1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
|
/*
* Copyright 2008, 2011 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sigProcLib.h"
#include "GSMCommon.h"
#include "Logger.h"
#include "Resampler.h"
extern "C" {
#include <osmocom/core/panic.h>
#include "convolve.h"
#include "scale.h"
#include "mult.h"
}
using namespace GSM;
#define TABLESIZE 1024
#define DELAYFILTS 64
/* Clipping detection threshold */
#define CLIP_THRESH 30000.0f
/** Lookup tables for trigonometric approximation */
static float sincTable[TABLESIZE+1]; // add 1 element for wrap around
/** Constants */
static const float M_PI_F = (float)M_PI;
/* Precomputed rotation vectors */
static signalVector *GMSKRotation4 = NULL;
static signalVector *GMSKReverseRotation4 = NULL;
static signalVector *GMSKRotation1 = NULL;
static signalVector *GMSKReverseRotation1 = NULL;
/* Precomputed fractional delay filters */
static signalVector *delayFilters[DELAYFILTS];
static const Complex<float> psk8_table[8] = {
Complex<float>(-0.70710678, 0.70710678),
Complex<float>( 0.0, -1.0),
Complex<float>( 0.0, 1.0),
Complex<float>( 0.70710678, -0.70710678),
Complex<float>(-1.0, 0.0),
Complex<float>(-0.70710678, -0.70710678),
Complex<float>( 0.70710678, 0.70710678),
Complex<float>( 1.0, 0.0),
};
/* Downsampling filterbank - 4 SPS to 1 SPS */
#define DOWNSAMPLE_IN_LEN 624
#define DOWNSAMPLE_OUT_LEN 156
static Resampler *dnsampler = NULL;
/*
* RACH and midamble correlation waveforms. Store the buffer separately
* because we need to allocate it explicitly outside of the signal vector
* constructor. This is because C++ (prior to C++11) is unable to natively
* perform 16-byte memory alignment required by many SSE instructions.
*/
struct CorrelationSequence {
CorrelationSequence() : sequence(NULL), buffer(NULL), toa(0.0)
{
}
~CorrelationSequence()
{
delete sequence;
}
signalVector *sequence;
void *buffer;
float toa;
complex gain;
};
/*
* Gaussian and empty modulation pulses. Like the correlation sequences,
* store the runtime (Gaussian) buffer separately because of needed alignment
* for SSE instructions.
*/
struct PulseSequence {
PulseSequence() : c0(NULL), c1(NULL), c0_inv(NULL), empty(NULL)
{
}
~PulseSequence()
{
delete c0;
delete c1;
delete c0_inv;
delete empty;
}
signalVector *c0;
signalVector *c1;
signalVector *c0_inv;
signalVector *empty;
};
static CorrelationSequence *gMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gEdgeMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gRACHSequences[] = {NULL,NULL,NULL};
static PulseSequence *GSMPulse1 = NULL;
static PulseSequence *GSMPulse4 = NULL;
void sigProcLibDestroy()
{
for (int i = 0; i < 8; i++) {
delete gMidambles[i];
delete gEdgeMidambles[i];
gMidambles[i] = NULL;
gEdgeMidambles[i] = NULL;
}
for (int i = 0; i < DELAYFILTS; i++) {
delete delayFilters[i];
delayFilters[i] = NULL;
}
for (int i = 0; i < 3; i++) {
delete gRACHSequences[i];
gRACHSequences[i] = NULL;
}
delete GMSKRotation1;
delete GMSKReverseRotation1;
delete GMSKRotation4;
delete GMSKReverseRotation4;
delete GSMPulse1;
delete GSMPulse4;
delete dnsampler;
GMSKRotation1 = NULL;
GMSKRotation4 = NULL;
GMSKReverseRotation4 = NULL;
GMSKReverseRotation1 = NULL;
GSMPulse1 = NULL;
GSMPulse4 = NULL;
}
static float vectorNorm2(const signalVector &x)
{
signalVector::const_iterator xPtr = x.begin();
float Energy = 0.0;
for (;xPtr != x.end();xPtr++) {
Energy += xPtr->norm2();
}
return Energy;
}
/*
* Initialize 4 sps and 1 sps rotation tables
*/
static void initGMSKRotationTables()
{
size_t len1 = 157, len4 = 625;
GMSKRotation4 = new signalVector(len4);
GMSKReverseRotation4 = new signalVector(len4);
signalVector::iterator rotPtr = GMSKRotation4->begin();
signalVector::iterator revPtr = GMSKReverseRotation4->begin();
auto phase = 0.0;
while (rotPtr != GMSKRotation4->end()) {
*rotPtr++ = complex(cos(phase), sin(phase));
*revPtr++ = complex(cos(-phase), sin(-phase));
phase += M_PI / 2.0 / 4.0;
}
GMSKRotation1 = new signalVector(len1);
GMSKReverseRotation1 = new signalVector(len1);
rotPtr = GMSKRotation1->begin();
revPtr = GMSKReverseRotation1->begin();
phase = 0.0;
while (rotPtr != GMSKRotation1->end()) {
*rotPtr++ = complex(cos(phase), sin(phase));
*revPtr++ = complex(cos(-phase), sin(-phase));
phase += M_PI / 2.0;
}
}
static void GMSKRotate(signalVector &x, int sps)
{
#if HAVE_NEON
size_t len;
signalVector *a, *b, *out;
a = &x;
out = &x;
len = out->size();
if (len == 157)
len--;
if (sps == 1)
b = GMSKRotation1;
else
b = GMSKRotation4;
mul_complex((float *) out->begin(),
(float *) a->begin(),
(float *) b->begin(), len);
#else
signalVector::iterator rotPtr, xPtr = x.begin();
if (sps == 1)
rotPtr = GMSKRotation1->begin();
else
rotPtr = GMSKRotation4->begin();
if (x.isReal()) {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (xPtr->real());
xPtr++;
}
}
else {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (*xPtr);
xPtr++;
}
}
#endif
}
static bool GMSKReverseRotate(signalVector &x, int sps)
{
signalVector::iterator rotPtr, xPtr= x.begin();
if (sps == 1)
rotPtr = GMSKReverseRotation1->begin();
else if (sps == 4)
rotPtr = GMSKReverseRotation4->begin();
else
return false;
if (x.isReal()) {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (xPtr->real());
xPtr++;
}
}
else {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (*xPtr);
xPtr++;
}
}
return true;
}
/** Convolution type indicator */
enum ConvType {
START_ONLY,
NO_DELAY,
CUSTOM,
UNDEFINED,
};
static signalVector *convolve(const signalVector *x, const signalVector *h,
signalVector *y, ConvType spanType,
size_t start = 0, size_t len = 0)
{
int rc;
size_t head = 0, tail = 0;
bool alloc = false, append = false;
const signalVector *_x = NULL;
if (!x || !h)
return NULL;
switch (spanType) {
case START_ONLY:
start = 0;
head = h->size() - 1;
len = x->size();
if (x->getStart() < head)
append = true;
break;
case NO_DELAY:
start = h->size() / 2;
head = start;
tail = start;
len = x->size();
append = true;
break;
case CUSTOM:
if (start < h->size() - 1) {
head = h->size() - start;
append = true;
}
if (start + len > x->size()) {
tail = start + len - x->size();
append = true;
}
break;
default:
return NULL;
}
/*
* Error if the output vector is too small. Create the output vector
* if the pointer is NULL.
*/
if (y && (len > y->size()))
return NULL;
if (!y) {
y = new signalVector(len, convolve_h_alloc, free);
alloc = true;
}
/* Prepend or post-pend the input vector if the parameters require it */
if (append)
_x = new signalVector(*x, head, tail);
else
_x = x;
/*
* Four convolve types:
* 1. Complex-Real (aligned)
* 2. Complex-Complex (aligned)
* 3. Complex-Real (!aligned)
* 4. Complex-Complex (!aligned)
*/
if (h->isReal() && h->isAligned()) {
rc = convolve_real((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else if (!h->isReal() && h->isAligned()) {
rc = convolve_complex((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else if (h->isReal() && !h->isAligned()) {
rc = base_convolve_real((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else if (!h->isReal() && !h->isAligned()) {
rc = base_convolve_complex((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else {
rc = -1;
}
if (append)
delete _x;
if (rc < 0) {
if (alloc)
delete y;
return NULL;
}
return y;
}
/*
* Generate static EDGE linear equalizer. This equalizer is not adaptive.
* Filter taps are generated from the inverted 1 SPS impulse response of
* the EDGE pulse shape captured after the downsampling filter.
*/
static bool generateInvertC0Pulse(PulseSequence *pulse)
{
if (!pulse)
return false;
pulse->c0_inv = new signalVector((complex *) convolve_h_alloc(5), 0, 5, convolve_h_alloc, free);
pulse->c0_inv->isReal(true);
pulse->c0_inv->setAligned(false);
signalVector::iterator xP = pulse->c0_inv->begin();
*xP++ = 0.15884;
*xP++ = -0.43176;
*xP++ = 1.00000;
*xP++ = -0.42608;
*xP++ = 0.14882;
return true;
}
static bool generateC1Pulse(int sps, PulseSequence *pulse)
{
int len;
if (!pulse)
return false;
switch (sps) {
case 4:
len = 8;
break;
default:
return false;
}
pulse->c1 = new signalVector((complex *) convolve_h_alloc(len), 0, len, convolve_h_alloc, free);
pulse->c1->isReal(true);
/* Enable alignment for SSE usage */
pulse->c1->setAligned(true);
signalVector::iterator xP = pulse->c1->begin();
switch (sps) {
case 4:
/* BT = 0.30 */
*xP++ = 0.0;
*xP++ = 8.16373112e-03;
*xP++ = 2.84385729e-02;
*xP++ = 5.64158904e-02;
*xP++ = 7.05463553e-02;
*xP++ = 5.64158904e-02;
*xP++ = 2.84385729e-02;
*xP++ = 8.16373112e-03;
}
return true;
}
static PulseSequence *generateGSMPulse(int sps)
{
int len;
float arg, avg, center;
PulseSequence *pulse;
if ((sps != 1) && (sps != 4))
return NULL;
/* Store a single tap filter used for correlation sequence generation */
pulse = new PulseSequence();
pulse->empty = new signalVector(1);
pulse->empty->isReal(true);
*(pulse->empty->begin()) = 1.0f;
/*
* For 4 samples-per-symbol use a precomputed single pulse Laurent
* approximation. This should yields below 2 degrees of phase error at
* the modulator output. Use the existing pulse approximation for all
* other oversampling factors.
*/
switch (sps) {
case 4:
len = 16;
break;
case 1:
default:
len = 4;
}
pulse->c0 = new signalVector((complex *) convolve_h_alloc(len), 0, len, convolve_h_alloc, free);
pulse->c0->isReal(true);
/* Enable alingnment for SSE usage */
pulse->c0->setAligned(true);
signalVector::iterator xP = pulse->c0->begin();
if (sps == 4) {
*xP++ = 0.0;
*xP++ = 4.46348606e-03;
*xP++ = 2.84385729e-02;
*xP++ = 1.03184855e-01;
*xP++ = 2.56065552e-01;
*xP++ = 4.76375085e-01;
*xP++ = 7.05961177e-01;
*xP++ = 8.71291644e-01;
*xP++ = 9.29453645e-01;
*xP++ = 8.71291644e-01;
*xP++ = 7.05961177e-01;
*xP++ = 4.76375085e-01;
*xP++ = 2.56065552e-01;
*xP++ = 1.03184855e-01;
*xP++ = 2.84385729e-02;
*xP++ = 4.46348606e-03;
generateC1Pulse(sps, pulse);
} else {
center = (float) (len - 1.0) / 2.0;
/* GSM pulse approximation */
for (int i = 0; i < len; i++) {
arg = ((float) i - center) / (float) sps;
*xP++ = 0.96 * exp(-1.1380 * arg * arg -
0.527 * arg * arg * arg * arg);
}
avg = sqrtf(vectorNorm2(*pulse->c0) / sps);
xP = pulse->c0->begin();
for (int i = 0; i < len; i++)
*xP++ /= avg;
}
/*
* Current form of the EDGE equalization filter non-realizable at 4 SPS.
* Load the onto both 1 SPS and 4 SPS objects for convenience. Note that
* the EDGE demodulator downsamples to 1 SPS prior to equalization.
*/
generateInvertC0Pulse(pulse);
return pulse;
}
/* Convert -1..+1 soft bits to 0..1 soft bits */
void vectorSlicer(float *dest, const float *src, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
dest[i] = 0.5 * (src[i] + 1.0f);
if (dest[i] > 1.0)
dest[i] = 1.0;
else if (dest[i] < 0.0)
dest[i] = 0.0;
}
}
static signalVector *rotateBurst(const BitVector &wBurst,
int guardPeriodLength, int sps)
{
int burst_len;
signalVector *pulse, rotated;
signalVector::iterator itr;
pulse = GSMPulse1->empty;
burst_len = sps * (wBurst.size() + guardPeriodLength);
rotated = signalVector(burst_len);
itr = rotated.begin();
for (unsigned i = 0; i < wBurst.size(); i++) {
*itr = 2.0 * (wBurst[i] & 0x01) - 1.0;
itr += sps;
}
GMSKRotate(rotated, sps);
rotated.isReal(false);
/* Dummy filter operation */
return convolve(&rotated, pulse, NULL, START_ONLY);
}
static void rotateBurst2(signalVector &burst, double phase)
{
Complex<float> rot = Complex<float>(cos(phase), sin(phase));
for (size_t i = 0; i < burst.size(); i++)
burst[i] = burst[i] * rot;
}
/*
* Ignore the guard length argument in the GMSK modulator interface
* because it results in 624/628 sized bursts instead of the preferred
* burst length of 625. Only 4 SPS is supported.
*/
static signalVector *modulateBurstLaurent(const BitVector &bits)
{
int burst_len, sps = 4;
float phase;
signalVector *c0_pulse, *c1_pulse, *c0_shaped, *c1_shaped;
signalVector::iterator c0_itr, c1_itr;
c0_pulse = GSMPulse4->c0;
c1_pulse = GSMPulse4->c1;
if (bits.size() > 156)
return NULL;
burst_len = 625;
signalVector c0_burst(burst_len, c0_pulse->size());
c0_burst.isReal(true);
c0_itr = c0_burst.begin();
signalVector c1_burst(burst_len, c1_pulse->size());
c1_itr = c1_burst.begin();
/* Padded differential tail bits */
*c0_itr = 2.0 * (0x00 & 0x01) - 1.0;
c0_itr += sps;
/* Main burst bits */
for (unsigned i = 0; i < bits.size(); i++) {
*c0_itr = 2.0 * (bits[i] & 0x01) - 1.0;
c0_itr += sps;
}
/* Padded differential tail bits */
*c0_itr = 2.0 * (0x00 & 0x01) - 1.0;
/* Generate C0 phase coefficients */
GMSKRotate(c0_burst, sps);
c0_burst.isReal(false);
c0_itr = c0_burst.begin();
c0_itr += sps * 2;
c1_itr += sps * 2;
/* Start magic */
phase = 2.0 * ((0x01 & 0x01) ^ (0x01 & 0x01)) - 1.0;
*c1_itr = *c0_itr * Complex<float>(0, phase);
c0_itr += sps;
c1_itr += sps;
/* Generate C1 phase coefficients */
for (unsigned i = 2; i < bits.size(); i++) {
phase = 2.0 * ((bits[i - 1] & 0x01) ^ (bits[i - 2] & 0x01)) - 1.0;
*c1_itr = *c0_itr * Complex<float>(0, phase);
c0_itr += sps;
c1_itr += sps;
}
/* End magic */
int i = bits.size();
phase = 2.0 * ((bits[i-1] & 0x01) ^ (bits[i-2] & 0x01)) - 1.0;
*c1_itr = *c0_itr * Complex<float>(0, phase);
/* Primary (C0) and secondary (C1) pulse shaping */
c0_shaped = convolve(&c0_burst, c0_pulse, NULL, START_ONLY);
c1_shaped = convolve(&c1_burst, c1_pulse, NULL, START_ONLY);
/* Sum shaped outputs into C0 */
c0_itr = c0_shaped->begin();
c1_itr = c1_shaped->begin();
for (unsigned i = 0; i < c0_shaped->size(); i++ )
*c0_itr++ += *c1_itr++;
delete c1_shaped;
return c0_shaped;
}
static signalVector *rotateEdgeBurst(const signalVector &symbols, int sps)
{
signalVector *burst;
signalVector::iterator burst_itr;
burst = new signalVector(symbols.size() * sps);
burst_itr = burst->begin();
for (size_t i = 0; i < symbols.size(); i++) {
float phase = i * 3.0f * M_PI / 8.0f;
Complex<float> rot = Complex<float>(cos(phase), sin(phase));
*burst_itr = symbols[i] * rot;
burst_itr += sps;
}
return burst;
}
static signalVector *derotateEdgeBurst(const signalVector &symbols, int sps)
{
signalVector *burst;
signalVector::iterator burst_itr;
if (symbols.size() % sps)
return NULL;
burst = new signalVector(symbols.size() / sps);
burst_itr = burst->begin();
for (size_t i = 0; i < burst->size(); i++) {
float phase = (float) (i % 16) * 3.0f * M_PI / 8.0f;
Complex<float> rot = Complex<float>(cosf(phase), -sinf(phase));
*burst_itr = symbols[sps * i] * rot;
burst_itr++;
}
return burst;
}
static signalVector *mapEdgeSymbols(const BitVector &bits)
{
if (bits.size() % 3)
return NULL;
signalVector *symbols = new signalVector(bits.size() / 3);
for (size_t i = 0; i < symbols->size(); i++) {
unsigned index = (((unsigned) bits[3 * i + 0] & 0x01) << 0) |
(((unsigned) bits[3 * i + 1] & 0x01) << 1) |
(((unsigned) bits[3 * i + 2] & 0x01) << 2);
(*symbols)[i] = psk8_table[index];
}
return symbols;
}
/*
* EDGE 8-PSK rotate and pulse shape
*
* Delay the EDGE downlink bursts by one symbol in order to match GMSK pulse
* shaping group delay. The difference in group delay arises from the dual
* pulse filter combination of the GMSK Laurent representation whereas 8-PSK
* uses a single pulse linear filter.
*/
static signalVector *shapeEdgeBurst(const signalVector &symbols)
{
size_t nsyms, nsamps = 625, sps = 4;
signalVector::iterator burst_itr;
nsyms = symbols.size();
if (nsyms * sps > nsamps)
nsyms = 156;
signalVector burst(nsamps, GSMPulse4->c0->size());
/* Delay burst by 1 symbol */
burst_itr = burst.begin() + sps;
for (size_t i = 0; i < nsyms; i++) {
float phase = i * 3.0f * M_PI / 8.0f;
Complex<float> rot = Complex<float>(cos(phase), sin(phase));
*burst_itr = symbols[i] * rot;
burst_itr += sps;
}
/* Single Gaussian pulse approximation shaping */
return convolve(&burst, GSMPulse4->c0, NULL, START_ONLY);
}
/*
* Generate a random GSM normal burst.
*/
signalVector *genRandNormalBurst(int tsc, int sps, int tn)
{
if ((tsc < 0) || (tsc > 7) || (tn < 0) || (tn > 7))
return NULL;
if ((sps != 1) && (sps != 4))
return NULL;
int i = 0;
BitVector bits(148);
/* Tail bits */
for (; i < 3; i++)
bits[i] = 0;
/* Random bits */
for (; i < 60; i++)
bits[i] = rand() % 2;
/* Stealing bit */
bits[i++] = 0;
/* Training sequence */
for (int n = 0; i < 87; i++, n++)
bits[i] = gTrainingSequence[tsc][n];
/* Stealing bit */
bits[i++] = 0;
/* Random bits */
for (; i < 145; i++)
bits[i] = rand() % 2;
/* Tail bits */
for (; i < 148; i++)
bits[i] = 0;
int guard = 8 + !(tn % 4);
return modulateBurst(bits, guard, sps);
}
/*
* Generate a random GSM access burst.
*/
signalVector *genRandAccessBurst(int delay, int sps, int tn)
{
if ((tn < 0) || (tn > 7))
return NULL;
if ((sps != 1) && (sps != 4))
return NULL;
if (delay > 68)
return NULL;
int i = 0;
BitVector bits(88 + delay);
/* delay */
for (; i < delay; i++)
bits[i] = 0;
/* head and synch bits */
for (int n = 0; i < 49+delay; i++, n++)
bits[i] = gRACHBurst[n];
/* Random bits */
for (; i < 85+delay; i++)
bits[i] = rand() % 2;
/* Tail bits */
for (; i < 88+delay; i++)
bits[i] = 0;
int guard = 68-delay + !(tn % 4);
return modulateBurst(bits, guard, sps);
}
signalVector *generateEmptyBurst(int sps, int tn)
{
if ((tn < 0) || (tn > 7))
return NULL;
if (sps == 4)
return new signalVector(625);
else if (sps == 1)
return new signalVector(148 + 8 + !(tn % 4));
else
return NULL;
}
signalVector *generateDummyBurst(int sps, int tn)
{
if (((sps != 1) && (sps != 4)) || (tn < 0) || (tn > 7))
return NULL;
return modulateBurst(gDummyBurst, 8 + !(tn % 4), sps);
}
/*
* Generate a random 8-PSK EDGE burst. Only 4 SPS is supported with
* the returned burst being 625 samples in length.
*/
signalVector *generateEdgeBurst(int tsc)
{
int tail = 9 / 3;
int data = 174 / 3;
int train = 78 / 3;
if ((tsc < 0) || (tsc > 7))
return NULL;
signalVector burst(148);
const BitVector *midamble = &gEdgeTrainingSequence[tsc];
/* Tail */
int n, i = 0;
for (; i < tail; i++)
burst[i] = psk8_table[7];
/* Body */
for (; i < tail + data; i++)
burst[i] = psk8_table[rand() % 8];
/* TSC */
for (n = 0; i < tail + data + train; i++, n++) {
unsigned index = (((unsigned) (*midamble)[3 * n + 0] & 0x01) << 0) |
(((unsigned) (*midamble)[3 * n + 1] & 0x01) << 1) |
(((unsigned) (*midamble)[3 * n + 2] & 0x01) << 2);
burst[i] = psk8_table[index];
}
/* Body */
for (; i < tail + data + train + data; i++)
burst[i] = psk8_table[rand() % 8];
/* Tail */
for (; i < tail + data + train + data + tail; i++)
burst[i] = psk8_table[7];
return shapeEdgeBurst(burst);
}
/*
* Modulate 8-PSK burst. When empty pulse shaping (rotation only)
* is enabled, the output vector length will be bit sequence length
* times the SPS value. When pulse shaping is enabled, the output
* vector length is fixed at 625 samples (156.25 symbols at 4 SPS).
* Pulse shaped bit sequences that go beyond one burst are truncated.
* Pulse shaping at anything but 4 SPS is not supported.
*/
signalVector *modulateEdgeBurst(const BitVector &bits,
int sps, bool empty)
{
signalVector *shape, *burst;
if ((sps != 4) && !empty)
return NULL;
burst = mapEdgeSymbols(bits);
if (!burst)
return NULL;
if (empty)
shape = rotateEdgeBurst(*burst, sps);
else
shape = shapeEdgeBurst(*burst);
delete burst;
return shape;
}
static signalVector *modulateBurstBasic(const BitVector &bits,
int guard_len, int sps)
{
int burst_len;
signalVector *pulse;
signalVector::iterator burst_itr;
if (sps == 1)
pulse = GSMPulse1->c0;
else
pulse = GSMPulse4->c0;
burst_len = sps * (bits.size() + guard_len);
signalVector burst(burst_len, pulse->size());
burst.isReal(true);
burst_itr = burst.begin();
/* Raw bits are not differentially encoded */
for (unsigned i = 0; i < bits.size(); i++) {
*burst_itr = 2.0 * (bits[i] & 0x01) - 1.0;
burst_itr += sps;
}
GMSKRotate(burst, sps);
burst.isReal(false);
/* Single Gaussian pulse approximation shaping */
return convolve(&burst, pulse, NULL, START_ONLY);
}
/* Assume input bits are not differentially encoded */
signalVector *modulateBurst(const BitVector &wBurst, int guardPeriodLength,
int sps, bool emptyPulse)
{
if (emptyPulse)
return rotateBurst(wBurst, guardPeriodLength, sps);
else if (sps == 4)
return modulateBurstLaurent(wBurst);
else
return modulateBurstBasic(wBurst, guardPeriodLength, sps);
}
static void generateSincTable()
{
for (int i = 0; i < TABLESIZE; i++) {
auto x = (double) i / TABLESIZE * 8 * M_PI;
auto y = sin(x) / x;
sincTable[i] = std::isnan(y) ? 1.0 : y;
}
}
static float sinc(float x)
{
if (fabs(x) >= 8 * M_PI)
return 0.0;
int index = (int) floorf(fabs(x) / (8 * M_PI) * TABLESIZE);
return sincTable[index];
}
/*
* Create fractional delay filterbank with Blackman-harris windowed
* sinc function generator. The number of filters generated is specified
* by the DELAYFILTS value.
*/
static void generateDelayFilters()
{
int h_len = 20;
complex *data;
signalVector *h;
signalVector::iterator itr;
float k, sum;
float a0 = 0.35875;
float a1 = 0.48829;
float a2 = 0.14128;
float a3 = 0.01168;
for (int i = 0; i < DELAYFILTS; i++) {
data = (complex *) convolve_h_alloc(h_len);
h = new signalVector(data, 0, h_len, convolve_h_alloc, free);
h->setAligned(true);
h->isReal(true);
sum = 0.0;
itr = h->end();
for (int n = 0; n < h_len; n++) {
k = (float) n;
*--itr = (complex) sinc(M_PI_F *
(k - (float) h_len / 2.0 - (float) i / DELAYFILTS));
*itr *= a0 -
a1 * cos(2 * M_PI * n / (h_len - 1)) +
a2 * cos(4 * M_PI * n / (h_len - 1)) -
a3 * cos(6 * M_PI * n / (h_len - 1));
sum += itr->real();
}
itr = h->begin();
for (int n = 0; n < h_len; n++)
*itr++ /= sum;
delayFilters[i] = h;
}
}
signalVector *delayVector(const signalVector *in, signalVector *out, float delay)
{
int whole, index;
float frac;
signalVector *h, *shift, *fshift = NULL;
whole = floor(delay);
frac = delay - whole;
/* Sinc interpolated fractional shift (if allowable) */
if (fabs(frac) > 1e-2) {
index = floorf(frac * (float) DELAYFILTS);
h = delayFilters[index];
fshift = convolve(in, h, NULL, NO_DELAY);
if (!fshift)
return NULL;
}
if (!fshift)
shift = new signalVector(*in);
else
shift = fshift;
/* Integer sample shift */
if (whole < 0) {
whole = -whole;
signalVector::iterator wBurstItr = shift->begin();
signalVector::iterator shiftedItr = shift->begin() + whole;
while (shiftedItr < shift->end())
*wBurstItr++ = *shiftedItr++;
while (wBurstItr < shift->end())
*wBurstItr++ = 0.0;
} else if (whole >= 0) {
signalVector::iterator wBurstItr = shift->end() - 1;
signalVector::iterator shiftedItr = shift->end() - 1 - whole;
while (shiftedItr >= shift->begin())
*wBurstItr-- = *shiftedItr--;
while (wBurstItr >= shift->begin())
*wBurstItr-- = 0.0;
}
if (!out)
return shift;
out->clone(*shift);
delete shift;
return out;
}
static complex interpolatePoint(const signalVector &inSig, float ix)
{
int start = (int) (floor(ix) - 10);
if (start < 0) start = 0;
int end = (int) (floor(ix) + 11);
if ((unsigned) end > inSig.size()-1) end = inSig.size()-1;
complex pVal = 0.0;
if (!inSig.isReal()) {
for (int i = start; i < end; i++)
pVal += inSig[i] * sinc(M_PI_F*(i-ix));
}
else {
for (int i = start; i < end; i++)
pVal += inSig[i].real() * sinc(M_PI_F*(i-ix));
}
return pVal;
}
static complex fastPeakDetect(const signalVector &rxBurst, float *index)
{
float val, max = 0.0f;
complex amp;
int _index = -1;
for (size_t i = 0; i < rxBurst.size(); i++) {
val = rxBurst[i].norm2();
if (val > max) {
max = val;
_index = i;
amp = rxBurst[i];
}
}
if (index)
*index = (float) _index;
return amp;
}
static complex peakDetect(const signalVector &rxBurst,
float *peakIndex, float *avgPwr)
{
complex maxVal = 0.0;
float maxIndex = -1;
float sumPower = 0.0;
for (unsigned int i = 0; i < rxBurst.size(); i++) {
float samplePower = rxBurst[i].norm2();
if (samplePower > maxVal.real()) {
maxVal = samplePower;
maxIndex = i;
}
sumPower += samplePower;
}
// interpolate around the peak
// to save computation, we'll use early-late balancing
float earlyIndex = maxIndex-1;
float lateIndex = maxIndex+1;
float incr = 0.5;
while (incr > 1.0/1024.0) {
complex earlyP = interpolatePoint(rxBurst,earlyIndex);
complex lateP = interpolatePoint(rxBurst,lateIndex);
if (earlyP < lateP)
earlyIndex += incr;
else if (earlyP > lateP)
earlyIndex -= incr;
else break;
incr /= 2.0;
lateIndex = earlyIndex + 2.0;
}
maxIndex = earlyIndex + 1.0;
maxVal = interpolatePoint(rxBurst,maxIndex);
if (peakIndex!=NULL)
*peakIndex = maxIndex;
if (avgPwr!=NULL)
*avgPwr = (sumPower-maxVal.norm2()) / (rxBurst.size()-1);
return maxVal;
}
void scaleVector(signalVector &x,
complex scale)
{
#ifdef HAVE_NEON
int len = x.size();
scale_complex((float *) x.begin(),
(float *) x.begin(),
(float *) &scale, len);
#else
signalVector::iterator xP = x.begin();
signalVector::iterator xPEnd = x.end();
if (!x.isReal()) {
while (xP < xPEnd) {
*xP = *xP * scale;
xP++;
}
}
else {
while (xP < xPEnd) {
*xP = xP->real() * scale;
xP++;
}
}
#endif
}
/** in-place conjugation */
static void conjugateVector(signalVector &x)
{
if (x.isReal()) return;
signalVector::iterator xP = x.begin();
signalVector::iterator xPEnd = x.end();
while (xP < xPEnd) {
*xP = xP->conj();
xP++;
}
}
static bool generateMidamble(int sps, int tsc)
{
bool status = true;
float toa;
complex *data = NULL;
signalVector *autocorr = NULL, *midamble = NULL;
signalVector *midMidamble = NULL, *_midMidamble = NULL;
if ((tsc < 0) || (tsc > 7))
return false;
delete gMidambles[tsc];
/* Use middle 16 bits of each TSC. Correlation sequence is not pulse shaped */
midMidamble = modulateBurst(gTrainingSequence[tsc].segment(5,16), 0, sps, true);
if (!midMidamble)
return false;
/* Simulated receive sequence is pulse shaped */
midamble = modulateBurst(gTrainingSequence[tsc], 0, sps, false);
if (!midamble) {
status = false;
goto release;
}
// NOTE: Because ideal TSC 16-bit midamble is 66 symbols into burst,
// the ideal TSC has an + 180 degree phase shift,
// due to the pi/2 frequency shift, that
// needs to be accounted for.
// 26-midamble is 61 symbols into burst, has +90 degree phase shift.
scaleVector(*midMidamble, complex(-1.0, 0.0));
scaleVector(*midamble, complex(0.0, 1.0));
conjugateVector(*midMidamble);
/* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
data = (complex *) convolve_h_alloc(midMidamble->size());
_midMidamble = new signalVector(data, 0, midMidamble->size(), convolve_h_alloc, free);
_midMidamble->setAligned(true);
midMidamble->copyTo(*_midMidamble);
autocorr = convolve(midamble, _midMidamble, NULL, NO_DELAY);
if (!autocorr) {
status = false;
goto release;
}
gMidambles[tsc] = new CorrelationSequence;
gMidambles[tsc]->sequence = _midMidamble;
gMidambles[tsc]->gain = peakDetect(*autocorr, &toa, NULL);
/* For 1 sps only
* (Half of correlation length - 1) + midpoint of pulse shape + remainder
* 13.5 = (16 / 2 - 1) + 1.5 + (26 - 10) / 2
*/
if (sps == 1)
gMidambles[tsc]->toa = toa - 13.5;
else
gMidambles[tsc]->toa = 0;
release:
delete autocorr;
delete midamble;
delete midMidamble;
if (!status) {
delete _midMidamble;
free(data);
gMidambles[tsc] = NULL;
}
return status;
}
static CorrelationSequence *generateEdgeMidamble(int tsc)
{
complex *data = NULL;
signalVector *midamble = NULL, *_midamble = NULL;
CorrelationSequence *seq;
if ((tsc < 0) || (tsc > 7))
return NULL;
/* Use middle 48 bits of each TSC. Correlation sequence is not pulse shaped */
const BitVector *bits = &gEdgeTrainingSequence[tsc];
midamble = modulateEdgeBurst(bits->segment(15, 48), 1, true);
if (!midamble)
return NULL;
conjugateVector(*midamble);
data = (complex *) convolve_h_alloc(midamble->size());
_midamble = new signalVector(data, 0, midamble->size(), convolve_h_alloc, free);
_midamble->setAligned(true);
midamble->copyTo(*_midamble);
/* Channel gain is an empirically measured value */
seq = new CorrelationSequence;
seq->sequence = _midamble;
seq->gain = Complex<float>(-19.6432, 19.5006) / 1.18;
seq->toa = 0;
delete midamble;
return seq;
}
static bool generateRACHSequence(CorrelationSequence **seq, const BitVector &bv, int sps)
{
bool status = true;
float toa;
complex *data = NULL;
signalVector *autocorr = NULL;
signalVector *seq0 = NULL, *seq1 = NULL, *_seq1 = NULL;
if (*seq != NULL)
delete *seq;
seq0 = modulateBurst(bv, 0, sps, false);
if (!seq0)
return false;
seq1 = modulateBurst(bv.segment(0, 40), 0, sps, true);
if (!seq1) {
status = false;
goto release;
}
conjugateVector(*seq1);
/* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
data = (complex *) convolve_h_alloc(seq1->size());
_seq1 = new signalVector(data, 0, seq1->size(), convolve_h_alloc, free);
_seq1->setAligned(true);
seq1->copyTo(*_seq1);
autocorr = convolve(seq0, _seq1, autocorr, NO_DELAY);
if (!autocorr) {
status = false;
goto release;
}
*seq = new CorrelationSequence;
(*seq)->sequence = _seq1;
(*seq)->gain = peakDetect(*autocorr, &toa, NULL);
/* For 1 sps only
* (Half of correlation length - 1) + midpoint of pulse shaping filer
* 20.5 = (40 / 2 - 1) + 1.5
*/
if (sps == 1)
(*seq)->toa = toa - 20.5;
else
(*seq)->toa = 0.0;
release:
delete autocorr;
delete seq0;
delete seq1;
if (!status) {
delete _seq1;
free(data);
*seq = NULL;
}
return status;
}
/*
* Peak-to-average computation +/- range from peak in symbols
*/
#define COMPUTE_PEAK_MIN 2
#define COMPUTE_PEAK_MAX 5
/*
* Minimum number of values needed to compute peak-to-average
*/
#define COMPUTE_PEAK_CNT 5
static float computePeakRatio(signalVector *corr,
int sps, float toa, complex amp)
{
int num = 0;
complex *peak;
float rms, avg = 0.0;
/* Check for bogus results */
if ((toa < 0.0) || (toa > corr->size()))
return 0.0;
peak = corr->begin() + (int) rint(toa);
for (int i = COMPUTE_PEAK_MIN * sps; i <= COMPUTE_PEAK_MAX * sps; i++) {
if (peak - i >= corr->begin()) {
avg += (peak - i)->norm2();
num++;
}
if (peak + i < corr->end()) {
avg += (peak + i)->norm2();
num++;
}
}
if (num < COMPUTE_PEAK_CNT)
return 0.0;
rms = sqrtf(avg / (float) num) + 0.00001;
return (amp.abs()) / rms;
}
float energyDetect(const signalVector &rxBurst, unsigned windowLength)
{
signalVector::const_iterator windowItr = rxBurst.begin(); //+rxBurst.size()/2 - 5*windowLength/2;
float energy = 0.0;
if (windowLength == 0) return 0.0;
if (windowLength > rxBurst.size()) windowLength = rxBurst.size();
for (unsigned i = 0; i < windowLength; i++) {
energy += windowItr->norm2();
windowItr+=4;
}
return energy/windowLength;
}
static signalVector *downsampleBurst(const signalVector &burst)
{
signalVector in(DOWNSAMPLE_IN_LEN, dnsampler->len());
signalVector *out = new signalVector(DOWNSAMPLE_OUT_LEN);
burst.copyToSegment(in, 0, DOWNSAMPLE_IN_LEN);
if (dnsampler->rotate((float *) in.begin(), DOWNSAMPLE_IN_LEN,
(float *) out->begin(), DOWNSAMPLE_OUT_LEN) < 0) {
delete out;
out = NULL;
}
return out;
};
/*
* Computes C/I (Carrier-to-Interference ratio) in dB (deciBels).
* It is computed from the training sequence of each received burst,
* by comparing the "ideal" training sequence with the actual one.
*/
static float computeCI(const signalVector *burst, const CorrelationSequence *sync,
float toa, int start, const complex &xcorr)
{
const int N = sync->sequence->size();
float S, C;
/* Integer position where the sequence starts */
const int ps = start + 1 - N + (int)roundf(toa);
/* Estimate Signal power */
S = 0.0f;
for (int i=0, j=ps; i<(int)N; i++,j++)
S += (*burst)[j].norm2();
S /= N;
/* Esimate Carrier power */
C = xcorr.norm2() / ((N - 1) * sync->gain.abs());
/* Interference = Signal - Carrier, so C/I = C / (S - C).
* Calculated in dB:
* C/I_dB = 10 * log10(C/I)
* C/I_dB = 10 * (1/log2(10)) * log2(C/I)
* C/I_dB = 10 * 0.30103 * log2(C/I)
* C/I_dB = 3.0103 * log2(C/I)
*/
return 3.0103f * log2f(C / (S - C));
}
/*
* Detect a burst based on correlation and peak-to-average ratio
*
* For one sampler-per-symbol, perform fast peak detection (no interpolation)
* for initial gating. We do this because energy detection should be disabled.
* For higher oversampling values, we assume the energy detector is in place
* and we run full interpolating peak detection.
*/
static int detectBurst(const signalVector &burst,
signalVector &corr, const CorrelationSequence *sync,
float thresh, int sps, int start, int len,
struct estim_burst_params *ebp)
{
const signalVector *corr_in;
signalVector *dec = NULL;
complex xcorr;
int rc = 1;
switch (sps) {
case 1:
corr_in = &burst;
break;
case 4:
dec = downsampleBurst(burst);
/* Running at the downsampled rate at this point: */
corr_in = dec;
sps = 1;
break;
default:
osmo_panic("%s:%d SPS %d not supported! Only 1 or 4 supported", __FILE__, __LINE__, sps);
}
/* Correlate */
if (!convolve(corr_in, sync->sequence, &corr,
CUSTOM, start, len)) {
rc = -1;
goto del_ret;
}
/* Peak detection - place restrictions at correlation edges */
ebp->amp = fastPeakDetect(corr, &ebp->toa);
if ((ebp->toa < 3 * sps) || (ebp->toa > len - 3 * sps)) {
rc = 0;
goto del_ret;
}
/* Peak-to-average ratio */
if (computePeakRatio(&corr, sps, ebp->toa, ebp->amp) < thresh) {
rc = 0;
goto del_ret;
}
/* Refine TOA and correlation value */
xcorr = peakDetect(corr, &ebp->toa, NULL);
/* Compute C/I */
ebp->ci = computeCI(corr_in, sync, ebp->toa, start, xcorr);
/* Normalize our channel gain */
ebp->amp = xcorr / sync->gain;
/* Compensate for residuate time lag */
ebp->toa = ebp->toa - sync->toa;
del_ret:
delete dec;
return rc;
}
static float maxAmplitude(const signalVector &burst)
{
float max = 0.0;
for (size_t i = 0; i < burst.size(); i++) {
if (fabs(burst[i].real()) > max)
max = fabs(burst[i].real());
if (fabs(burst[i].imag()) > max)
max = fabs(burst[i].imag());
}
return max;
}
/*
* RACH/Normal burst detection with clipping detection
*
* Correlation window parameters:
* target: Tail bits + burst length
* head: Search symbols before target
* tail: Search symbols after target
*/
static int detectGeneralBurst(const signalVector &rxBurst, float thresh, int sps,
int target, int head, int tail,
CorrelationSequence *sync,
struct estim_burst_params *ebp)
{
int rc, start, len;
bool clipping = false;
if ((sps != 1) && (sps != 4))
return -SIGERR_UNSUPPORTED;
// Detect potential clipping
// We still may be able to demod the burst, so we'll give it a try
// and only report clipping if we can't demod.
float maxAmpl = maxAmplitude(rxBurst);
if (maxAmpl > CLIP_THRESH) {
LOG(INFO) << "max burst amplitude: " << maxAmpl << " is above the clipping threshold: " << CLIP_THRESH << std::endl;
clipping = true;
}
start = target - head - 1;
len = head + tail;
signalVector corr(len);
rc = detectBurst(rxBurst, corr, sync,
thresh, sps, start, len, ebp);
if (rc < 0) {
return -SIGERR_INTERNAL;
} else if (!rc) {
ebp->amp = 0.0f;
ebp->toa = 0.0f;
ebp->ci = 0.0f;
return clipping?-SIGERR_CLIP:SIGERR_NONE;
}
/* Subtract forward search bits from delay */
ebp->toa -= head;
return 1;
}
/*
* RACH burst detection
*
* Correlation window parameters:
* target: Tail bits + RACH length (reduced from 41 to a multiple of 4)
* head: Search 8 symbols before target
* tail: Search 8 symbols + maximum expected delay
*/
static int detectRACHBurst(const signalVector &burst, float threshold, int sps,
unsigned max_toa, bool ext, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
int i, num_seq;
target = 8 + 40;
head = 8;
tail = 8 + max_toa;
num_seq = ext ? 3 : 1;
for (i = 0; i < num_seq; i++) {
rc = detectGeneralBurst(burst, threshold, sps, target, head, tail,
gRACHSequences[i], ebp);
if (rc > 0) {
ebp->tsc = i;
break;
}
}
return rc;
}
/*
* Normal burst detection
*
* Correlation window parameters:
* target: Tail + data + mid-midamble + 1/2 remaining midamblebits
* head: Search 6 symbols before target
* tail: Search 6 symbols + maximum expected delay
*/
static int analyzeTrafficBurst(const signalVector &burst, unsigned tsc, float threshold,
int sps, unsigned max_toa, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
CorrelationSequence *sync;
if (tsc > 7)
return -SIGERR_UNSUPPORTED;
target = 3 + 58 + 16 + 5;
head = 6;
tail = 6 + max_toa;
sync = gMidambles[tsc];
ebp->tsc = tsc;
rc = detectGeneralBurst(burst, threshold, sps, target, head, tail, sync, ebp);
return rc;
}
static int detectEdgeBurst(const signalVector &burst, unsigned tsc, float threshold,
int sps, unsigned max_toa, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
CorrelationSequence *sync;
if (tsc > 7)
return -SIGERR_UNSUPPORTED;
target = 3 + 58 + 16 + 5;
head = 6;
tail = 6 + max_toa;
sync = gEdgeMidambles[tsc];
ebp->tsc = tsc;
rc = detectGeneralBurst(burst, threshold, sps,
target, head, tail, sync, ebp);
return rc;
}
int detectAnyBurst(const signalVector &burst, unsigned tsc, float threshold,
int sps, CorrType type, unsigned max_toa,
struct estim_burst_params *ebp)
{
int rc = 0;
switch (type) {
case EDGE:
rc = detectEdgeBurst(burst, tsc, threshold, sps, max_toa, ebp);
if (rc > 0)
break;
else
type = TSC;
case TSC:
rc = analyzeTrafficBurst(burst, tsc, threshold, sps, max_toa, ebp);
break;
case EXT_RACH:
case RACH:
rc = detectRACHBurst(burst, threshold, sps, max_toa, type == EXT_RACH, ebp);
break;
default:
LOG(ERR) << "Invalid correlation type";
}
if (rc > 0)
return type;
return rc;
}
/*
* Soft 8-PSK decoding using Manhattan distance metric
*/
static SoftVector *softSliceEdgeBurst(signalVector &burst)
{
size_t nsyms = 148;
if (burst.size() < nsyms)
return NULL;
signalVector::iterator itr;
SoftVector *bits = new SoftVector(nsyms * 3);
/*
* Bits 0 and 1 - First and second bits of the symbol respectively
*/
rotateBurst2(burst, -M_PI / 8.0);
itr = burst.begin();
for (size_t i = 0; i < nsyms; i++) {
(*bits)[3 * i + 0] = -itr->imag();
(*bits)[3 * i + 1] = itr->real();
itr++;
}
/*
* Bit 2 - Collapse symbols into quadrant 0 (positive X and Y).
* Decision area is then simplified to X=Y axis. Rotate again to
* place decision boundary on X-axis.
*/
itr = burst.begin();
for (size_t i = 0; i < burst.size(); i++) {
burst[i] = Complex<float>(fabs(itr->real()), fabs(itr->imag()));
itr++;
}
rotateBurst2(burst, -M_PI / 4.0);
itr = burst.begin();
for (size_t i = 0; i < nsyms; i++) {
(*bits)[3 * i + 2] = -itr->imag();
itr++;
}
signalVector soft(bits->size());
for (size_t i = 0; i < bits->size(); i++)
soft[i] = (*bits)[i];
return bits;
}
/*
* Convert signalVector to SoftVector by taking real part of the signal.
*/
static SoftVector *signalToSoftVector(signalVector *dec)
{
SoftVector *bits = new SoftVector(dec->size());
SoftVector::iterator bit_itr = bits->begin();
signalVector::iterator burst_itr = dec->begin();
for (; burst_itr < dec->end(); burst_itr++)
*bit_itr++ = burst_itr->real();
return bits;
}
/*
* Shared portion of GMSK and EDGE demodulators consisting of timing
* recovery and single tap channel correction. For 4 SPS (if activated),
* the output is downsampled prior to the 1 SPS modulation specific
* stages.
*/
static signalVector *demodCommon(const signalVector &burst, int sps,
const struct estim_burst_params *ebp)
{
signalVector *delay, *dec;
if ((sps != 1) && (sps != 4))
return NULL;
delay = delayVector(&burst, NULL, -ebp->toa * (float) sps);
scaleVector(*delay, (complex) 1.0 / ebp->amp);
if (sps == 1)
return delay;
dec = downsampleBurst(*delay);
delete delay;
return dec;
}
/*
* Demodulate GSMK burst. Prior to symbol rotation, operate at
* 4 SPS (if activated) to minimize distortion through the fractional
* delay filters. Symbol rotation and after always operates at 1 SPS.
*/
static SoftVector *demodGmskBurst(const signalVector &rxBurst, int sps,
const struct estim_burst_params *ebp)
{
SoftVector *bits;
signalVector *dec;
dec = demodCommon(rxBurst, sps, ebp);
if (!dec)
return NULL;
/* Shift up by a quarter of a frequency */
GMSKReverseRotate(*dec, 1);
/* Take real part of the signal */
bits = signalToSoftVector(dec);
delete dec;
return bits;
}
static float computeEdgeCI(const signalVector *rot)
{
float err_pwr = 0.0f;
float step = 2.0f * M_PI_F / 8.0f;
for (size_t i = 8; i < rot->size() - 8; i++) {
/* Compute the ideal symbol */
complex sym = (*rot)[i];
float phase = step * roundf(sym.arg() / step);
complex ideal = complex(cos(phase), sin(phase));
/* Compute the error vector */
complex err = ideal - sym;
/* Accumulate power */
err_pwr += err.norm2();
}
return 3.0103f * log2f(1.0f * (rot->size() - 16) / err_pwr);
}
/*
* Demodulate an 8-PSK burst. Prior to symbol rotation, operate at
* 4 SPS (if activated) to minimize distortion through the fractional
* delay filters. Symbol rotation and after always operates at 1 SPS.
*
* Allow 1 SPS demodulation here, but note that other parts of the
* transceiver restrict EDGE operation to 4 SPS - 8-PSK distortion
* through the fractional delay filters at 1 SPS renders signal
* nearly unrecoverable.
*/
static SoftVector *demodEdgeBurst(const signalVector &burst, int sps,
struct estim_burst_params *ebp)
{
SoftVector *bits;
signalVector *dec, *rot, *eq;
dec = demodCommon(burst, sps, ebp);
if (!dec)
return NULL;
/* Equalize and derotate */
eq = convolve(dec, GSMPulse4->c0_inv, NULL, NO_DELAY);
rot = derotateEdgeBurst(*eq, 1);
ebp->ci = computeEdgeCI(rot);
/* Soft slice and normalize */
bits = softSliceEdgeBurst(*rot);
delete dec;
delete eq;
delete rot;
return bits;
}
SoftVector *demodAnyBurst(const signalVector &burst, CorrType type,
int sps, struct estim_burst_params *ebp)
{
if (type == EDGE)
return demodEdgeBurst(burst, sps, ebp);
else
return demodGmskBurst(burst, sps, ebp);
}
bool sigProcLibSetup()
{
generateSincTable();
initGMSKRotationTables();
GSMPulse1 = generateGSMPulse(1);
GSMPulse4 = generateGSMPulse(4);
generateRACHSequence(&gRACHSequences[0], gRACHSynchSequenceTS0, 1);
generateRACHSequence(&gRACHSequences[1], gRACHSynchSequenceTS1, 1);
generateRACHSequence(&gRACHSequences[2], gRACHSynchSequenceTS2, 1);
for (int tsc = 0; tsc < 8; tsc++) {
generateMidamble(1, tsc);
gEdgeMidambles[tsc] = generateEdgeMidamble(tsc);
}
generateDelayFilters();
dnsampler = new Resampler(1, 4);
if (!dnsampler->init()) {
LOG(ALERT) << "Rx resampler failed to initialize";
goto fail;
}
return true;
fail:
sigProcLibDestroy();
return false;
}
|