1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/**@file templates for Complex classes
unlike the built-in complex<> templates, these inline most operations for speed
*/
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribution.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef COMPLEXCPP_H
#define COMPLEXCPP_H
#include <math.h>
#include <ostream>
template<class Real> class Complex {
public:
Real r, i;
/**@name constructors */
//@{
/**@name from real */
//@{
Complex(Real real, Real imag) {r=real; i=imag;} // x=complex(a,b)
Complex(Real real) {r=real; i=0;} // x=complex(a)
//@}
/**@name from nothing */
//@{
Complex() {r=(Real)0; i=(Real)0;} // x=complex()
//@}
/**@name from other complex */
//@{
Complex(const Complex<float>& z) {r=z.r; i=z.i;} // x=complex(z)
Complex(const Complex<double>& z) {r=z.r; i=z.i;} // x=complex(z)
Complex(const Complex<long double>& z) {r=z.r; i=z.i;} // x=complex(z)
//@}
//@}
/**@name casting up from basic numeric types */
//@{
Complex& operator=(char a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(int a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(long int a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(short a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(float a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(double a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(long double a) { r=(Real)a; i=(Real)0; return *this; }
//@}
/**@name arithmetic */
//@{
/**@ binary operators */
//@{
Complex operator+(const Complex<Real>& a) const { return Complex<Real>(r+a.r, i+a.i); }
Complex operator+(Real a) const { return Complex<Real>(r+a,i); }
Complex operator-(const Complex<Real>& a) const { return Complex<Real>(r-a.r, i-a.i); }
Complex operator-(Real a) const { return Complex<Real>(r-a,i); }
Complex operator*(const Complex<Real>& a) const { return Complex<Real>(r*a.r-i*a.i, r*a.i+i*a.r); }
Complex operator*(Real a) const { return Complex<Real>(r*a, i*a); }
Complex operator/(const Complex<Real>& a) const { return operator*(a.inv()); }
Complex operator/(Real a) const { return Complex<Real>(r/a, i/a); }
//@}
/*@name component-wise product */
//@{
Complex operator&(const Complex<Real>& a) const { return Complex<Real>(r*a.r, i*a.i); }
//@}
/*@name inplace operations */
//@{
Complex& operator+=(const Complex<Real>&);
Complex& operator-=(const Complex<Real>&);
Complex& operator*=(const Complex<Real>&);
Complex& operator/=(const Complex<Real>&);
Complex& operator+=(Real);
Complex& operator-=(Real);
Complex& operator*=(Real);
Complex& operator/=(Real);
//@}
//@}
/**@name comparisons */
//@{
bool operator==(const Complex<Real>& a) const { return ((i==a.i)&&(r==a.r)); }
bool operator!=(const Complex<Real>& a) const { return ((i!=a.i)||(r!=a.r)); }
bool operator<(const Complex<Real>& a) const { return norm2()<a.norm2(); }
bool operator>(const Complex<Real>& a) const { return norm2()>a.norm2(); }
//@}
/// reciprocation
Complex inv() const;
// unary functions -- inlined
/**@name unary functions */
//@{
/**@name inlined */
//@{
Complex conj() const { return Complex<Real>(r,-i); }
Real norm2() const { return i*i+r*r; }
Complex flip() const { return Complex<Real>(i,r); }
Real real() const { return r;}
Real imag() const { return i;}
Complex neg() const { return Complex<Real>(-r, -i); }
bool isZero() const { return ((r==(Real)0) && (i==(Real)0)); }
//@}
/**@name not inlined due to outside calls */
//@{
Real abs() const { return ::sqrt(norm2()); }
Real arg() const { return ::atan2(i,r); }
float dB() const { return 10.0*log10(norm2()); }
Complex exp() const { return expj(i)*(::exp(r)); }
Complex unit() const; ///< unit phasor with same angle
Complex log() const { return Complex(::log(abs()),arg()); }
Complex pow(double n) const { return expj(arg()*n)*(::pow(abs(),n)); }
Complex sqrt() const { return pow(0.5); }
//@}
//@}
};
/**@name standard Complex manifestations */
//@{
typedef Complex<float> complex;
typedef Complex<double> dcomplex;
typedef Complex<short> complex16;
typedef Complex<long> complex32;
//@}
template<class Real> inline Complex<Real> Complex<Real>::inv() const
{
Real nVal;
nVal = norm2();
return Complex<Real>(r/nVal, -i/nVal);
}
template<class Real> Complex<Real>& Complex<Real>::operator+=(const Complex<Real>& a)
{
r += a.r;
i += a.i;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator*=(const Complex<Real>& a)
{
operator*(a);
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator-=(const Complex<Real>& a)
{
r -= a.r;
i -= a.i;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator/=(const Complex<Real>& a)
{
operator/(a);
return *this;
}
/* op= style operations with reals */
template<class Real> Complex<Real>& Complex<Real>::operator+=(Real a)
{
r += a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator*=(Real a)
{
r *=a;
i *=a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator-=(Real a)
{
r -= a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator/=(Real a)
{
r /= a;
i /= a;
return *this;
}
template<class Real> Complex<Real> Complex<Real>::unit() const
{
Real absVal = abs();
return (Complex<Real>(r/absVal, i/absVal));
}
/**@name complex functions outside of the Complex<> class. */
//@{
/** this allows type-commutative multiplication */
template<class Real> Complex<Real> operator*(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r*a, z.i*a);
}
/** this allows type-commutative addition */
template<class Real> Complex<Real> operator+(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r+a, z.i);
}
/** this allows type-commutative subtraction */
template<class Real> Complex<Real> operator-(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r-a, z.i);
}
/// e^jphi
template<class Real> Complex<Real> expj(Real phi)
{
return Complex<Real>(cos(phi),sin(phi));
}
/// phasor expression of a complex number
template<class Real> Complex<Real> phasor(Real C, Real phi)
{
return (expj(phi)*C);
}
/// formatted stream output
template<class Real> std::ostream& operator<<(std::ostream& os, const Complex<Real>& z)
{
os << z.r << ' ';
//os << z.r << ", ";
//if (z.i>=0) { os << "+"; }
os << z.i << "j";
return os;
}
//@}
#endif
|