File: World.ih

package info (click to toggle)
ospray 3.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 10,040 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 171; python: 69
file content (467 lines) | stat: -rw-r--r-- 14,086 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

// ospray stuff
#include "common/Clipping.ih"
#include "common/DGEnum.h"
#include "common/DifferentialGeometry.ih"
#include "common/FeatureFlags.ih"
#include "common/Instance.ih"
#include "common/Ray.ih"
#include "common/RayCone.ih"
#include "common/RayQueryContext.ih"
#include "common/VolumeIntervals.ih"
#include "geometry/GeometryDispatch.ih"
#include "volume/Volume.ih"
// c++ shared
#include "WorldShared.h"

OSPRAY_BEGIN_ISPC_NAMESPACE

#ifdef OSPRAY_TARGET_SYCL
using namespace ospray;
#endif

struct Renderer;

inline void traceGeometryRay(const World *uniform world,
    varying Ray &ray,
    const uniform FeatureFlagsHandler &ffh)
{
  // Skip if no geometries scene
  if (!world->embreeSceneHandleGeometries)
    return;

  const uniform FeatureFlags ff = getFeatureFlags(ffh);

  uniform RayQueryContextDefault context;
  initRayQueryContextDefault(&context, ffh);

  uniform RTCIntersectArguments intersectArgs;
  rtcInitIntersectArguments(&intersectArgs);
  intersectArgs.context = &context.ectx;
  intersectArgs.intersect = (RTCIntersectFunctionN)Geometry_dispatch_intersect;
  intersectArgs.feature_mask = (uniform RTCFeatureFlags)(
      (ff.geometry & ~FFG_OSPRAY_MASK) | RTC_FEATURE_FLAG_INSTANCE);

  rtcIntersectV(world->embreeSceneHandleGeometries,
      (varying RTCRayHit * uniform) & ray,
      &intersectArgs);
}

#ifdef OSPRAY_ENABLE_VOLUMES
inline void traceVolumeRay(
    const World *uniform world, varying Ray &ray, VolumeInterval &interval)
{
  initVolumeInterval(interval);
  if (!world->embreeSceneHandleVolumes)
    return;

  VolumeIntervals intervals;
#ifdef OSPRAY_TARGET_SYCL
  // We don't have access to TLS/dynamic memory on the kernel, so we only
  // support one interval on the GPU (i.e., no overlapping volumes)
  intervals.numVolumeIntervals = 0;
  intervals.numAllocated = 1;
  intervals.intervals = &interval;
#else
  allocVolumeIntervals(intervals);
#endif

  uniform RayQueryContextVolume context;
  InitRayQueryContextVolume(&context, &intervals);

  uniform RTCIntersectArguments intersectArgs;
  rtcInitIntersectArguments(&intersectArgs);
  intersectArgs.context = &context.ectx;
  intersectArgs.intersect = (RTCIntersectFunctionN)Volume_intersect_kernel;
  intersectArgs.feature_mask = RTC_FEATURE_FLAG_INSTANCE
      | RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS;

  rtcIntersectV(world->embreeSceneHandleVolumes,
      (varying RTCRayHit * uniform) & ray,
      &intersectArgs);

  // In the SYCL case we write to the interval parameter directly. In the
  // non-sycl case we need to get the first interval to return to the caller
  if (intervals.numVolumeIntervals > 0 && hasInterval(intervals.intervals[0])) {
    interval.instance = *(world->instances + intervals.intervals[0].instID);
    interval.volumetricModel =
        interval.instance->group
            ->volumetricModels[intervals.intervals[0].geomID];
    interval.interval = intervals.intervals[0].interval;
  }
#ifndef OSPRAY_TARGET_SYCL
  freeVolumeIntervals(intervals);
#endif
}

inline void traceVolumeRay(
    const World *uniform world, varying Ray &ray, VolumeIntervals &intervals)
{
  if (!world->embreeSceneHandleVolumes)
    return;

  uniform RayQueryContextVolume context;
  InitRayQueryContextVolume(&context, &intervals);

  uniform RTCIntersectArguments intersectArgs;
  rtcInitIntersectArguments(&intersectArgs);
  intersectArgs.context = &context.ectx;
  intersectArgs.intersect = (RTCIntersectFunctionN)Volume_intersect_kernel;
  intersectArgs.feature_mask = RTC_FEATURE_FLAG_INSTANCE
      | RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS;

  rtcIntersectV(world->embreeSceneHandleVolumes,
      (varying RTCRayHit * uniform) & ray,
      &intersectArgs);

  if (intervals.numVolumeIntervals > 0) {
    for (uniform uint32 i = 0; i < intervals.numVolumeIntervals; ++i) {
      Instance *instance = *(world->instances + intervals.intervals[i].instID);
      intervals.intervals[i].instance = instance;
      intervals.intervals[i].volumetricModel =
          instance->group->volumetricModels[intervals.intervals[i].geomID];
    }
  }
}
#endif

// Intersection context structure used for clipping geometries
struct RayQueryContextClipping
{
  uniform RayQueryContextDefault super;
  const World *uniform world;
  varying int32 corrClippingDepth;
  varying uint32 hitsCount;
  varying ClippingHit hits[CLIPPING_HITS_MAX_COUNT];
};

unmasked void clippingIntersectionFilterV(
    const RTCFilterFunctionNArguments *uniform args);

inline void traceClippingRay(const World *uniform world,
    varying Ray &ray,
    varying RayIntervals &rayIntervals,
    const uniform FeatureFlagsHandler &ffh)
{
  // Clipping disabled on GPU for now
#ifdef OSPRAY_TARGET_SYCL
  (void)world;
  (void)ffh;
  rayIntervals.intervals[0] = make_box1f(ray.t0, ray.t);
  rayIntervals.count = 1;
  return;
#else
  // A scene with clipping geometries has to exist
  if (!world->embreeSceneHandleClippers) {
    rayIntervals.intervals[0] = make_box1f(ray.t0, ray.t);
    rayIntervals.count = 1;
    return;
  }

  // Create and initialize intersection context
  RayQueryContextClipping context;
  rtcInitRayQueryContext(&context.super.ectx);
  context.super.type = RQCT_CLIPPING;
  context.super.ffh = &ffh;
  context.world = world;
  context.corrClippingDepth = 0;
  context.hitsCount = 0;

  // Create and initialize intersection arguments
  uniform RTCIntersectArguments intersectArgs;
  rtcInitIntersectArguments(&intersectArgs);
  intersectArgs.context = &context.super.ectx;
  intersectArgs.intersect = (RTCIntersectFunctionN)Geometry_dispatch_intersect;
  intersectArgs.filter = clippingIntersectionFilterV;
  intersectArgs.flags = RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER;

  // Intersect all geometry along given ray,
  // we have to temporarily extend the ray to inf because
  // even distant intersections affect visibility of close objects
  float origT = ray.t;
  ray.t = inf;
  rtcIntersectV(world->embreeSceneHandleClippers,
      (varying RTCRayHit * uniform) & ray,
      &intersectArgs);
  ray.t = origT;

  // Set initial clipping depth,
  // we have to apply correction because ray origin can be inside clipping area
  const uniform int32 voidClippingDepth = world->numInvertedClippers;
  int32 clippingDepth = voidClippingDepth - context.corrClippingDepth;

  // Variables used for intervals construction
  uint32 intervalId = 0;
  bool intervalCompleted = true;

  // Start ray interval if not in clipping area
  if (clippingDepth == 0) {
    rayIntervals.intervals[intervalId].lower = ray.t0;
    intervalCompleted = false;
  }

  // Iterate through collected hits and build ray intervals
  for (uint32 i = 0; i < context.hitsCount; i++) {
    // Do not build ray intervals that are further than ray.t
    float t = context.hits[i].t;
    float absT = abs(t);
    if (absT > ray.t)
      break;

    // Check if coming into or out of clipping area
    if (t < 0.0f) {
      clippingDepth--; // out of clipping area
    } else {
      clippingDepth++; // into clipping area
    }

    // Start interval if previous one is closed and we are not in clipping area
    if (clippingDepth == 0 && intervalCompleted) {
      rayIntervals.intervals[intervalId].lower = absT;
      intervalCompleted = false;
    }

    // End interval if current one is not closed and we enter clipping area
    if (clippingDepth > 0 && !intervalCompleted) {
      rayIntervals.intervals[intervalId].upper = absT;
      intervalCompleted = true;
      intervalId++;
    }
  }

  // Complete ray interval if started
  if (!intervalCompleted) {
    rayIntervals.intervals[intervalId].upper = ray.t;
    intervalId++;
  }

  // Save number of ray intervals
  rayIntervals.count = intervalId;
#endif
}

inline void traceGeometryRayIntervals(const World *uniform world,
    Ray &ray,
    RayIntervals &rayIntervals,
    const uniform FeatureFlagsHandler &ffh)
{
  // Save the ray
  const float t0 = ray.t0;
  const float t = ray.t;

  // Iterate through ray intervals
  for (uint32 i = 0; i < rayIntervals.count; i++) {
    // Set ray interval
    ray.t0 = rayIntervals.intervals[i].lower;
    ray.t = rayIntervals.intervals[i].upper;

    // Skip intervals outside of the ray range
    if (t < ray.t0 || ray.t < t0) {
      ray.t0 = t0;
      ray.t = t;
      continue;
    }

    // Clip interval to the ray range
    ray.t0 = max(ray.t0, t0);
    ray.t = min(ray.t, t);

    // Shoot the ray
    traceGeometryRay(world, ray, ffh);

    // Exit loop if geometry hit
    if (hadHit(ray)) {
      ray.t0 = t0;
      return;
    }
  }

  // Restore the ray
  ray.t0 = t0;
  ray.t = t;
}

inline void traceRay(const World *uniform world,
    varying Ray &ray,
    const uniform FeatureFlagsHandler &ffh)
{
#ifdef OSPRAY_TARGET_SYCL
  // Clipping disabled for now
  traceGeometryRay(world, ray, ffh);
#else
  // Fast path if no clipping geometry
  if (!world->embreeSceneHandleClippers) {
    traceGeometryRay(world, ray, ffh);
    return;
  }

  // Trace ray in clipping geometries scene, fill array with ray intervals
  varying RayIntervals rayIntervals;
  traceClippingRay(world, ray, rayIntervals, ffh);

  // Trace ray intervals
  traceGeometryRayIntervals(world, ray, rayIntervals, ffh);
#endif
}

inline bool isOccludedNoClipping(const World *uniform world,
    varying Ray &ray,
    const uniform FeatureFlagsHandler &ffh)
{
  // Skip if no geometries scene
  if (!world->embreeSceneHandleGeometries)
    return false;
  const uniform FeatureFlags ff = getFeatureFlags(ffh);

  uniform RayQueryContextDefault context;
  initRayQueryContextDefault(&context, ffh);

  uniform RTCOccludedArguments occludedArgs;
  rtcInitOccludedArguments(&occludedArgs);
  occludedArgs.context = &context.ectx;
  occludedArgs.occluded = (RTCOccludedFunctionN)Geometry_dispatch_occluded;
  occludedArgs.feature_mask = (uniform RTCFeatureFlags)(
      (ff.geometry & ~FFG_OSPRAY_MASK) | RTC_FEATURE_FLAG_INSTANCE);

  rtcOccludedV(world->embreeSceneHandleGeometries,
      (varying RTCRay * uniform) & ray,
      &occludedArgs);

  return ray.t < ray.t0;
}

inline bool areIntervalsOccluded(const World *uniform world,
    varying Ray &ray,
    varying RayIntervals &rayIntervals,
    const uniform FeatureFlagsHandler &ffh)
{
  // Iterate through ray intervals
  for (uint32 i = 0; i < rayIntervals.count; i++) {
    // Set ray interval
    ray.t0 = rayIntervals.intervals[i].lower;
    ray.t = rayIntervals.intervals[i].upper;

    // Check for occluders
    if (isOccludedNoClipping(world, ray, ffh))
      return true;
  }

  // No occluder found
  return false;
}

inline bool isOccluded(const World *uniform world,
    varying Ray &ray,
    const uniform FeatureFlagsHandler &ffh)
{
#ifdef OSPRAY_TARGET_SYCL
  // Clipping disabled for now
  return isOccludedNoClipping(world, ray, ffh);
#else
  // Fast path if no clipping geometry
  if (!world->embreeSceneHandleClippers) {
    return isOccludedNoClipping(world, ray, ffh);
  }

  // Allocate array for ray intervals
  varying RayIntervals rayIntervals;
  rayIntervals.count = 0;

  // Trace ray in clipping geometries scene, fill array with ray intervals
  traceClippingRay(world, ray, rayIntervals, ffh);

  // Is there any occluder within given ray intervals
  return areIntervalsOccluded(world, ray, rayIntervals, ffh);
#endif
}

/*! Perform post-intersect computations, i.e. fill the members of
    DifferentialGeometry. Should only get called for rays that actually hit
    that given world. Variables are calculated according to 'flags', a
    bit-combination of DG_PostIntersectFlags.
    The ray, dg.P, dg.Ng, and dg.Ns are in world-coordinates.
    Color defaults to vec4f(1.f) if queried but not present in geometry.
   */
inline void postIntersect(const World *uniform world,
    const Renderer *uniform renderer,
    varying DifferentialGeometry &dg,
    const varying Ray &ray,
    varying RayCone &rayCone,
    uniform int64 flags,
    const uniform FeatureFlagsHandler &ffh)
{
  dg.primID = ray.primID;
  dg.st = make_vec2f(ray.u, ray.v);

  dg.material = NULL;
  dg.renderer = renderer;

  if (flags & DG_COLOR)
    dg.color = make_vec4f(1.f);

  if (flags & DG_TANGENTS) {
    dg.dPds = make_vec3f(1.f, 0.f, 0.f);
    dg.dPdt = make_vec3f(0.f, 1.f, 0.f);
  }

  dg.P = ray.org + ray.t * ray.dir;
  dg.epsilon = 0.f; // per default no geometry-type specific epsilon

  foreach_unique (instID in ray.instID) {
    if (instID != RTC_INVALID_GEOMETRY_ID) {
      Instance *uniform instance = *(world->instances + instID);
      Instance_postIntersect(instance, renderer, dg, ray, flags, false, ffh);
    } else {
      dg.Ns = dg.Ng = ray.Ng;
    }
  }

  // merge geometry-type specific epsilon with general epsilon
  dg.epsilon = max(dg.epsilon, calcEpsilon(dg.P, ray.dir, ray.t));

// some useful combinations; enums unfortunately don't work :-(
#define DG_NG_FACEFORWARD (DG_NG | DG_FACEFORWARD)
#define DG_NS_FACEFORWARD (DG_NS | DG_FACEFORWARD)
#define DG_NG_NORMALIZE (DG_NG | DG_NORMALIZE)
#define DG_NS_NORMALIZE (DG_NS | DG_NORMALIZE)

  vec3f ffnng = normalize(dg.Ng);

  if ((flags & DG_NG_NORMALIZE) == DG_NG_NORMALIZE)
    dg.Ng = ffnng;

  if ((flags & DG_NS_NORMALIZE) == DG_NS_NORMALIZE)
    dg.Ns = normalize(dg.Ns);

  const bool flip = dot(ray.dir, dg.Ng) >= 0.f;
  if (flip)
    ffnng = neg(ffnng);

  if ((flags & DG_NG_FACEFORWARD) == DG_NG_FACEFORWARD && flip)
    dg.Ng = neg(dg.Ng);

  if ((flags & DG_NS_FACEFORWARD) == DG_NS_FACEFORWARD) {
    if (dot(dg.Ng, dg.Ns) < 0.f)
      dg.Ns = neg(dg.Ns);
  }

#undef DG_NG_FACEFORWARD
#undef DG_NS_FACEFORWARD
#undef DG_NG_NORMALIZE
#undef DG_NS_NORMALIZE

  dg.P = dg.P + dg.epsilon * ffnng;

  rayCone.width += rayCone.dwdt * ray.t; // propagate to hit
  const float texArea = length(cross(dg.dPds, dg.dPdt));
  const float world2tex = rsqrtf(texArea);
  const float projConeWidth = rayCone.width / -dot(ray.dir, dg.Ng);
  dg.pixelFootprint = projConeWidth * world2tex;
  dg.pixelFootprint *= renderer->mipBiasFactor;
}

OSPRAY_END_ISPC_NAMESPACE