1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/*
* (C) 2023 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
// this allows messing with the demod to check the detecton offset impact,
// not intended for actual automated tests.
#include "sigProcLib.h"
extern "C" {
#include "convert.h"
#include <convolve.h>
}
#define _CRT_SECURE_NO_WARNINGS
#include <algorithm>
#include <string.h>
#include <iomanip>
#include <numeric>
#include <memory>
#include <iostream>
#include <fstream>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <grgsm_vitac/grgsm_vitac.h>
#define DO_RACH
const int SAMPLE_SCALE_FACTOR = 1;
template <typename DST_T, typename SRC_T, typename ST>
void convert_and_scale(void *dst, void *src, unsigned int src_len, ST scale)
{
for (unsigned int i = 0; i < src_len; i++)
reinterpret_cast<DST_T *>(dst)[i] = static_cast<DST_T>((reinterpret_cast<SRC_T *>(src)[i]) * scale);
}
template <typename DST_T, typename SRC_T>
void convert_and_scale_default(void *dst, void *src, unsigned int src_len)
{
return convert_and_scale<DST_T, SRC_T>(dst, src, src_len, SAMPLE_SCALE_FACTOR);
}
static const unsigned int txFullScale = (float)(1 << 14) - 1;
// static const unsigned int rxFullScale = (float)(1 << 14) - 1;
static const BitVector
gRACHBurstx("0011101001001011011111111001100110101010001111000110111101111110000111001001010110011000");
static const BitVector gTrainingSequencex[] = {
BitVector("00100101110000100010010111"), BitVector("00101101110111100010110111"),
BitVector("01000011101110100100001110"), BitVector("01000111101101000100011110"),
BitVector("00011010111001000001101011"), BitVector("01001110101100000100111010"),
BitVector("10100111110110001010011111"), BitVector("11101111000100101110111100"),
};
struct mrv {
std::vector<char> bits;
signalVector *rvbuf;
std::unique_ptr<std::vector<std::complex<float>>> convolved;
// mrv(): bits(), demod_bits() {}
CorrType ct;
};
static mrv genRandNormalBurstx(int tsc, int sps, int tn)
{
mrv retstruct;
int i = 0;
BitVector bits(148);
/* Tail bits */
for (; i < 3; i++)
bits[i] = 0;
/* Random bits */
for (int j = 0; i < 60; i++, j++)
bits[i] = rand() % 2;
/* Stealing bit */
bits[i++] = 0;
/* Training sequence */
for (int n = 0; i < 87; i++, n++)
bits[i] = gTrainingSequencex[tsc][n];
/* Stealing bit */
bits[i++] = 0;
/* Random bits */
for (; i < 145; i++)
bits[i] = rand() % 2;
/* Tail bits */
for (; i < 148; i++)
bits[i] = 0;
int guard = 8 + !(tn % 4);
auto r = modulateBurst(bits, guard, sps);
retstruct.rvbuf = r;
for (size_t i = 0; i < bits.size(); i++)
retstruct.bits.push_back(bits.bit(i) ? 1 : 0);
return retstruct;
}
static mrv genRandAccessBurstx(int delay, int sps, int tn)
{
mrv retstruct;
int i = 0;
BitVector bits(88 + delay);
/* delay */
for (; i < delay; i++)
bits[i] = 0;
/* head and synch bits */
for (int n = 0; i < 49 + delay; i++, n++)
bits[i] = gRACHBurstx[n];
/* Random bits */
for (int j = 0; i < 85 + delay; i++, j++)
bits[i] = rand() % 2;
for (; i < 88 + delay; i++)
bits[i] = 0;
int guard = 68 - delay + !(tn % 4);
auto r = modulateBurst(bits, guard, sps);
retstruct.rvbuf = r;
for (size_t i = 0; i < bits.size(); i++)
retstruct.bits.push_back(bits.bit(i) ? 1 : 0);
return retstruct;
}
extern gr_complex d_acc_training_seq[N_ACCESS_BITS]; ///<encoded training sequence of a SCH burst
extern gr_complex d_sch_training_seq[N_SYNC_BITS]; ///<encoded training sequence of a SCH burst
extern gr_complex d_norm_training_seq[TRAIN_SEQ_NUM]
[N_TRAIN_BITS]; ///<encoded training sequences of a normal and dummy burst
void sv_write_helper(signalVector *burst, std::string fname)
{
auto start = burst->begin();
auto n = burst->bytes();
char *data = reinterpret_cast<char *>(start);
const int len_in_real = burst->size() * 2;
auto cvrtbuf_tx_a = new int16_t[len_in_real];
convert_float_short(cvrtbuf_tx_a, (float *)burst->begin(), float(txFullScale), len_in_real);
std::ofstream fout;
fout.open(fname + ".cfile", std::ios::binary | std::ios::out);
fout.write(data, n);
fout.close();
fout.open(fname + ".cs16", std::ios::binary | std::ios::out);
fout.write((char *)cvrtbuf_tx_a, len_in_real * sizeof(uint16_t));
fout.close();
delete[] cvrtbuf_tx_a;
}
// borrowed from a real world burst..
static std::vector<std::complex<float>> chan_im_resp = {
{ 4.1588e-05 + -0.000361925 }, { 0.000112728 + -0.000289796 }, { 0.000162952 + -0.000169028 },
{ 0.000174185 + -2.54575e-05 }, { 0.000142947 + 0.000105992 }, { 8.65919e-05 + 0.000187041 },
{ 4.15799e-05 + 0.000184346 }, { 5.30207e-05 + 7.84921e-05 }, { 0.000158877 + -0.000128058 },
{ 0.000373956 + -0.000407954 }, { 0.000680606 + -0.000712065 }, { 0.00102929 + -0.000979604 },
{ 0.00135049 + -0.00115333 }, { 0.00157434 + -0.0011948 }, { 0.00165098 + -0.00109534 },
{ 0.00156519 + -0.000878794 }, { 0.0013399 + -0.000594285 }, { 0.00102788 + -0.00030189 },
{ 0.000694684 + -5.58912e-05 }, { 0.000399328 + 0.000109463 }
};
// as above, downsampled to 1sps + just magnitude
static std::vector<float> chan_im_resp_trunc = { 1., 0.20513351, 0.10020305, 0.11490235 };
template <typename A, typename B>
auto conv(const std::vector<A> &a, const std::vector<B> &b) -> std::unique_ptr<std::vector<A>>
{
int data_len = a.size();
int conv_len = b.size();
int conv_size = conv_len + data_len - 1;
auto retv = std::make_unique<std::vector<A>>(conv_size);
for (int i = 0; i < data_len; ++i) {
for (int j = 0; j < conv_len; ++j) {
(*retv)[i + j] += a[i] * b[j];
}
}
return retv;
}
template <typename A>
static auto conv(const A *a, int len, std::vector<float> &b)
{
std::vector<A> aa(len);
std::copy_n(a, len, aa.begin());
std::reverse(b.begin(), b.end());
return conv(aa, b);
}
template <typename A>
static auto conv(const A *a, int len, std::vector<A> &b)
{
std::vector<A> aa(len);
std::copy_n(a, len, aa.begin());
std::reverse(b.begin(), b.end());
return conv(aa, b);
}
// signalvector is owning despite claiming not to, but we can pretend, too..
static void dummy_free(void *wData){};
static void *dummy_alloc(size_t newSize)
{
return 0;
};
template <typename T>
size_t read_from_file(std::string path, std::vector<T> &outvec)
{
std::ifstream infile;
infile.open(path, std::ios::in | std::ios::binary);
if (infile.fail()) {
std::cout << " not found: " << path << std::endl;
exit(0);
}
infile.seekg(0, std::ios_base::end);
size_t fsize = infile.tellg();
auto fsize_in_T = fsize / sizeof(T);
infile.seekg(0, std::ios_base::beg);
outvec.resize(fsize_in_T);
infile.read(reinterpret_cast<char *>(&outvec[0]), fsize);
infile.close();
std::cout << "Read " << fsize << " from " << path << std::endl;
return fsize;
}
void demod_real_burst(int num = 0)
{
auto path = "./nb_chunk_tsc7.cfile";
auto bitfile = "./demodbits_tsc7.s8";
std::vector<std::complex<float>> burstdata;
std::vector<char> bitdata;
read_from_file(path, burstdata);
read_from_file(bitfile, bitdata);
// print "known good" burst bits
std::cerr << "known bits:" << std::endl;
std::cerr << std::setw(5) << 0 << " - ";
for (auto i : bitdata)
std::cout << (i > 0 ? "1" : "0");
std::cerr << std::endl;
std::cerr << "demod tests sigproclib:" << std::endl;
auto ct = CorrType::TSC;
auto delay = 0;
auto tsc = 7;
int offset = 0;
auto cplx = reinterpret_cast<complex *>(&burstdata[offset]);
auto stdcplx = reinterpret_cast<std::complex<float> *>(&burstdata[offset]);
signalVector sv(&cplx[0], 0, burstdata.size() - offset, dummy_alloc, dummy_free);
struct estim_burst_params ebp;
auto rc = detectAnyBurst(sv, tsc, BURST_THRESH, 4, ct, 40, &ebp);
auto rxBurst = std::unique_ptr<SoftVector>(demodAnyBurst(sv, (CorrType)rc, 4, &ebp));
// print osmotrx sigproclib demod result
std::cerr << std::setw(5) << int(ebp.toa) << " o ";
for (ssize_t i = 0 + delay; i < 148 + delay; i++)
std::cout << (rxBurst->bit(i) ? "1" : "0");
std::cerr << std::endl;
std::cerr << "demod test va:" << std::endl;
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
float ncmax;
char demodded_softbits[444];
// demod at known offset
{
auto inp = &stdcplx[29]; // known offset
auto normal_burst_startX = get_norm_chan_imp_resp(inp, &chan_imp_resp[0], &ncmax, tsc);
detect_burst_nb(inp, &chan_imp_resp[0], normal_burst_startX, demodded_softbits);
std::cerr << std::setw(5) << normal_burst_startX << " v ";
for (size_t i = 0; i < 148; i++)
std::cerr << (demodded_softbits[i] < 0 ? "1" : "0");
std::cerr << std::endl;
}
{
std::cerr << "-- va start offset loop --" << std::endl;
std::cerr << "offset/det offset/#errors/known^demod bits" << std::endl;
for (int i = 0; i < 34; i++) {
auto inp = &stdcplx[i];
auto conved_beg = inp;
auto me = get_norm_chan_imp_resp(conved_beg, &chan_imp_resp[0], &ncmax, tsc);
detect_burst_nb(conved_beg, &chan_imp_resp[0], me, demodded_softbits);
auto bitdiffarr = std::make_unique<char[]>(148);
for (size_t i = 0; i < 148; i++)
bitdiffarr.get()[i] = (demodded_softbits[i] < 0 ? 1 : 0) ^ (bitdata[i] > 0 ? 1 : 0);
auto ber = std::accumulate(bitdiffarr.get(), bitdiffarr.get() + 148, 0);
std::cerr << std::setw(3) << i << ": " << std::setw(3) << me << " v " << std::setw(3) << ber
<< " ";
for (size_t i = 0; i < 148; i++)
std::cerr << (bitdiffarr[i] ? "1" : "0");
std::cerr << std::endl;
// std::cerr << std::setw(4) << i << " (" << std::setw(4) << 29 - i << "):" << std::setw(4) << org
// << " " << std::setw(4) << me << " y " << std::endl;
}
}
}
auto gen_burst(CorrType t, int delay, int tsc)
{
mrv rs;
if (t == CorrType::RACH) {
rs = genRandAccessBurstx(delay, 4, tsc);
} else if (t == CorrType::TSC) {
rs = genRandNormalBurstx(tsc, 4, 0);
} else {
std::cerr << "wtf?" << std::endl;
exit(0);
}
rs.ct = t;
signalVector *burst = rs.rvbuf;
// sv_write_helper(burst, std::to_string(num));
// scaleVector(*burst, {1, 0});
const int len_in_real = burst->size() * 2;
auto cvrtbuf_tx_a = std::make_unique<short[]>(len_in_real);
auto cvrtbuf_rx_a = std::make_unique<float[]>(len_in_real);
auto rx_cfloat = reinterpret_cast<std::complex<float> *>(&cvrtbuf_rx_a[0]);
convert_float_short(cvrtbuf_tx_a.get(), (float *)burst->begin(), float(txFullScale), len_in_real);
convert_short_float(cvrtbuf_rx_a.get(), cvrtbuf_tx_a.get(), len_in_real);
for (int i = 0; i < len_in_real; i++) // scale properly!
cvrtbuf_rx_a[i] *= 1. / txFullScale;
auto conved = conv(rx_cfloat, burst->size(), chan_im_resp);
std::cerr << "-- generated " << (t == CorrType::RACH ? "RACH" : "TSC") << " burst --" << std::endl;
for (size_t i = 0; i < rs.bits.size(); i++)
std::cerr << (rs.bits[i] ? "1" : "0");
std::cerr << std::endl;
delete burst;
rs.convolved = std::move(conved);
return rs;
}
void demod_generated_burst(CorrType t)
{
int tsc = 0;
int delay = 0;
auto rs = gen_burst(t, delay, tsc);
auto conved_beg = &(*rs.convolved)[0];
if (rs.ct == CorrType::RACH) {
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
float ncmax;
char demodded_softbits[444];
int normal_burst_start = 0;
normal_burst_start = get_access_imp_resp(conved_beg, &chan_imp_resp[0], &ncmax, 0);
normal_burst_start = std::max(normal_burst_start, 0);
for (int j = 0; j < 4; j++) {
for (int start_val = 0; start_val < 16; start_val++) {
auto bitdiffarr = std::make_unique<char[]>(rs.bits.size());
detect_burst_ab(conved_beg, &chan_imp_resp[0], normal_burst_start + j,
demodded_softbits, start_val);
for (size_t i = 0; i < rs.bits.size(); i++)
bitdiffarr.get()[i] = (demodded_softbits[i] < 0 ? 1 : 0) ^ rs.bits[i];
auto ber = std::accumulate(bitdiffarr.get(), bitdiffarr.get() + rs.bits.size(), 0);
std::cerr << "ber " << std::setw(4) << ber << " bo:" << std::setw(4) << j
<< " vas:" << std::setw(4) << start_val << " ";
// for (size_t i = 0; i < rs.num_bits; i++)
// std::cerr << (demodded_softbits[i] < 0 ? "1" : "0");
// std::cerr << std::endl;
// std::cerr << "d " << std::setw(4) << ber << " ";
for (size_t i = 0; i < rs.bits.size(); i++)
std::cerr << (bitdiffarr.get()[i] ? "1" : "0");
std::cerr << std::endl;
// std::cerr << "v " << std::setw(4) << j << std::setw(4) << start_val << " ";
// for (size_t i = 0; i < rs.num_bits; i++)
// std::cerr << (demodded_softbits[i] < 0 ? "1" : "0");
// std::cerr << std::endl;
// std::cerr << "d " << std::setw(4) << ber << " ";
// for (size_t i = 0; i < rs.num_bits; i++)
// std::cerr << (ptr.get()[i] ? "1" : "0");
// std::cerr << std::endl;
}
}
} else {
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
float ncmax;
char demodded_softbits[444];
auto normal_burst_start = get_norm_chan_imp_resp(conved_beg, &chan_imp_resp[0], &ncmax, tsc);
detect_burst_nb(conved_beg, &chan_imp_resp[0], normal_burst_start + 0, demodded_softbits);
std::cerr << "toa " << std::setprecision(2) << normal_burst_start << std::endl;
std::cerr << "vita ";
for (size_t i = 0; i < rs.bits.size(); i++)
std::cerr << (demodded_softbits[i] < 0 ? "1" : "0");
std::cerr << std::endl;
std::cerr << "diff ";
for (size_t i = 0; i < rs.bits.size(); i++)
std::cerr << ((demodded_softbits[i] < 0 ? 1 : 0) ^ rs.bits[i] ? "1" : "0");
std::cerr << std::endl;
}
struct estim_burst_params ebp;
char demodded_softbits[444];
complex *rx_sigproc_cfloat = reinterpret_cast<complex *>(conved_beg);
signalVector sv(rx_sigproc_cfloat, 0, rs.convolved->size(), dummy_alloc, dummy_free);
auto rc = detectAnyBurst(sv, tsc, BURST_THRESH, 4, rs.ct, 40, &ebp);
auto rxBurst = std::unique_ptr<SoftVector>(demodAnyBurst(sv, (CorrType)rc, 4, &ebp));
std::cerr << "toa " << std::setprecision(2) << ebp.toa << std::endl;
for (ssize_t i = 0; i < delay; i++) // maybe pad rach op?
demodded_softbits[i] = 0;
for (size_t i = 0 + delay; i < rs.bits.size() + delay; i++)
demodded_softbits[i] = (rxBurst->bit(i) ? 1 : 0);
std::cerr << "sigp ";
for (size_t i = 0; i < rs.bits.size(); i++)
std::cerr << (demodded_softbits[i] ? "1" : "0");
std::cerr << std::endl;
std::cerr << "diff ";
for (size_t i = 0; i < rs.bits.size(); i++)
std::cerr << (demodded_softbits[i] ^ rs.bits[i] ? "1" : "0");
std::cerr << std::endl;
}
void demod_test_offsets()
{
const int tsc = 0;
const int delaybuffer_realoffset = 100;
{
auto rs = gen_burst(CorrType::RACH, 0, tsc);
typeof(*rs.convolved) delay_buffer(rs.convolved->size() * 2); // plenty of space..
for (int delay = -10; delay < 60; delay++) {
std::fill(delay_buffer.begin(), delay_buffer.end(), 0);
std::copy(rs.convolved->begin(), rs.convolved->end(),
delay_buffer.begin() + delaybuffer_realoffset + delay);
auto conved_beg = &delay_buffer[delaybuffer_realoffset];
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
float ncmax;
auto va_burst_start = get_access_imp_resp(conved_beg, &chan_imp_resp[0], &ncmax, 60);
complex *rx_sigproc_cfloat = reinterpret_cast<complex *>(conved_beg);
struct estim_burst_params ebp;
signalVector sv(rx_sigproc_cfloat, 0, rs.convolved->size(), dummy_alloc, dummy_free);
detectAnyBurst(sv, tsc, BURST_THRESH, 4, rs.ct, 60, &ebp);
std::cerr << "delay:" << std::setw(3) << std::setprecision(2) << delay;
std::cerr << " va: " << std::setw(3) << std::setprecision(2) << va_burst_start;
std::cerr << " sg: " << std::setw(3) << std::setprecision(2) << ebp.toa;
std::cerr << " d: " << std::setw(3) << std::setprecision(2) << (ebp.toa * 4) - va_burst_start;
std::cerr << " ! " << float(va_burst_start + 13) / 4 << std::endl;
}
}
{
auto rs = gen_burst(CorrType::TSC, 0, tsc);
typeof(*rs.convolved) delay_buffer(rs.convolved->size() * 2); // plenty of space..
for (int delay = -10; delay < 10; delay++) {
std::fill(delay_buffer.begin(), delay_buffer.end(), 0);
std::copy(rs.convolved->begin(), rs.convolved->end(),
delay_buffer.begin() + delaybuffer_realoffset + delay);
auto conved_beg = &delay_buffer[delaybuffer_realoffset];
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
float ncmax;
auto va_burst_start = get_norm_chan_imp_resp(conved_beg, &chan_imp_resp[0], &ncmax, tsc);
complex *rx_sigproc_cfloat = reinterpret_cast<complex *>(conved_beg);
struct estim_burst_params ebp;
signalVector sv(rx_sigproc_cfloat, 0, rs.convolved->size(), dummy_alloc, dummy_free);
detectAnyBurst(sv, tsc, BURST_THRESH, 4, rs.ct, 60, &ebp);
std::cerr << "delay:" << std::setw(3) << std::setprecision(2) << delay;
std::cerr << " va: " << std::setw(3) << std::setprecision(2) << va_burst_start;
std::cerr << " sg: " << std::setw(3) << std::setprecision(2) << ebp.toa;
std::cerr << " d: " << std::setw(3) << std::setprecision(2) << (ebp.toa * 4) - va_burst_start;
std::cerr << " ! " << float(va_burst_start + 19) / 4 << std::endl;
}
}
}
int main()
{
convolve_init();
convert_init();
sigProcLibSetup();
initvita();
for (int i = 0; i < 1; i++) {
demod_real_burst(i);
demod_generated_burst(CorrType::RACH);
demod_generated_burst(CorrType::TSC);
demod_test_offsets();
}
}
|