned int.
*/
template <typename FloatType>
unsigned int truncatePositiveToUnsignedInt (FloatType value) noexcept
{
jassert (value >= static_cast<FloatType> (0));
jassert (static_cast<FloatType> (value) <= std::numeric_limits<unsigned int>::max());
return static_cast<unsigned int> (value);
}
//==============================================================================
/** Returns true if the specified integer is a power-of-two. */
template <typename IntegerType>
bool isPowerOfTwo (IntegerType value)
{
return (value & (value - 1)) == 0;
}
/** Returns the smallest power-of-two which is equal to or greater than the given integer. */
inline int nextPowerOfTwo (int n) noexcept
{
--n;
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return n + 1;
}
/** Returns the index of the highest set bit in a (non-zero) number.
So for n=3 this would return 1, for n=7 it returns 2, etc.
An input value of 0 is illegal!
*/
int findHighestSetBit (uint32 n) noexcept;
/** Returns the number of bits in a 32-bit integer. */
inline int countNumberOfBits (uint32 n) noexcept
{
n -= ((n >> 1) & 0x55555555);
n = (((n >> 2) & 0x33333333) + (n & 0x33333333));
n = (((n >> 4) + n) & 0x0f0f0f0f);
n += (n >> 8);
n += (n >> 16);
return (int) (n & 0x3f);
}
/** Returns the number of bits in a 64-bit integer. */
inline int countNumberOfBits (uint64 n) noexcept
{
return countNumberOfBits ((uint32) n) + countNumberOfBits ((uint32) (n >> 32));
}
/** Performs a modulo operation, but can cope with the dividend being negative.
The divisor must be greater than zero.
*/
template <typename IntegerType>
IntegerType negativeAwareModulo (IntegerType dividend, const IntegerType divisor) noexcept
{
jassert (divisor > 0);
dividend %= divisor;
return (dividend < 0) ? (dividend + divisor) : dividend;
}
/** Returns the square of its argument. */
template <typename NumericType>
NumericType square (NumericType n) noexcept
{
return n * n;
}
//==============================================================================
/** Writes a number of bits into a memory buffer at a given bit index.
The buffer is treated as a sequence of 8-bit bytes, and the value is encoded in little-endian order,
so for example if startBit = 10, and numBits = 11 then the lower 6 bits of the value would be written
into bits 2-8 of targetBuffer[1], and the upper 5 bits of value into bits 0-5 of targetBuffer[2].
@see readLittleEndianBitsInBuffer
*/
void writeLittleEndianBitsInBuffer (void* targetBuffer, uint32 startBit, uint32 numBits, uint32 value) noexcept;
/** Reads a number of bits from a buffer at a given bit index.
The buffer is treated as a sequence of 8-bit bytes, and the value is encoded in little-endian order,
so for example if startBit = 10, and numBits = 11 then the lower 6 bits of the result would be read
from bits 2-8 of sourceBuffer[1], and the upper 5 bits of the result from bits 0-5 of sourceBuffer[2].
@see writeLittleEndianBitsInBuffer
*/
uint32 readLittleEndianBitsInBuffer (const void* sourceBuffer, uint32 startBit, uint32 numBits) noexcept;
//==============================================================================
#if JUCE_INTEL || defined (DOXYGEN)
/** This macro can be applied to a float variable to check whether it contains a denormalised
value, and to normalise it if necessary.
On CPUs that aren't vulnerable to denormalisation problems, this will have no effect.
*/
#define JUCE_UNDENORMALISE(x) { (x) += 0.1f; (x) -= 0.1f; }
#else
#define JUCE_UNDENORMALISE(x)
#endif
//==============================================================================
/** This namespace contains a few template classes for helping work out class type variations.
*/
namespace TypeHelpers
{
/** The ParameterType struct is used to find the best type to use when passing some kind
of object as a parameter.
Of course, this is only likely to be useful in certain esoteric template situations.
E.g. "myFunction (typename TypeHelpers::ParameterType<int>::type, typename TypeHelpers::ParameterType<MyObject>::type)"
would evaluate to "myfunction (int, const MyObject&)", keeping any primitive types as
pass-by-value, but passing objects as a const reference, to avoid copying.
*/
template <typename Type> struct ParameterType { typedef const Type& type; };
#if ! DOXYGEN
template <typename Type> struct ParameterType <Type&> { typedef Type& type; };
template <typename Type> struct ParameterType <Type*> { typedef Type* type; };
template <> struct ParameterType <char> { typedef char type; };
template <> struct ParameterType <unsigned char> { typedef unsigned char type; };
template <> struct ParameterType <short> { typedef short type; };
template <> struct ParameterType <unsigned short> { typedef unsigned short type; };
template <> struct ParameterType <int> { typedef int type; };
template <> struct ParameterType <unsigned int> { typedef unsigned int type; };
template <> struct ParameterType <long> { typedef long type; };
template <> struct ParameterType <unsigned long> { typedef unsigned long type; };
template <> struct ParameterType <int64> { typedef int64 type; };
template <> struct ParameterType <uint64> { typedef uint64 type; };
template <> struct ParameterType <bool> { typedef bool type; };
template <> struct ParameterType <float> { typedef float type; };
template <> struct ParameterType <double> { typedef double type; };
#endif
/** These templates are designed to take a type, and if it's a double, they return a double
type; for anything else, they return a float type.
*/
template <typename Type> struct SmallestFloatType { typedef float type; };
template <> struct SmallestFloatType <double> { typedef double type; };
/** These templates are designed to take an integer type, and return an unsigned int
version with the same size.
*/
template <int bytes> struct UnsignedTypeWithSize {};
template <> struct UnsignedTypeWithSize<1> { typedef uint8 type; };
template <> struct UnsignedTypeWithSize<2> { typedef uint16 type; };
template <> struct UnsignedTypeWithSize<4> { typedef uint32 type; };
template <> struct UnsignedTypeWithSize<8> { typedef uint64 type; };
}
} // namespace juce
|